
BioMed CentralBMC Bioinformatics

ss
Open AcceBMC Bioinformatics 2002, 3 xMethodology article
Efficient Boolean implementation of universal sequence maps
(bUSM)
John Schwacke and Jonas S Almeida*

Address: Department of Biometry and Epidemiology, Medical University of South Carolina, 135 Cannon Street, Suite 303, PO Box 250835,
Charleston SC 29425, USA

E-mail: John Schwacke - schwacke@musc.edu; Jonas S Almeida* - almeidaj@musc.edu

*Corresponding author

Abstract
Background: Recently, Almeida and Vinga offered a new approach for the representation of
arbitrary discrete sequences, referred to as Universal Sequence Maps (USM), and discussed its
applicability to genomic sequence analysis. Their work generalizes and extends Chaos Game
Representation (CGR) of DNA for arbitrary discrete sequences.

Results: We have considered issues associated with the practical implementation of USMs and
offer a variation on the algorithm that: 1) eliminates the overestimation of similar segment lengths,
2) permits the identification of arbitrarily long similar segments in the context of finite word length
coordinate representations, 3) uses more computationally efficient operations, and 4) provides a
simple conversion for recovering the USM coordinates. Computational performance comparisons
and examples are provided.

Conclusions: We have shown that the desirable properties of the USM encoding of nucleotide
sequences can be retained in a practical implementation of the algorithm. In addition, the proposed
implementation enables determination of local sequence identity at increased speed.

Background
Attempts to develop new representations of biological se-
quences that facilitate analysis and comparison continue
today. Representations that preserve the statistical proper-
ties and contextual information of the sequence would of-
fer considerable value in the analysis of the enormous
volume of genomic data being accumulated. In 1990, Jef-
fery [1] published a representation known as the Chaos
Game Representation (CGR) that exploited iterative func-
tion systems to map nucleotide sequences into a continu-
ous two dimensional space on the unit square. Properties
of the CGR representation have been generalized and
studied extensively [2,3].

Recently Almeida and Vinga [4] proposed an extension to
this method, termed Universal Sequence Maps (USM),
that provides a scale-independent method for represent-
ing and comparing any sequence of discrete units, which
encompasses genomic, proteomic, and even linguistic in-
formation. As discussed in that report, scale independency
in the context of sequence analysis corresponds to the
ability to recognize the length of a re-occurring segment
while comparing the representation of any of its analo-
gous unit components. This property enables scale-free
(e.g. order free) word statistics, the critical first step to rec-
ognize sequence conservation when overall sequence
identity is too low for alignment. The application of USM

Published: 21 October 2002

BMC Bioinformatics 2002, 3:28

Received: 2 July 2002
Accepted: 21 October 2002

This article is available from: http://www.biomedcentral.com/1471-2105/3/28

© 2002 Schwacke and Almeida; licensee BioMed Central Ltd. This article is published in Open Access: verbatim copying and redistribution of this article
are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/3/28
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/28
to the representation of a sequence can be summarized in
the following steps.

Step 1
Identify the unique symbols in the analyzed sequences.
For a nucleotide sequence the unique symbols would be
A, G, C, and T for the four nucleotides found in DNA se-
quences.

Step 2
Map each symbol to a unique corner in the unit hyper-
cube. The dimension of the unit hypercube, n, is chosen
as the upper integer of log2(uu) where uu is the number of
unique symbols. Therefore n has the value of 2 for DNA
and 5 for proteins. For each symbol mapped in such a
way, let usj be the jth coordinate of the corner of the hyper-
cube to which symbol s is mapped. For DNA one possible
mapping is uA = [0,0], uC = [0,1], uG = [1,0], and uT = [1,1].
There are sparser implementations of USM that may use
values of n up to the number of unique units, uu, as de-
tailed in the original proposition [4]. However, those so-
lutions are not essentially different and the
implementation presented here can be straightforwardly
ported to sparser USM representations.

Step 3
Iteratively generate the forward USM coordinates for each
of the k symbols and each of the n coordinates as follows

Step 4
Iteratively generate the backward USM coordinates for
each symbol and each coordinate as follows

The given procedure results in the 2n USM coordinates for
each of the k symbols in the transformed sequence. The
similarity of two sequences at any pair of symbols can be

measured using the distance measure defined by Almeida
and Vinga [4]. The measure is defined by

D = df (aibj) + db (aibj) (3)

where

Almeida and Vinga present the distance measure as an es-
timator of the length of the similar segment containing
the compared symbols. They also note that the measure,
as defined, necessarily overestimates the length of these
segments.

As can be seen in the USM procedure, each symbol in the
sequence is encoded as a set of USM coordinates. These
coordinates are constructed in such a way as to encode the
symbol itself as well as the preceding symbols (forward
coordinates) and following symbols (backward coordi-
nates). Scale independence is a property of this represen-
tation that allows the complete recovery of the
encompassing sequence (preceding and following sym-
bols) from the USM coordinates of any symbol in the se-
quence to any resolution (any scale) up to the complete
length of the sequence. In practical implementations we
are faced with the limitations of finite word length repre-
sentations of USM coordinates. In these implementations
our ability to recover the encompassing sequence is
bounded by the word length of the coordinate representa-
tion. For this reason, we refer to USM and bUSM imple-
mentations with finite precision coordinates as bounded
scale independent representations. In this paper we con-
sider the implementation of the USM algorithm and pro-
pose a modification to Almeida and Vinga's approach [4]
that eliminates the overestimation and allows determina-
tion of similar segment lengths of bounded length and of-
fer an algorithm for overcoming the bounded length
restriction.

Results
Source of the USM distance metric over-estimation
The application of USM as a tool for measuring scale-in-
dependent discrete sequence similarity and its particular
application to genomics and proteomics exploits a dis-
tance metric providing an estimate of the length of similar
regions surrounding a pair of symbols. In the approach
presented by Almeida and Vinga, this distance metric is

USM Unif

USM USM u

u

j

j
i

j
i

j
i

j
i

0

1

0 1

1
2

1
2

0 1

()

() −() ()

()

← []()
← ⋅ + ⋅

∈{

,

, }} ∈{ } ∈{ }

()

, .. , .. i k j n1 1

1

USM Unif

USM USM u

u

n j
k

n j
i

n j
i

j
i

j

+
+()

+
()

+
+() ()

← []()
← ⋅ + ⋅

1

1

0 1

1
2

1
2

,

ii
i k j n() ∈{ } ∈{ } ∈{ }

()

0 1 1 1

2

, , .. , ..

d a b USMb USMa

d a b

f i j m
j

m
i

b i j

, log max

, log ma

() = − −





() = −

() ()
2

2 xx

..

USMb USMa

m n

m n
j

m n
i

+
()

+
()−





∈{ }

()
1

4

Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/28
shown to overestimate the true length of the similar seg-
ment. We propose a variation on their approach that re-
tains the distance property, eliminates the over-
estimation, and uses more computationally efficient oper-
ations. We begin this discussion by first providing a more
complete proof of the distribution of overestimation in
the unidirectional USM. This proof aids in the illumina-
tion of the source of the over-estimation.

The USM distance metric estimates the length of un-
gapped identical segments in the region surrounding the
symbols being compared. As such, we now consider two
sequences, V and W with k symbols in agreement starting
at symbol indices mv and mw respectively.

From the definition of the USM recursion (Equation 1) we
can see that the jth coordinate at the kth step can also be
written as

Where the is the jth coordinate of the kth symbol and

the are determined by the initial values of the coor-

dinates. These values are assigned in the initialization step
of the USM encoding process. We write a coordinate of the
sequence at the mv

th and mw
th step in the recursion as:

These representations are given as three summations cor-
responding to the k symbols in agreement, the symbols
preceding the similar segment back to the beginning of
each sequence, and the initial value of the coordinate.
From our definition of these sequences (k most recent
symbols in agreement) we see that that the first terms
(first summation) in each of the expressions are equal. We

can factor a common term from each of the remaining
two summations giving

By change of index we get

We let , , and for the non-similar

segment be independent Bernoulli random variables with
p = 1/2. The term in brackets is recognized as a uniformly
distributed random value on [0,1). We can rewrite USMv
and USMw as follows

Where Rvj and Rwj are uniformly distributed on [0,1).
Next consider the differences between the USM coordi-
nates for each of these sequences.

The terms in the similar segment are eliminated and the
difference becomes a scaled difference between two uni-
formly distributed random variables. The scale factor of
this difference gives the length of the similar segment.

The unidirectional distance metric given by Almeida and
Vinga is defined as

v w i k

v w i

m i m i

m i m i

v w

v w

− +() − +()

− +() − +()
= ∈{ }
≠

1 1

1 1

1 for

 for

...

== +
()

k 1
5

USM
u a

j
k j

k i

i
i

k
j
k i

i
i k

()
− +()

=

− +()

= +

∞
= + ()∑ ∑

1

1

1

12 2
6

uj
k()

aj
k()

USMv
v v a

j
m j

m i

i
i

k
j
m i

i
i k

m
j
m i

v

v vv v
()

− +()

=

− +()

= +

− +(
= + +∑ ∑

1

1

1

1

1

2 2

))

= +

∞

()
− +()

=

− +()

= +

∑

∑= +

2

2 2

1

1

1

1

1

i
i m

j
m j

m i

i
i

k
j
m i

i
i k

m

v

w

w w

USMw
w www w

w

bj
m i

i
i m

∑ ∑+

()
− +()

= +

∞ 1

1 2

7

USMv
v v a

j
m j

m i

i
i

k

k
j
m i

i k
i k

m
j
m

v

v vv()
− +()

=

− +()

−
= +

= + ⋅ +∑ ∑
1

1

1

12

1

2 2

vv

v

w

w

i

i k
i m

j
m j

m i

i
i

k
USMw

w

− +()

−
= +

∞

()
− +()

=

∑

∑















= +

1

1

1

1

2

2

11

2 2 2

1

1

1

1
k

j
m i

i k
i k

m
j
m i

i k
i m

w bww w

w

⋅ +












− +()

−
= +

− +()

−
= +

∞
∑ ∑ 

()8

USMv
v v a

j
m j

m i

i
i

k

k
j
m i k

i
i

m k
j
m

v

v vv()
− +()

=

− − +()

=

−
= + ⋅ +∑ ∑

1

1

1

12

1

2 2

vv

v

w

w

i k

i
i m k

j
m j

m i

i
i

k
USMw

w

− − +()

= − +

∞

()
− +()

=

∑














=

1

1

1

1

2

2
∑∑ ∑ ∑+ ⋅ +








− − +()

=

− − − +()

= − +

∞1

2 2 2

1

1

1

1
k

j
m i k

i
i

m k
j
m i k

i
i m k

w bww w

w








()9

v j
k() wj

k() aj
k() bj

k()

USMv
v

Rv

USMw
w

j
m j

m i

i
i

k

k j

j
m j

m i

i
i

v

v

w

v

()
− +()

=

()
− +()

= + ⋅

=

∑
1

1

1

2

1

2

2==
∑ + ⋅

()

1

1

2

10
k

k jRw

∆USM USMv USMw

v
Rv

w

j j
m

j
m

j
m i

i k j
j
m i

v w

v w

= −

= + ⋅ −

() ()

− +() − +()1 1

2

1

2 2iii

k

k j
i

k

k j j

Rw

Rv Rw

==
∑∑ − ⋅

= −()

()
11

1

2

1

2

11
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/28
d = -log2 (max|∆USMj|) for j = 1..n (12)

where n is the number of coordinates in the USM vector.
Exploiting the fact that log is monotone increasing we sub-
stitute our expression for the USM difference and write d
as:

where ∆Rj = |Rvj - Rwj|. The overestimation is given by φ.
Since Rvj and Rwj are uniformly distributed on [0,1), the
distribution of ∆Rj is given by:

And the associated cumulative distribution is given by:

Therefore for n independent coordinates distributed as de-
fined, the distribution for the maximum is

P(Rmax ≤ r) = P(∆R1 ≤ r, ∆R2 ≤ r,...,∆Rn ≤ r) = (P(∆R ≤ r))n

= (r·(2 - r))n (16)

Under the transformation

φ(r) = -log2 (r) (17)

the distribution of φ can be determined as follows

This confirms the result originally reported by Almeida
and Vinga [4]. We see from this derivation that the exact
length of the similar segment, given by k, is determined by
the exponent of the common factor of 1/2 factored from
the non-similar segment. The remaining factor in that
term constitutes the overestimation. Overestimation is,
therefore, determined by the difference between terms in
the series representation of the maximum coordinate dif-
ference beyond the similar segment. The symbol sequence
encoded in this portion of the coordinate provides no in-
formation as to the length of the similar segment and so
we wish to eliminate its effect on the estimation of the
similar length.

Boolean USMs
It is clear from the discussion above that overestimation of
the length of similar segments by USM results from con-
tributions to the coordinate difference from terms in the
coordinate summation preceding the similar segment.
This effect is due to the use of an arithmetic difference in
the computation of Almeida and Vinga's distance metric.
Consider the following example

where Ra and Rb are the uniformly distributed random
values on [0,1) described in the previous derivation. Fi-
nite length coordinates are used here for illustration pur-
poses. These two quantities must differ in the most
significant position but are not constrained in the remain-
ing terms. In this example we see that for the least signifi-
cant subtraction to occur, the difference must borrow
from the next more significant term. The borrow propa-
gates the length of the sum and the length is overestimat-
ed, in this case, by 5. The overestimation is therefore, due
to the interaction of the symbols prior to the first symbol
at which the sequences differ.

We propose a variation on the USM encoding and differ-
ence metric in which arithmetic operations (subtraction,
maximum, and base 2 logarithm) are replaced with equiv-
alent Boolean operations in which the values of individu-
al terms in the above expression do not interact. We now
present the proposed change of arithmetic.

d USM for j n

Rv Rw

k

i

k j j

= − () −

= − −()









= −

log max ..

min log

lo

2

2

1

1

2

∆

gg max2

13

∆R

k

j()()
= +

()

ϕ

f r

r

r r

r
R∆ () =

<
− ⋅ ≤ <

≥






()

0 0

2 2 0 1

0 1

14

f r

r

r r

r
R∆ () =

<
− ⋅ ≤ <

≥






()

0 0

2 2 0 1

0 1

14

F F r F r

P F F

R

R

Φ Φ

ΦΦ

ϕ

ϕ ϕ ϕ

() = − ()() = − ()

≥() = − () = () =− −

log
max

max

2

1

1

1 2 2 ϕϕ ϕ−() ()
−2

18
2 n

R

R

R R

a

b

a b

= + + + +

= + + + +

− = + +

1
2

0

2

0

2

0

2

0

2
0
2

1

2

1

2

1

2

1

2

0
2

0

2

0

2

2 3 4 5

2 3 4 5

2 3
++ +

= − −() =

()
0

2

1

2

5

19

4 5

2ϕ log R Ra b
Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/28
Consider the following representation of a bUSM
(Boolean USM) coordinate

c = Riaiwhereai ∈ {0,1} (20)

Where represents the bit-wise logical OR of a series
of terms and Riis the right shift operator repeated i times.
The value c is then an infinite bit representation that en-
codes one bit from each symbol in the encoded sequence.
The bUSM recursion is then written as

The representation of a coordinate of the USM after the kth

step of the recursion is given by

Again, consider two sequences, V and W, as defined previ-
ously. We write the coordinates of these sequences at the
mv

th and mw
th step in the recursion as:

As before, we break the representation into three terms;
one representing the similar segment, one representing
terms prior to the similar segment, and one representing
the initial value of the coordinate. The proposed recursion
replaces division by 2 with a right shift operation and ad-
dition with a bit-wise logical OR. Resulting coordinates
are histories of one bit of the symbols preceding the en-
coded symbol with the most recent symbol's bit stored in
the left-most bit position (most significant position).

Given the proposed coordinate representation and recur-
sion, we now examine the bit-wise binary equivalent to
the computation of the distance metric. Consider the ex-
clusive OR of the coordinates of two symbols being com-
pared.

The exclusive OR operation yields true (bit is set) if the
bits differ and false (bit is not set) otherwise. Based on our
definition of sequences V and W none of the bits in the
similar segment of the newly defined bUSM coordinate
difference are set and the first bit beyond the similar seg-
ment must be set. The exact length of the similar segment
is given by one less than the position of the left-most set
bit in the set of coordinate differences.

Under the original approach, the maximum of the differ-
ences across all coordinates is taken prior to computing
the base 2 logarithm. Under the proposed approach we re-
place this operation with the bit-wise OR of the differenc-
es across all coordinates. The left-most bit set in the result
corresponds to the bUSM coordinate that determines the
length of the similar segment (equivalent to the coordi-
nate winning the max operation in the standard USM).
The computation of the distance metric in the original ap-
proach employs a base-2 logarithm. Under the proposed
approach we substitute the logarithm with a scan for the
position of the most significant bit set in the bit-wise OR
of the coordinate differences. By forming both the for-
ward and reverse bUSM coordinates and adding the for-
ward and backward distances, the exact length of the
similar segment can be determined for all pairs within the
segment.

For the standard USM, initial values for coordinates are
taken as random draws on [0,1). This allows the statistical
properties of the overestimation to remain consistent at
the beginning and end of the sequences. The Boolean
USM does not overestimate the similar length and we
must, therefore, reexamine the initialization approach so
as to preserve the determination of exact lengths at the be-
ginning and end of the sequences. This can be accom-
plished through the addition of two unique symbols, a
tail symbol for sequence V and a tail symbol for sequence
W. The use of two special symbols to mark the ends of the
sequences results in no change to the recursion or similar
segment length determination. It does impact the initiali-
zation and possibly the computational costs due to a po-
tential increase in the number of coordinates required to
represent the alphabet and the tail symbols. The addition
of two extra symbols will, in some cases, increase the
number of coordinates required. If, for example, an alpha-
bet of 4 is required, the addition of two symbols increases
the number of coordinates from 2 to 3. If, however, an al-
phabet of 20 is required, the addition of two symbols re-
sults in no increase in the number of coordinates.
Naturally, this would not ever happen for a sparse imple-
mentation of USM, where n = uu[4], and, consequently,
the number of coordinates increases with every new sym-
bol. Nevertheless, this would not, in any way, change the
bUSM proposition as the sole difference between sparse
and compact representations concerns the binary repre-

∨ =
∞
i 1

∨ =
∞
i 1

USM R USM R u where uj
k

j
k

j
k

j
k+() () () ()= 





∨ 





∈{ } (1 1 1 0 1 21,))

USM R u R aj
k

i
k i

j
k i

i k
i

j
k i()

=
− +()

= +
∞ − +()= ∨





∨ ∨





(1
1

1
1

22))

USMv R v R vj
m

i
k i

j
m i

i k
m i

j
m iv v v v()

=
− +()

= +
− +()= ∨





∨ ∨



1

1
1

1


∨ ∨





= ∨

= +
∞ − +()

()
=

− +()

i m
i

j
m i

j
m

i
k i

j
m i

v
v

w w

R a

USMw R w

1
1

1
1





∨ ∨





∨ ∨



= +

− +()
= +

∞ − +()
i k
m i

j
m i

i m
i
j
m iw w

w
wR w R b1

1
1

1


()23

dUSM USMv USMwj j
m

j
mv w= ⊕ ()() () 24
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/28
sentation of each symbol, uj = 1,...,uu. It is noteworthy,
however, that the incentive to use sparser USM represen-
tations, which is the smaller extent of over-determination,
does not exist for bUSM, where determination of length
unit identity is exact, as shown below.

The initial value of the Boolean USM coordinates for se-
quence V are set to indicate that an occurrence of the se-
quence V tail symbol precedes the first symbol in V. An
instance of the tail symbol is also added to the end of the
sequence (follows the last symbol in V). The initial value
for sequence W's coordinates are set similarly using the se-
quence W tail symbol. Since tail symbols differ from each
other and from all non-tail symbols, similar regions will
be terminated at the beginning and end of the sequence
and exact distances will be determined as required.

Both forms of the USM coordinates can be considered a
form of embedding and reorientation of the sequence
data as illustrated in Figure 1. Instead of coding the infor-
mation as a sequence of symbol codes, we code it as a col-
lection of coordinates containing one code bit for each
symbol in the sequence. Each USM coordinate stores one
bit for each symbol preceding (forward coordinates) or
following (backward coordinates) the symbol associated

with the coordinate. The sequence of coordinates redun-
dantly embeds the symbols surrounding the current sym-
bol.

The standard USM coordinates can be directly obtained
from the bUSM form by interpreting the bUSM coordi-
nates as block floating point representations of the USM
coordinates with the binary decimal point set to the left of
the most significant bit. Dividing the unsigned word rep-
resentation of the bUSM coordinate by 2W, where W is the
word length, yields the equivalent standard USM coordi-
nate with W symbols of precision. We also recognize that
for both the standard and Boolean USM coordinates, the
determination of similar segment lengths is limited by the
length (or precision) of the word used to represent the co-
ordinate. The original implementation of the standard
USM was created in Matlab and used 64-bit floating point
coordinates. As such, lengths for similar segments longer
than 53 symbols (IEEE 754 format provides 53 bits of pre-
cision [5]) cannot be determined. The bUSM coordinates
are similarly limited. The comparable implementation en-
codes bUSM coordinates in 64-bit fixed point representa-
tions and so exact similar segment lengths up to a
maximum length of 63 can be determined.

Overcoming finite word length limitations
In theory, USM encoded sequences could be used to de-
tect arbitrarily long similar segments. Previously we dis-
cuss the constraint imposed by finite-length binary
representations of USM and bUSM coordinates. An algo-
rithm for overcoming this limitation will now be present-
ed. First we define the following two functions

Under the finite word length limitation we note that df
and db, the true forward and backward distances, cannot
be determined from a single symbol pair comparison. We

define two new functions and which can be deter-

mined from W-bit coordinate representations. These
functions provide the length of similar segments up to the
length of the underlying representation W. The true length
of the forward and backward similar segments are re-
turned for lengths less than W and the word length is re-
turned otherwise. Next we present the following recursive
functions

Figure 1
Comparison of encodings for the original sequence, an
embedded representation and USM coordinates. Sample
encodings for a nucleotide sequence illustrating the equiva-
lence between an embedded encoding and a finite word
length, block floating point representation of a standard USM
encoding. The values indicated as ii,j represent the initial val-
ues of the USM coordinates and the subscripted A, G, T, and
C indicate the 0th and 1st bits of the 2-bit USM representa-
tion of the associated coordinates.

A

T

T

T

T

T

G

C

C

G

A

i1 i0

i1

i2A

T i2

AT i2T

ATTT

TTTT

TTTT

TTTG

TTGC

TGCC

GCCG

A0 i2,0 i1,0 i1,1 A1 i2,1 i1,1 i0,1

A0 i2,0 i1,0 A1 i2,1 i1,1T0 T1

A0 i2,0T0 A1 i2,1T1T0 T1

A1T1T1A0T0T0T0 T1

T0T0T0 T1T1T1T0 T1

T0T0T0 T1T1T1T0 T1

T0T0T0 T1T1T1G0 G1

T0T0G0 T1T1G1C0 C1

T0G0C0 T1G1C1C0 C1

G0C0C0 G1C1C1G0 G1

Original
Sequence

Embedded
Sequence

USM-Encoded
Sequence (2 Coordinates, W = 4)

1

21

1

22

1

23

1

24

1

21

1

22

1

23

1

24

′ () = () () <
d USMv USMw

d USMv USMw d USMv USMw W

W
f i j

f i j f i j,
, ,if

otherwiise

if







′ () = () ()
d USMv USMw

d USMv USMw d USMv USMw
b i j

b i j b i j,
, , <<






()
W

W otherwise

25

′df ′db
Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/28
The functions Df and Db recursively locate the end of the
similar segment by stepping backward (Df) and forward
(Db) through the similar segment until the end of the re-
gion is detected. The exact forward and backward lengths
of similar segments of arbitrary length can be determined
from these recursions. If the similar segment extends to
the end of the sequence, the recursion will terminate on
the last step due to the tail symbols added to the begin-
ning and end of the sequence. The exact length of the sim-
ilar segment containing symbols vi and wj is given by

The proposed recursive definition of similar segment
length overcomes the finite word length limitation and
provides a practical method for recovering exact distances
for arbitrarily long similar segments.

Performance comparisons
Computational comparisons of the two approaches were
performed using the C-code implementations developed
as described in Methods. This comparison examines the
performance gains achieved through the use of binary op-
erations (shift, exclusive OR, OR, bit scan) as replace-
ments for the equivalent functions in the standard USM
(division by 2, subtraction, max, and log). Since the
Boolean USM requires two additional symbols to repre-
sent the tail symbols for each of the sequences, three coor-
dinates are required for each of the forward and reverse
directions (six total). Four coordinates were required for
the standard USM. Standard USM coordinates were stored
as 64 bit floating point numbers and bUSM coordinates as
64 bit unsigned fixed point numbers. The standard and bi-
nary USM implementations were, therefore, limited to de-
tecting similar segments up to lengths 53 and 63
respectively in a single comparison (not using the recur-
sive distance algorithm).

Elapsed execution time measurements were made for each
of the 10 test cases and are presented in Table 1. For small
sequence lengths (less than 10,000 symbols) the symbol-
pair distance calculations for the binary USM achieved ap-
proximately 8.3 M comparisons per second on our test
platform while the standard USM achieved rates of ap-
proximately 2.3 M comparisons per second. The binary
USM approach was approximately 3.7 times the speed of

the standard USM. For these small sequence test cases, the
test application and the USM representations of the small
sequences fit within the processor's on-chip cache (512
kilobytes). For cases where the USM encoded sequences
exceed the cache size and require reads from main mem-
ory, the performance decreases as indicated for the larger
cases (10,000 symbols and above). For these cases, the bi-
nary USM executes at 3.3 M comparisons per second and
the standard USM at 1.7 M comparisons per second for a
performance ratio of approximately 1.9.

Two examples applying both the standard and binary
USM approaches were prepared to illustrate the difference
in results obtained from overestimated distance and exact
similar segment length determination. The first case du-
plicates the example given by Almeida and Vinga. Phrases
from the Wendy Cope poem were converted to standard
and binary USM for each of the sequences. The pair-wise
comparisons were performed using both approaches and
the results are shown as pixel maps (Figure 2). In these
pixel maps, brighter regions indicate higher distance val-
ues and should correspond to symbol pairs found in sim-
ilar segments. It is clear from the images in this figure that
the major similar segments (lengths 7, 9, and 11) are
clearly visible in both images. However, the exact distanc-
es in the Boolean USM image clearly show the shorter seg-
ments (lengths 3, 4, and 5) that are somewhat hidden by
the standard USM overestimation error (Figure 2A). A
similar illustration is provided using a sample nucleotide
sequence. The sequence coding the human insulin recep-
tor was acquired through NCBI (XM_048346, INSR) and
used in a BLAST search for similar sequences. The second
sequence (M69243, CTK-1) was taken from that list. A
100 nucleotide segment of the of the human insulin re-
ceptor (XM_048346, 3056–3155) associated with the pre-
dicted tyrosine kinase domain and a 100 nucleotide
segment from the chicken tyrosine kinase (M69243, 51–
150) were converted to standard USM and bUSM coordi-
nates and pair-wise compared using the associated dis-
tance metrics. Pixel maps of the distance metrics were
prepared (Figure 3). Again, the long similar segments are
clearly visible in both images. The overestimation noise in
the standard USM (image A) again masks many of the
shorter similar segments seen in the Boolean USM (image
B).

Discussion
Almeida and Vinga presented a fundamentally interesting
and practically useful extension of the Chaos Game Rep-
resentation iterative function (CGR) referred to as Univer-
sal Sequence Maps (USM) and demonstrated the
application of this representation and an associated dis-
tance metric in the identification of similar segments of
discrete sequences. In this report we have presented con-
siderations for the practical implementation of these

D USMv USMw
d USMv USMw d USMv USMw W

D USMv
f i j

f i j f i j

f

,
, ,

() =
′ () ′ () <if

ii W j W

b i j
b i

USMw W

D USMv USMw
d USMv USM

− −() +







() =
′

,

,
,

otherwise

ww d USMv USMw W

D USMv USMw W

j b i j

b i W j W

() ′ () <

() +





+ +

if

otherwise

,

,

()26

D USMv USMw
D USMv USMw D USMv USMw D USMv

i j
f i j b i j f i,

, , ,() = () + () − 1 if UUSMwj() >




()0

0
27

otherwise
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/28
methods and offer an implementation of USM that 1)
eliminates the overestimation of the length of similar seg-
ments, 2) eliminates the inability to recognize similar seg-
ments longer than the word length of the coordinate
representation, 3) can be implemented with more effi-
cient operations, and 4) provides a simple conversion that
recovers the standard USM coordinates. As currently de-
fined, the USM distance metric (and associated bUSM im-
plementation) is limited to the estimation of lengths of
local identity about the pair of symbols being compared.

The nature of the overestimation by the unidirectional
distance metric was revealed in a proof of the distribution
of the overestimation from the standard method. The al-
gebraic difference taken in computing the distance results
in the overestimation of length. This observation leads to
a modification of the algorithm that eliminates the inter-
action of symbols when computing distance. We also rec-
ognize, in this derivation, that to achieve this result we
must assume that the ith coordinates for the symbol repre-
sentations are equally likely (p = 1/2). The symbol coding
selections for standard USM sequences must be balanced
so as to make the occurrence of 1 and 0 in a standard USM
coordinate equally likely for the given symbol set (and fre-
quency of occurrence). This indicates that instead of
choosing the first n binary representations of symbols as
suggested in [4], the symbols should be chosen from the
2n possible values in such a way as to balance the occur-
rences of 1 and 0 for each coordinate. The Boolean USM
approach places no constraints other than uniqueness on
the symbol representation.

The Boolean USM approach eliminates the overestima-
tion problem noted in the standard USM and can recover
more symbols than the standard approach for a given
amount of storage. The binary approach is faster than the
standard approach (based on a straightforward imple-
mentation) and offers the potential for further enhance-
ment through, for example, the use of processor
instructions designed specifically to find the first or last bit
set in a word (e.g. Pentium Bit Scan Reverse (BSR) instruc-
tion [6]). In our test cases the binary approach performed
1.9 to 3.7 times that of the standard approach even
though it processed 6 (3 forward, 3 backward) rather than
4 (2 forward, 2 backward) coordinates. These measure-
ments are specific to the test platform (processor, OS,
compiler, etc.) and with optimizations these ratios will
change considerably.

The computational cost of preparing the coordinates is in-
significant when compared to the cost of the distance cal-
culations in cases we examined. This may, in part, be due
to the fact that we performed N × M comparisons for se-
quences of length N and M and with a minimum value for
N or M of 1000. Since the storage requirements for a USM
representation of a sequence are considerably larger than
that of the sequence itself, it may be more efficient to store
the sequence in its native form (a sequence of symbols)
and compute the USM coordinates just prior to sequence
comparison when a large number of comparisons are be-
ing performed. We also observed that the storage size of
the coordinates had an impact on computational per-
formance. The performance of the algorithm decreases
sharply when the USM coordinate representation exceeds
the on-chip cache of the processor. This may indicate that

Table 1: Execution time performance for standard and Boolean USM implementations.

Length of
 Sequence

A

Length of
 Sequence

B

Total Time
 (Boolean USM)

Distance
Compute

Time
 (Boolean

USM)

Total
Time

 (standard
USM)

Distance
Compute

Time
 (standard

USM)

Rate (Boolean
USM distance

 calculations
per second)

Rate (standard
USM distance

 calculations
per second)

Speed Ratio
 (Boolean to

standard)

Memory
(kB)

1,000 1,000 0.12 0.12 0.44 0.44 8,333,333 2,272,727 3.67 94
2,000 2,000 0.48 0.48 1.78 1.77 8,333,333 2,244,669 3.71 188
3,000 3,000 1.09 1.09 3.98 3.98 8,249,313 2,264,151 3.64 281
4,000 4,000 1.92 1.92 7.08 7.08 8,324,662 2,259,887 3.68 375
5,000 5,000 3.04 3.03 11.07 11.07 8,212,878 2,259,376 3.64 469

10,000 10,000 30.53 30.52 58.17 58.16 3,275,145 1,719,011 1.91 938
15,000 15,000 68.68 68.67 131.01 131.00 3,276,158 1,717,452 1.91 1,406
17,000 17,000 88.23 88.21 168.29 168.28 3,275,678 1,717,253 1.91 1,594
20,000 20,000 122.09 122.07 233.00 232.99 3,276,406 1,716,775 1.91 1,875
40,000 40,000 488.46 488.43 931.74 931.71 3,275,587 1,717,219 1.91 3,750

Results of performance comparisons of standard USM and Boolean USM implementations in C (gcc 2.95.3, cygwin, Windows 2000, PIII 1 GHz).
Sequence lengths are given in nucleotides. Times measure elapsed execution time in seconds. Total times include both USM sequence preparation
time and distance calculations for all symbol pairs. Memory is measured in kilobytes and represents the space required to store the USM coordi-
nates for both sequences.
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/28
we should be considering tradeoffs between word length
and the size of the similar segments we wish to detect
without using the recursive length function. If, for exam-
ple, the probability of sequences longer than 16 symbols
is sufficiently small, then a 16 bit coordinate might be
used.

A single pairwise comparison grows as the upper integer
of the base 2 logarithm of the number of unique symbols.
Almeida and Vinga note that for a given length of interest
w, we need to sample the distance metric at no more than
NA·NB/w indices to locate all sequences of length w or
greater. In an application focused on locating all identical
segments of length w or greater, the computational cost
therefore grows as [log2(nn)]·(NA·NB)/w. The exact dis-
tance given in the binary approach allows us to locate,
from this sampling, the beginning and end of the similar
segment from the sampled symbol indices and the for-
ward and reverse distances. Subtracting one less than the
exact forward distance from the indices of the symbols be-
ing compared and adding one less than the exact back-
ward distance from the indices we can identify the start
and end of the similar segment containing the given sym-
bol pair. The Boolean USM, offers this advantage due to
its unique ability to determine the exact length of the sim-
ilar segment.

Conclusions
USM representations of discrete sequences in genomics
and proteomics offer the possibility of scale-independent
representations of sequence information surrounding
points of comparison in those sequences. In order to max-
imize the potential for application of these methods we
must consider both their theoretical properties and the
computational methods for efficient implementation that
retain these properties. We have offered one further step
in that direction by identifying a Boolean implementation
of USM (bUSM) that not only preserves the theoretical
properties of numerical USM but actually uses the binary
environment of the computational implementation to
achieve a more exact logical solution. The proposed im-
plementation leads to a distance metric that exactly deter-
mines similarity length between sequences. Ultimately,
this achievement can be described as one that replaces the
determination of logarithmic, numerical distance, with
computationally more efficient logic operations. It could
then be argued that, given the discrete nature of biological
sequences, new scale-independent numerical representa-
tions, such as USM, are all but the first step in the identi-
fication of more accurate Boolean equivalents of
fundamental relevance.

Figure 2
Comparison of standard and Boolean USM similar segment length measurements. Pixel images of bi-directional distance deter-
mination for standard (A) and Boolean (B) USM implementations. Brighter pixels indicate longer similar segments.

A. B.
Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/28
Methods
Software implementation
Test versions of both the standard USM and the Boolean
USM algorithms were developed in order to facilitate per-
formance comparisons of practical implementations. A
single "generic" implementation of the framework for
both methods was first developed and then used as the
starting point for developing method-specific implemen-
tations. Care was taken so as to minimize differences in
any code other than that implementing the recursion and
the distance metric calculations. Programs were written in
C and compiled and tested in the same environment
(compiler, linker, libraries, and host) and executed
against the same test cases. No attempt was made to opti-
mize either implementation (beyond that performed by
the compiler). Both applications were compiled using the
GNU compiler (gcc version 2.95.3) under the cygwin en-
vironment [http://www.cygwin.com/] on a 1 GHz Pen-
tium III-based system running Windows 2000. The source
code, Makefiles, and test data are available from [http://
bioinformatics.musc.edu/resources.html].

Software performance testing
Test cases were produced by replicating two different 1
kbp segments of the e-coli genome to create 2 kbp, 3 kbp,

4 kbp, 5 kbp, 10 kbp, 15 kbp, 17 kbp, 20 kbp, and 40 kbp
sequences. Each implementation is run as a separate pro-
gram. The programs load the two sequences to be com-
pared from disk, compute the USM (or bUSM)
coordinates for all symbols in each sequence, and com-

pute the local distance metric (or) for all pairs of

symbols. Compute time was measured from the point fol-
lowing the load of the sequence from disk to the point at
which all of the distance calculations were completed.
Times were measured using the unix clock() function.
Compute time was also measured from the point at which
the USM coordinate calculations were completed to the
end of the distance calculations.

Acknowledgements
The authors thankfully acknowledge support by the train-
ing grant 1-T15-LM07438-01 "training of toolmakers for
Biomedical Informatics" by the National Library of Medi-
cine of the National Institutes of Health, USA (NLM/NIH,
[http://www.nlm.nih.gov/ep/T15Training.html]).

Figure 3
Comparison of standard and Boolean USM length measurements for sample nucleotide sequences. Pixel images of bi-direc-
tional distance determination for standard (A) and Boolean (B) USM implementations. The sequences are 100 nucleotide seg-
ments from the human insulin receptor (INSR) and a chicken tyrosine kinase (CTK-1). Brighter pixels correspond to longer
similar segments. The dominant segment is an exact match that is 17 nucleotides long.

A. B.

′df ′db
Page 10 of 11
(page number not for citation purposes)

http://www.cygwin.com/
http://www.cygwin.com/
http://bioinformatics.musc.edu/resources.html
http://bioinformatics.musc.edu/resources.html
http://www.nlm.nih.gov/ep/T15Training.html
http://www.nlm.nih.gov/ep/T15Training.html

BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/28
Authors' contributions
First author developed bolean implementation of Univer-
sal Sequence Map (bUSM). Second author, the original
proponent of USM [4] identified theoretical context.

References
1. Jeffrey HJ: Chaos game representation of gene structure. Nu-

cleic Acids Res 1990, 18:2163-2170
2. Almeida JS, Carrico JA, Maretzek A, Noble PA, Fletcher M: Analysis

of genomic sequences by Chaos Game Representation. Bioin-
formatics 2001, 17:429-437

3. Tino P: Spatial representation of symbolic sequences through
iterative function systems. IEEE Transactions on Systems, Man, and
Cybernetics – Part A: Systems and Humans 1999, 29:386-393

4. Almeida JS, Vinga S: Universal sequence map (USM) of arbi-
trary discrete sequences. BMC Bioinformatics 2002, 3:6

5. IEEE: 754–1985 IEEE Standard for Binary Floating-Point
Arithmetic 1985. In: Book 754–1985 IEEE Standard for Binary Float-
ing-Point Arithmetic 1985 (Editor ed.^eds.). City 1985

6. Intel: IA-32 Intel Architecture Software Developer's Manual
Volume 2: Instruction Set Reference. In: Book IA-32 Intel Architec-
ture Software Developer's Manual Volume 2: Instruction Set Reference (Ed-
itor ed.^eds.). City: Intel Corporation 2001

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMedcentral will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Paul Nurse, Director-General, Imperial Cancer Research Fund

Publish with BMC and your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours - you keep the copyright

editorial@biomedcentral.com
Submit your manuscript here:
http://www.biomedcentral.com/manuscript/

BioMedcentral.com
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2336393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2336393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=90187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11895567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=90187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=90187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=90187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=90187
http://www.biomedcentral.com/
http://www.biomedcentral.com/manuscript/
http://www.biomedcentral.com/manuscript/
http://www.ncbi.nlm.nih.gov/PubMed/
http://www.pubmedcentral.nih.gov/

	Efficient Boolean implementation of universal sequence maps (bUSM)
	Abstract
	Background
	Results
	Discussion
	Conclusions
	Methods
	Acknowledgements
	Authors' contributions
	References

