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Abstract 

Background: Synthetic biologists use and combine diverse biological parts to build 
systems such as genetic circuits that perform desirable functions in, for example, bio‑
medical or industrial applications. Computer‑aided design methods have been devel‑
oped to help choose appropriate network structures and biological parts for a given 
design objective. However, they almost always model the behavior of the network 
in an average cell, despite pervasive cell‑to‑cell variability.

Results: Here, we present a computational framework and an efficient algorithm 
to guide the design of synthetic biological circuits while accounting for cell‑to‑cell 
variability explicitly. Our design method integrates a Non‑linear Mixed‑Effects (NLME) 
framework into a Markov Chain Monte‑Carlo (MCMC) algorithm for design based 
on ordinary differential equation (ODE) models. The analysis of a recently developed 
transcriptional controller demonstrates first insights into design guidelines when trying 
to achieve reliable performance under cell‑to‑cell variability.

Conclusion: We anticipate that our method not only facilitates the rational design 
of synthetic networks under cell‑to‑cell variability, but also enables novel applications 
by supporting design objectives that specify the desired behavior of cell populations.

Keywords: Cell‑to‑cell variability, Synthetic biology, Computer‑aided design

Background
Synthetic biology aims at establishing novel functions in biological systems, or to re-
engineer existing ones, in many areas such as new materials or cell-based therapies that 
are starting to see real-world applications [1]. The conceptual core of the field’s rational 
engineering approach to establish, for example, the corresponding synthetic gene cir-
cuits are a systematic design-build-test cycle and the use of predictive mathematical 
models throughout this cycle to design, analyze, and tune the circuits [2].

Computer-aided design helps identifying suitable network structures (topologies) as 
well as biological parts for their implementation to reach a given design objective. For 
the commonly applied models in the form of ordinary differential equations (ODEs), 
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both design problems can be addressed by investigating the space of model parameters 
to assess (predicted) circuit behaviors in relation to design objectives encoded by a ref-
erence for the desired behavior. With sampling-based methods such as (approximate) 
Bayesian computation, this defines a ‘viable’ subspace of the parameter space where the 
behavior is consistent with the design objective (Fig. 1A, B) [3–5].

The ODE-based approach captures the behavior of an ‘average’ cell and thus only 
allows design with respect to such an assumed cell. Yet, for the biological implementa-
tion it is critical that a circuit functions under conditions of uncertainty (e.g., in chang-
ing environmental conditions or because the models do not capture relevant interactions 
between parts or with the cellular context [6]) as well as cell-to-cell variability that is 
present even in isogenic populations (e.g., due to extrinsic or intrinsic stochastic noise, 
or different cell cycle phases and ages of cells in a population [7]). One can account for 
uncertainty in ODE-based design, for example, via measures of robustness that quantify 
parameter uncertainty [4]. It is also possible to tackle cell-to-cell variability with stochas-
tic models, where temporal logic specifications are written as Continuous Stochastic 
Logic (CSL) [8]. However, the pure ODE and CSL frameworks are limited in two main 
aspects: First, they cannot account for all aspects of cell-to-cell variability directly; sto-
chastic models do not represent extrinsic variability resulting, for example, from vari-
able cell sizes. This is particularly important when an ‘average’ cell poorly represents the 
population dynamics, for example, when subpopulations of cells show different qualita-
tive behaviors. Second, and related, it is not possible to define design objectives for the 
population, such as requiring a certain fraction of the cells to have a coherent behavior.

To address these limitations, here we propose a framework for robust synthetic circuit 
design that takes into account cell-to-cell variability, and clearly separates it from experi-
mental noise and impact of variable environmental conditions and interacting parts. For 
this population design, we extend MCMC based sampling approaches for ODE-based 
design [4] to the NLME (Non-linear Mixed-Effects) models framework [9]. Specifically, 
this entails augmenting the ODE model with a statistical model at the population level 
that induces probability distributions over the parameter space at the individual cell 

Fig. 1 Cell behaviors relate to parameters at the individual and population level. A Dose‑response 
relationships for single cells (lines) drawn from two distinct populations (red and orange) as well as other 
cells not belonging to any population (gray). The design objective for individual cells is represented by an 
ideal reference curve (black). B Space of individual parameters β , the set of possible parameter values for a 
single cell. Dots show parametrizations yielding the behaviors in (A) of the corresponding color. The blue 
ellipse encloses the individual viable space where an individual cost measuring consistency of the single‑cell 
behavior with the design objective for individual cells is below a threshold ε . Red and orange dots encircled 
by ellipses represent individual cells drawn from the two distinct cell populations. C Space of population 
parameters γ , where each parameter vector (dot) describes a full distribution of individual parameters in a 
population, typically via mean vector and covariance matrix. The orange ( γ ) and red ( γ ′ ) dots represent the 
population parameter vectors that generate the corresponding populations in (A, B)
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level (see Fig. 1B, C). This allows a designer to impose cell-to-cell variability constraints 
on synthetic networks. Additionally, we propose an efficient MCMC algorithm with par-
allel tempering (PT) [10] to scale our approach to larger population design problems. 
We demonstrate the approach with the a posteriori analysis of a recently developed tran-
scriptional controller [11], a class of circuits that is often designed to minimize cell-to-
cell variability.

Results
Population design framework

For any individual cell, we assume that the dynamics of the synthetic circuit are gov-
erned by the individual cell model

where x are the system states such as concentrations of chemical species, v is a rate 
function, and u is an input function. Usually, states cannot be observed directly and the 
observations y of the system result from a (known) observation function h. We subsume 
the parameters α and initial conditions x0 into the parameter vector β = (α, x0) ∈ B , 
where B is a bounded set.

We first consider the individual cell design problem of determining the parameter β∗ 
that minimizes the divergence between the circuit’s behavior and a desired reference 
behavior. We model the behavior of � as an input–output map D : R× B× U → R that 
provides a (time-dependent) function D(τ ;β ,u) in τ for each parameter vector β ∈ B 
and any input u ∈ U , where U is a finite set of relevant inputs. The reference behavior 
Dref

: R× U → R is a user-specified (time-dependent) function for each u ∈ U that 
encodes the desired input–output relation; it need not be realizable by � . A simple exam-
ple is a dose-response curve, where a constant input u is mapped to a constant response 
for the reference, and to the output at steady state for t → ∞ for the circuit. Another 
example identifies D(τ ;β ,u) = y(τ ) as the observations of � at time τ for a given input 
and parameter.

We measure the divergence between system and reference behavior by the individual 
cost function

which averages some norm || · || between the system and reference behavior over the 
considered inputs.

In principle, the individual cell design problem could be solved directly to identify the 
optimal individual cell parameter β∗

= argminβs(β) . However, additional uncertainties 
arise due to unmodelled system components and from combining previously character-
ized biological parts into a circuit [12]. We account for these uncertainties by defining a 
threshold ε > 0 on the cost function to encode which solutions are ‘good enough’, and 
determine the viable region V ind

= {β ∈ B | s(β) ≤ ε} of all parameters that fulfill this 

(1)�(β) :

dx(t)
dt

= v(x(t),u(t),α)
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criterion. An output of the individual cell design problem is then a description of V ind 
rather than a single parameter.

To capture cell-to-cell variability, we postulate a population model, where all cells 
share the same model structure � , but each cell i has its own parameter βi drawn from a 
common population distribution

with population parameters γ ∈ Ŵ . This is known as a nonlinear mixed-effects model and 
Pγ is often chosen to be a normal or log-normal distribution, in which case γ are the 
expected values and (co)variances of the parameters in βi . We assume that the distribu-
tion Pγ admits a probability density function (p.d.f.) pγ (β) for all γ ∈ Ŵ.

The population model allows us to consider the distribution of behaviors of a circuit 
under cell-to-cell heterogeneity. In particular, each population parameter γ yields a spe-
cific distribution Pγ of the individual cell parameters β , and this induces a distribution 
over the values of the individual cost functions s(β) . The population design problem then 
consists of finding a population parameter that minimizes a corresponding population 
cost function, given by a functional

For example, c(γ ) = Eγ (s(β)) considers the expected value of the individual costs over 
the population, and c(γ ) = PPγ (s(β) ≥ ε) = PPγ (β �∈ V ind) considers the percentage of 
cells whose behavior deviates from the reference by more than a user-defined threshold 
ε (cf. Fig. 1B); this percentage depends on the specific population distribution Pγ , and 
therefore on the population parameter γ.

Again, the population design problem can in principle be solved directly to yield 
γ ∗

= argminγ c(γ ) . Here, we again relax this problem and seek to identify the population 
viable space V pop

= {γ ∈ Ŵ | c(γ ) ≤ δ} to account for additional uncertainties, where δ 
is again a user-defined parameter. In particular for design objectives such as requiring 
a minimal fraction of cells with ‘acceptable’ behavior that will have multiple optima, the 
population viable space also yields equivalent design alternatives.

To sample the viable spaces, we previously applied a naive MCMC-based algorithm 
to a low-dimensional design problem, but it proved to be slow and had a poor mixing 
[13]. It would be increasingly difficult and time-consuming to apply it to larger prob-
lems involving more parameters. To overcome these computational limitations for the 
important case of controlling the percentage of sufficiently well-behaved cells, here we 
propose and implement an alternative sampling algorithm that we call Stochastic Likeli-
hood Markov Chain Monte-Carlo (SLMCMC). Its general idea is to sample jointly from 
the population parameter space and the individual parameter space, and then to discard 
individual parameters (see Methods for details).

Design problem for a transcriptional controller

To demonstrate the framework, we use a transcriptional controller termed well-tem-
pered controller (WTC) that was experimentally designed by Azizoglu et  al. [11]. In 
the WTC (Fig.  2A), expression of the fluorescent protein Citrine—or of any gene of 

(3)βi ∼ Pγ

(4)c : {Pγ | γ ∈ Ŵ} → R
+ .
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interest—is regulated by constitutively expressed TetR-Tup1 and by autorepressed TetR. 
Anhydrotetracycline (aTc) can bind to both TetR and TetR-Tup1, thereby inactivating 
their ability to repress gene expression.

Experimentally, it was shown that cell-to-cell variability in the expression of Citrine is 
reduced through the introduction of the TetR-mediated negative feedback. At the same 
time, the dose-response curve—obtained by adding different amounts of the inducer 
molecule aTc—was tuned to approach an ideal linear dose-response, corresponding to 
high Input Dynamic Range (IDR) and high Output Dynamic Range (ODR) [14] (Fig. 2B).

Given that we already know the final network structure of the WTC, we aim to use our 
computational framework to determine the acceptable characteristics of the distribution 
of circuit parameters in a population of cells, namely their mean and covariance, such 
that a large proportion of cells in the population will display a dose-response curve close 
to an ideal reference curve. Notably, we wish to establish whether our framework can 
identify the relevance of the feedback mechanism in the context of a population of cells.

We first formulated an ODE model to describe the behavior of the WTC circuit (see 
Fig.  2A) for an individual (‘average’) cell. The model involves the concentration of the 
input molecule aTc (a)—which can be added to the cell culture—and three states for the 
total concentrations of the repressor TetR, the repressor TetR-Tup1, and the fluorescent 

Fig. 2 Well‑tempered controller (WTC) circuit. A Schematic representation of the circuit structure and its 
parametrization. Rectangles: genes with associated promoters; ellipses: proteins (corresponding color); lines 
with arrows: molecular reactions; lines with bar heads: regulatory interactions for inactivation. B Experimental 
and simulated aTc dose‑response curve for the WTC. Blue: mean (circles) and standard deviation (error 
bars) of experimental data obtained by flow cytometry; green line: simulation results for the estimated 
parameter values in Table 1. Additionally, we used estimated values dC = 0.006 min−1 , dTet = 0.0087 min−1 , 
θTet = 0.006 nM , and θTup = 0.5 · 10−4 nM . To match the model output (Citrine concentration) to 
fluorescence (a.u.), we determined a scaling factor as in [4]. C Simulated dose‑response curves of a 
population of cells for a given population parameter γ with a coefficient of variation CV ≈ 10% . Parameter 
means were the estimated parameters from (B). Blue line: mean response; gray lines: responses of individual 
cells; black line: reference linear dose‑response curve; red lines: reference curve ±ε = 6 nM ; the individual 
cost threshold; an individual trajectory is viable if it lies within the red curves on average. Note that aTc is in 
linear scale
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protein Citrine (see Methods for details). We estimated the model’s 10 parameters using 
data from Azizoglu et al. [11] using least-squares non-linear optimization (see Table 1). 
Note that compared to our earlier study [13], we make the model biologically more real-
istic by accounting for dilution due to cell growth through the degradation constants. 
As shown in Fig.  2B, the parametrized WTC model captures the experimental dose-
response curve well. In particular, the model can give a response close to linear in the 
input range shown in Fig.  2C. Here, the parameterized model serves only to generate 
a realistic reference behavior; therefore we did not investigate model aspects such as 
identifiability.

To define the design problem, we encode this observed behavior as the reference 
behavior. Specifically, our objective for the behavior of individual cells endowed with 
the WTC is a linear dose-response curve over an IDR of [0 nM, 150 nM] for aTc with 
a desired ODR of [0 nM, 60 nM] . We define our individual cost s(β) (Eq.  2) as the L2 
distance between an individual cell’s response and the reference dose-response curve. 
Parameters β that fulfill s(β) ≤ ε constitute the individual viable space, and we consider 
different values for the threshold ε (see Methods).

Table 1 Parameter specifications for the WTC model

Parameters kTet , kTup , kC , and dTup are cell-to-cell variable but their means are fixed to the indicated values. S. cerevisiae’s 
typical growth rate in YPD medium is 0.0077min−1 [4]. To account for dilution and potential cell-to-cell variability, lower 
bounds for all degradation constants were fixed to 3e − 3min−1

Name Description Units Fixed value Cell-specific

Fixed parameters

kTet Max production 
rate of TetR

nM min−1 1.12 Yes

kTup Max production 
rate of TetR‑Tup1

nM min−1 0.79 Yes

kC Max production 
rate of Citrine

nM min−1 0.84 Yes

dTup Degradation 
constant of TetR‑
Tup1

min−1 1.28 Yes

n Hill coefficient for 
promoter repres‑
sion by TetR

(–) 1.57 No

Ka Association 
constant for TetR 
and TetR‑Tup1 
binding to aTc

nM−1 144.37 No

UnM
sc

Scaling constant: 
nM per tdh3 
producing unit 
(see [4])

nM · unit−1 0.76 No

Name Description Units Bounds Explored in log space Cell-specific

Sampled parameters

dTet Degradation constant 
of TetR

min−1 [3 · 10−3 0.1] Yes Yes

dC Degradation constant of 
Citrine

min−1 [3 · 10−3 0.1] Yes Yes

θTet Repression coefficient 
TetR

nM [10−3 106] Yes No

θTup Repression coefficient 
TetR‑Tup1

nM [10−6 20] Yes No
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For our population design, we consider the percentage of individual cells in a popula-
tion with parameter γ that fulfill the criterion for acceptable dose-response as our popu-
lation cost function:

We define the population viable space as those γ that yield at least 80% individual cells 
with behavior sufficiently close to the reference; correspondingly, c(γ ) ≤ 0.2.

To illustrate the interplay between the individual and the population level in our 
design problem, Fig. 2C shows an example of the dose-response relationship of the WTC 
model for a population of cells. The NLME formulation takes into account the variance 
in parameters, that is, cell-to-cell variability. Here, although the mean response is close 
enough to the ideal response, many response curves are not within the acceptable range 
due to variance in the individual parameters. Specifically, we obtain a population cost of 
c(γ ) ≈ 0.3 , given an individual cost threshold of ε = 6 nM that corresponds to approxi-
mately 10% deviation from the reference curve. The example illustrates a key difference 
between traditional design and population design. The traditional design considers the 
mean response of the population, which is very close to the reference curve, although 
a significant fraction of individual cells might not comply with the design objective. In 
contrast, the population design explicitly considers variability and rejects design options 
if the proportion of non-compliant cells is too high.

Individual-cell design

We were first interested in identifying the relevance of the feedback mechanism for sin-
gle-cell responses, focusing on individual costs and (viable) parameter spaces. To sim-
plify the computations as well as the analysis of relationships between parameters, we 
sampled a four-dimensional parameter space after fixing the means of 6 out of 10 param-
eters of the ODE model (see Table 1). The four remaining parameters ( dTet , dC , θTet , and 
θTup ) are the protein degradation constants, and the effective concentrations relative to 
the repression (including feedback) mechanisms. This set of parameters also allows to 
explore limit cases where parts of the network are removed: A high repression constant 
( θTet or θTup ) is equivalent to removing the corresponding repressive effect; fixing dTet or 
dC to a large value effectively removes the production of TetR or Citrine.

For sampling, we used a naive, adaptive version of the Metropolis-Hastings algorithm 
[15] with a pseudo-likelihood based on individual cost (see Methods for details). We 
selected a threshold of ε = 6 nM for the individual cost, corresponding to approximately 
10% of the target ODR.

In Fig. 3, we first note that the protein degradation constant of Citrine, dC , displays 
a substantially narrower marginal distribution than all other parameters. Citrine is the 
system response, and therefore this distribution shape is not surprising: with all other 
parameters kept identical, a change in dC will directly impact the shape of the dose-
response curve.

The two-dimensional projections of the joint distribution over the individual viable 
space V ind exhibit a correlation between the two parameters for protein degradation, 
dTet and dC , mainly in the region of low individual cost s(β) . This indicates that either of 
the two degradation constants could be used to fine-tune the circuit.

(5)c(γ ) = PPγ (s(β) ≥ ε) .
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The two parameters θTet and θTup capture the strengths of auto-repression and con-
stitutive repression, respectively. Higher values correspond to weaker repression, but 
do not exclude other vital roles for TetR (resp. TetR-Tup1) in the circuit. Values for the 
full range of θTet and θTup are viable individually. However, the two parameters cannot 
take high values simultaneously, indicating that effective repression of at least one type is 
needed for the circuit to achieve the desired behavior.

A high degradation constant dTet might allow us to remove TetR from the circuit 
design and rely on constitutive repression alone. However, looking at the (dTet , θTup) pro-
jection reveals that this option requires precisely controlling constitutive repression by 
keeping θTup in a very narrow range. This is unlikely to be feasible in a biological imple-
mentation—keeping TetR in the circuit therefore seems advisable even without a repres-
sive role.

For low values of θTet and θTup , these two parameters are also correlated with the 
degradation constant of Citrine, dC , because stronger repression needs to be compen-
sated by slower degradation to allow mean expression of Citrine in the desired range. 
Citrine mean expression seems less affected by lower repression, where this correlation 
vanishes.

Considering viable parameter values jointly thus provides insights into parameter 
restrictions and correlations. It also identifies robustness with respect to parameter per-
turbations that can be exploited for circuit design.

Population design

We next applied the complete population design framework to the WTC model to 
obtain design guidelines for a reasonably good transcriptional controller with low cell-
to-cell variability in the steady-state dose-response. Specifically, we set a population 
threshold of δ = 0.2 , requiring at least 80% of the cells in a population to meet the indi-
vidual design goal.

Table 1 summarizes the parameter specifications. Assuming log-normal distributions, 
we sample only variances ( kTet , kTup , kC , and dTup ), only means ( θTet and θTup ), or both 
( dTet and dC ). While variances are unlikely to be tunable in practice, sampling cell-to-cell 
variability of parameters allows us to identify maximum admissible values compatible 
with the design objectives and hence to select suitable biological parts (of known and 
fixed variance) for the circuit.

As a main extension to our prior work [13], we here introduce the SLMCMC algo-
rithm for sampling in population design. The previous, naive approach is computation-
ally inefficient because substantial sampling of individual parameters is required to 
impose the hard threshold δ on the population cost in Eq. 6. We reasoned that we might 
gain efficiency by relaxing the hard constraint during sampling, focusing on sampling 
viable population parameters with sufficient probability, and checking the hard δ-con-
straint a posteriori. For details on the algorithm, see Methods.

To test the algorithm, we first assume an identical coefficient of variation 
CV =

√

eσ
2
− 1 for all parameters that are cell-to-cell variable. The covariance matrix of 

the underlying Normal distribution is then σ 2
· I . Since σ ≤ 0.1 in our viable samples, we 

used the approximation CV ≈ σ to simplify our analysis slightly.
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Figure 4A shows the resulting population parameter distributions for the SLMCMC 
algorithm using the two individual cost thresholds ε = 6 nM and ε = 3 nM . They are 
very similar to the ones obtained with the naive approach (Additional file 2: Fig. S1), 
indicating that the SLMCMC approach finds parameters yielding the desired behav-
ior at the population level, although it samples from a different distribution initially 
(see Methods for details).

For the mean parameters, the patterns are also very similar to those obtained for 
individual samples (Fig. 3). This is not surprising because we allowed for low values 
for the variance σ in the exploration; for low σ , essentially all population members 
behave like the (viable) mean parameters.

The data in Fig. 4A provides new insights, first, because of the two individual thresh-
olds ε employed. A reduced threshold makes the correlation between dTet and dC 
stronger, highlighting the importance of tuning the two parameters jointly to achieve 
a stricter objective. In line with the individual design results, the joint distribution 
of repression parameters θTet and θTup shows that either type of repression needs to 
be strong to achieve the design objective. In addition, for lower ε , the region of low 
θTet and high θTup recedes to higher θTet , indicating that simultaneous strong auto-
repression and weak constitutive repression can be detrimental for stricter objectives.

The second new insight derives from sampling parameter variances in population 
design. Although we allowed a CV up to one, Viable samples are essentially all below 
7% for ε = 6 nM and 2.4% for ε = 3 nM. These values could be maxima for the admis-
sible cell-to-cell variability for reaching the design objective. For future studies, it is, 
hence, of interest to experimentally quantify the cell-to-cell variability of the param-
eters, and check the results against our inferred value. Note, however, that higher CVs 
would be allowed in the presence of negative correlations between parameters.

Here, we sampled the CV to identify the maximum admissible variability. To assess 
the impact of a fixed (high) variability on the viable space, we then fixed CV = 7% . 
In addition, because non-linearities should make differences between individual and 
population design more pronounced [16], we increased the Hill coefficient for TetR-
Tup1 ( nTup = 5 ). This makes the roles of constitutive repression and auto-repression 
more distinct. As shown in Fig. 4B, the population viable space becomes restricted to 
parts of the space where individual cells would have a very low individual cost. As a 
result, some parameter combinations are no longer viable for populations including 
variability. For instance, dTet and dC have much higher correlation in the population 
viable space, and will need well-coordinated fine-tuning.

Next, we abandoned the assumption of equal variances and considered a diagonal 
covariance matrix with diagonal entries σ 2

j  , which increases the parameter space to 
10 dimensions. The resulting distribution for the mean parameters is very similar to 
the one obtained for the scalar covariance matrix (Additional file 3: Fig. S2). However, 
viable variances differ considerably (Fig. 5A): σdTup and σkTup can rise to CVs as high as 
1. Thus, TetR-Tup1 degradation and production constants can vary substantially in 
the population without much impact on the performance. Yet, σdC , σdTet , σkC , and σkTet 
are constrained to values below 10%, indicating that narrow distributions for the cor-
responding constants are critical for adequate circuit performance.
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Table 2 Sampling efficiency in the population parameter space

Runs were performed on a standard laptop with Intel i7 processor for the population sampling problem with ε = 6nM . 
Run-time is the sampling time. Checking-time is the time to naively compute population costs for 600 sampled populations 
(unnecessary for the naive approach). Populations with cost above the threshold account for the rejected samples. minESS 
is the minimum of the individual ESSs obtained across multiple dimensions. Sampling efficiency is the ratio between 
minESS and the actual number of samples drawn. Ratios involving time are computed by summing over run-time and 
checking-time

Criterion MCMC SLMCMC

Samples 20,000 200,000

Covariance Scalar Scalar Diagonal

κ – 3 {3,5} {3,7} {3,9} {3,7}

Run‑time (s) 23,755 900 2639 3624 3713 3413

Checking‑time (s) 0 615 721 719 725 746

Rejected samples (%) 0 4 1.33 1.33 0.5 2.33

minESS 157 1505 3011 3345 2981 1487

Time/sample (s) 1.188 0.0076 0.017 0.020 0.022 0.021

Time/minESS (s) 151.31 1.01 1.12 1.19 1.49 2.80

Sampling efficiency (%) 0.79 0.75 1.51 1.67 1.49 0.74

Fig. 3 Viable samples in the individual parameter space. Histograms show marginal distributions, and 
scatter plots samples in all two‑dimensional projections of the parameter space. In the projections, samples 
are colored according to their individual cost from light blue to purple: a darker blue indicates a lower cost, 
and thus a higher consistency of the WTC dose‑response with the reference curve for a given point. Only 
the parameters present in the plot were allowed to vary, all others were fixed to values specified in Table 1. 
Additionally, all parameters were sampled in log10‑scale, and are displayed as such
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Tight control of dC and kC is unsurprising as these parameters are directly related to 
Citrine, the system’s output. The importance of controlling TetR concentration is less 
obvious, as σkTet and σdTet can rise to higher values for ε = 6nM . However, high values of 
σkTet are always associated with high dTet and a narrow distribution of θTup (Fig. 5B, first 
two panels). This corresponds to the limiting case of very strong constitutive repression 
combined with very low amounts of TetR, in which case the variance of TetR is unim-
portant. Indeed, a high value of dTet forces a lower variability on TetR-Tup1 parameters 
kTup and dTup (Fig. 5B, last two panels). If TetR is removed from the system (very high 
dTet value), TetR-Tup1 must show little cell-to-cell variability and a very precise repres-
sion strength.

Considering parameter-specific variances in the population design problem thus pro-
vides additional insights because parameters with low variance require tighter control 
for the circuit to work.

Sampling efficiency

We quantified the efficiency of the naive approach and of our new SLMCMC approach 
with and without parallel tempering by recording the run times for generating samples 
and by computing the minimal Effective Sample Size (minESS) as the minimum Effective 
Sample Size (ESS) over all dimensions (Table 2).

For the naive approach, we generated 20,000 samples for the population design prob-
lem with ε = 6 nM. We checked convergence of the chain using the Gelman–Rubin cri-
terion [17], indicating that several thousand samples were needed for convergence. This 
resulted in a total run-time of more than 23,000 s and an effective sample size of 157. 
This corresponds to more than 1 s per sample and a sampling efficiency of 0.79%. Impor-
tantly, though, the naive approach ensures that all sampled population parameters fulfill 
the population design criterion of at least 80% of the cells meeting the individual target.

In contrast, our SLMCMC approach does not guarantee the hard population thresh-
old; it requires post-processing of the sampled parameters to check if the target was 
indeed met. We distinguish these two stages in our calculations. The SLMCMC does 
not require estimating the population cost in each step—a very costly computation. This 
allows generating samples much more efficiently, and we therefore generated 200,000 
samples. Using a parameter κ = 3 , a scalar covariance matrix, and no parallel tempering, 
these samples are generated in about 900 s. We argue that it is not necessary to check the 
population design criterion for each sample, and use a statistical approach instead: we 
check the criterion only for a randomly picked subsample of 600 out of the 200,000 sam-
ples. This provides a reliable estimate of the percentage of population parameters that 

(See figure on next page.)
Fig. 4 Comparison of individual and population viable spaces. A Samples in all two‑dimensional projections 
of the population parameter space obtained with the SLMCMC algorithm for a scalar covariance matrix (less 
than 1.4% of samples are not viable). CV is the common coefficient of variation for all cell‑to‑cell variable 
population parameters. Orange (red) dots: viable samples for the threshold on the individual cost ε = 6 nM 
( ε = 3 nM ); black dots: populations with cost c(γ ) > 0.2 . All parameters are in log10‑scale. B WTC model 
with increased cooperativity of repression. Orange (blue) dots: Individual samples with cost above (below) 
ε = 3 nM , individual threshold ε = 6 nM . Red dots: Population samples with fixed CV = 7% , population 
threshold δ = 0.2
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do not meet the hard threshold. We found that only an estimated 4% of the samples did 
not meet the population design criterion. The minimal ESS is comparable to the naive 
approach, as is the sampling efficiency.

Fig. 4 (See legend on previous page.)
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To evaluate the impact of parallel tempering on performance, we chose chains with 
κ1 = 3 and κ2 = 5, 7, 9 . The run-time for generating 200,000 samples increased to about 
2.8–4-fold compared to the non-tempered approach, but the percentage of samples not 
meeting the target dropped to 0.5–1.3%. The minimal ESS roughly doubled, leading to 
an overall sampling efficiency of about 1.5%, double the efficiency of the naive and the 
non-tempered approaches. We again selected 600 samples at random to check the popu-
lation design criterion, which added about 700 s to the overall computation time.

Finally, we selected the most efficient parallel tempering setting with κ1 = 3 and κ2 = 7 
and used a diagonal instead of a scalar covariance matrix. The overall run-time is com-
parable to the previous settings, but the fraction or rejected samples increased slightly 
to about 2.3%. More importantly, several variance parameters need to be sampled in this 
setting, and the increased problem dimension leads to a minimum ESS of 1487, about 
half of the other PT-based scenarios. The sampling efficiency is then comparable to the 
naive approach and the non-tempered SLMCMC for scalar covariance matrices.

Overall, our SLMCMC algorithm with parallel tempering outperforms the naive 
approach independent of the specific setting for the inverse temperatures. It generates 
about two orders of magnitude more effective samples per time, shows an order of mag-
nitude increase in minimal ESS and a massive reduction in overall run-time.

Extended population design

Finally, we asked if population design could help to extend the WTC’s input dynamic 
range. Specifically, starting from the current input dynamic range with maximum 

Fig. 5 Distributions of sampled population parameters, diagonal covariance matrix. Individual threshold is 
set to ε = 6 nM . For the full distributions, see Additional file 3: Fig. S2. A Marginal distributions of samples 
for cell‑to‑cell variability in the population parameter space. B Viable samples in selected two‑dimensional 
projections of the population parameter space
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maxIDR = 150 nM , we aimed to extend it to 300 nM , 450 nM , and 600 nM , respectively, 
while restricting the slope of the dose-response curve to the current value. We used the 
SLMCMC approach with an individual threshold of ε = 6 nM and a diagonal covariance 
matrix to sample the population parameter space. The top-right of Fig. 6 presents exam-
ples of populations for each of the three design objectives, alongside the corresponding 
reference curves.

Most population parameters are little affected by extending the IDR, but the maximal 
viable values for dC and θTup decrease considerably with increasing maxIDR (Fig. 6). The 
viable space for maxIDR = 450 nM is restricted to very low values of these two param-
eters, which limits options for implementation severely. However, auto-repression seems 
less important in this case, and θTet becomes less restricted.

For variance parameters, patterns are similar to those observed previously, with the 
exception that parameters related to TetR-Tup1 become more constrained with increas-
ing maxIDR . For high maxIDR , auto-repression does not help to achieve the design 
objective and the variances of kTup and dTup become independent of dTet . Meanwhile, 
high variances of dTet , kTet remain viable only for high dTet . This indicates that if TetR is 

Fig. 6 Viable samples in the population parameter space for reference curves with extended IDR. Samples in 
all two‑dimensional projections of the parameter space, obtained with the SLMCMC algorithm for individual 
threshold ε = 6 nM and diagonal covariance matrix. Orange dots: IDR up to 150 nM ; red dots: IDR up to 
300 nM ; purple dots: IDR up to 450 nM nM. Non‑viable population samples (i.e. c(γ ) > 0.2 ) were removed 
prior to plotting. All parameters were sampled in log10‑scale, and are displayed as such. Top‑right corner: 
Corresponding viable population dose‑response curves. Black line: reference curve up to 450 nM . Colored 
lines corresponding to sample colors: 50 population dose‑response curves per reference curve, computed as 
in Fig. 2C from 50 samples of population parameters. Colored boxes delimit the portion of the black line used 
as a reference curve during population design
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present in the system (low dTet ), its variability should be controlled, as its binding with 
aTc may otherwise propagate variability to the fraction of bound TetR-Tup1 and further 
to Citrine.

The observed parameter restrictions become untenable for maxIDR = 600 nM and our 
method found no viable population parameter set for this case. Indeed, with a minimum 
individual cost above 8 nM , no individual cell can satisfy the individual cost requirement 
given the WTC model’s parametrization and constraints on the parameter spaces.

Thus, our population design approach suggest that–and how–the WTC’s input 
dynamic range can be extended, and it gives an indication of the limits to such an exten-
sion under the current circuit design (and parametrization).

Discussion
Nearly all current methods for synthetic circuit design assume an ‘average’ cell that 
needs to be optimized to fulfill the design objectives, potentially by considering param-
eter variations to achieve robustness of the biological implementation [4]. Stochastic 
design frameworks that account for cell-to-cell variability due to intrinsic noise with low 
molecule copy numbers are beginning to emerge, but computational complexity cur-
rently limits them to small networks, steady-state, and homogeneous model parameters 
in a cell population [18]. Here, we therefore proposed population design via NLMEs as 
an alternative to both approaches. We argue that it has the potential to bring informa-
tion about cell-to-cell variability to synthetic biological design in realistic settings, and 
to help infer the impact of said variability on the system of interest. We additionally pro-
pose the SLMCMC algorithm as an efficient way to solve the population design problem 
via sampling.

Our case study considers a problem synthetic circuit designers often face, namely to 
tune their system in order to reduce cell-to-cell variability [11].

Repression mechanisms were necessary both in the individual and population cases. 
This indicates that constitutive repression and auto-repression are useful to linearize 
dose-response curves of individual cells. Interestingly, TetR seemed to be able to fulfill 
that role even when it does not enact auto-repression.

The population sampling with scalar covariance matrix highlighted 7% as a possi-
ble maximum admissible coefficient of variation, whereas our analysis with a diagonal 
covariance matrix showed that the variances of different parameters play different roles. 
For the WTC, parameters related to Citrine and TetR have to have low cell-to-cell vari-
ability, but TetR-Tup1 permits higher variability, as long as TetR is present in the system.

Constitutive repression increased the admissible CV from ≈ 4% to ≈ 7% . However, we 
do not know if constitutive repression had a direct impact on cell-to-cell variability, or if 
it simply helped linearize the dose-response curve. To disentangle these possibilities, we 
would need to define a measure of variability reduction independent of the shape of the 
response, and to compare this measure for different repression strengths. Additionally, 
any variability reduction will be directly linked to repression strength: increasing repres-
sion would decrease cell-to-cell variability as well as mean expression of the repressed 
component. To weaken or eliminate this link between mean and variability, one may 
need to consider more complex circuit topologies [19, 20].
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In view of enhancing the WTC’s performance, a more restrictive design objective 
(larger IDR and ODR) could be obtained by tuning precisely the constitutive repression 
strength and the degradation constant of Citrine. Constitutive repression proved essen-
tial to increase IDR and ODR, in contrast to auto-repression. At least with the given 
model and parametrization, however, we do not predict that the highest IDR we tested 
can be achieved by the WTC.

Note that some of the analysis results for the WTC differ from our previously pub-
lished results [13]. There, we used the same model, but lower bounds on degradation 
constants for a proof-of-concept. Additionally, we fixed the maximal simulated time to 
1000 min, which is a reasonable time in an experimental setting. Here, we accounted for 
effective degradation constants closer to the experimentally observed dilution rate, lead-
ing to increased lower bounds and a different design objective. In addition, we adjusted 
simulation times for the system to reach steady-states. These changes in combination 
explain the differences between the present and the earlier study.

In terms of methods, our new sampling technique for population parameters, the 
SLMCMC algorithm, proved reliable and fast as it bypasses the need to compute the 
population cost. The added benefit of the parallel tempering approach is an increased 
mixing, especially when the target distribution is multimodal with poorly connected 
regions of high density. SLMCMC worked efficiently for our rather high-dimensional 
applications, but it is still an MCMC algorithm, and as such it becomes less efficient in 
higher dimensions. To reduce this limitation, SLMCMC could be combined with tech-
niques such as evolutionary MCMC [21] to improve mixing. However, because the num-
ber of variance parameters (including correlations) grows quadratically with the number 
of individual parameters, it is likely that one will not be able to tune the variance of each 
parameter individually for large models. Instead, one could fix the covariance matrix 
to estimates obtained from experimental data, for example, by using well-established 
NLME inference approaches [7, 9]. A complementary approach would be to approxi-
mate the individual cost [22]. Other alternatives, which are not compatible with SLM-
CMC, include small sets sampling techniques such as the sigma-point approximation 
[23], or replacing exact MCMC sampling by approximate methods. For example, varia-
tional inference can be much faster than MCMC and still give accurate results, provided 
that the correlation structure of the likelihood is properly accounted for [24].

Here, we explored the population parameter space of a network topology we knew 
should work for some parameter values. In the broader context of synthetic biology, a 
working, simple topology that has the potential to achieve the design objective is not 
necessarily known. In many cases, one may want to explore different topologies and 
select the one that performs best while still being simple enough. To achieve this goal 
while taking into account cell-to-cell variability, we propose to apply a method similar 
to that described by Lormeau et al. [4] to the objective function defined at the popula-
tion level. Briefly, the algorithm will explore a number of possible topologies by simplify-
ing an initial (complex) starting network. The viability (existence of parameters making 
the network viable) of each network is assessed. One can then choose robust networks 
according to the size of the viable region, for instance.

Overall, the population design framework could then be used to recommend network 
structures, together with their parameter values, that are best suited to fulfill a design 
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objective incorporating cell-to-cell variability. Such an approach could also help exploring 
situations where cell-to-cell variability and a given distribution over behaviors of cells in a 
population is desirable. One example is bet-hedging in bacterial populations, where non-
genetic variability across a population increases the chances of survival in the face of antibi-
otics [25].

Conclusions
Our general framework for population design, along with the efficient SLMCMC algo-
rithm, aim to help biologists interested in synthetic circuit design to account for cell-to-cell 
variability via ODE-based NLMEs. The a posteriori demonstration of its usefulness for a 
transcriptional controller shows scaling to a relevant problem size, although the implemen-
tation suffers from classic sampling inefficiency. In perspective, an extension to topology 
design could enable the rational design of synthetic gene circuits that induce prescribed 
(distributions of) behaviors at the population level, and thereby allow to exploit cell-to-cell 
variability for novel applications.

Methods
Overview

Our main objective is a description of the population viable space V pop that encompasses all 
solutions of the population design problem. As this space will typically not have an explicit 
description, we resort to MCMC methods to sample it. We propose three sampling strate-
gies: a naive MCMC approach, a new method that exploits joint sampling of the individual 
and population parameter spaces which we call Stochastic Likelihood MCMC (SLMCMC), 
and a modified version of SLMCMC that uses parallel tempering to increase sampling effi-
ciency. We restrict attention to our WTC problem and use the proportion of viable individ-
ual cells as our population design criterion. The naive MCMC approach readily generalizes 
to other population objectives, but the SLMCMC approach is currently tailored to this spe-
cific objective.

Naive algorithm for population sampling

Our previously described naive sampling approach [13] is a straightforward implementa-
tion of the Metropolis-Hastings sampler. We directly use the population design criterion as 
our pseudo-likelihood:

The resulting samples from the population parameter space Ŵ will have a p.d.f. propor-
tional to L(γ ) , which constrains them to the population viable space. The function L(γ ) 
is not amenable to direct calculation because the population cost c(γ ) is not known 
explicitly. We therefore draw N random individual parameters βi from the correspond-
ing population distribution Pγ to approximate c(γ ) by ĉ(γ ) =

∑N
j=1 1(s(βj) ≤ ε)/N  and 

L(γ ) by L̂(γ ) = 1
(

ĉ(γ ) ≤ δ
)

 . We use N = 300 for our computations, which provided 
sufficient sample size for our problem. The full approach is given in Algorithm 1, where 
we use c and L instead of ĉ and L̂ for readability.

(6)L(γ ) = 1(c(γ ) ≤ δ) .
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SLMCMC algorithm

To derive the algorithm, note that Eq. 6 can be rewritten as

where β ∼ Pγ is considered a random variable. Removing the indicator and the popula-
tion threshold, and taking the complement probability yields the objective

which provides the desired relaxed version of Eq. 6.
The central idea is then to extend this objective to the product space Ŵ × B of popula-

tion and individual parameters:

where pγ is the density of the log-normal distribution Pγ . Evaluating Eq. 9 and sampling 
from the joint distribution is straightforward. The relaxed objective Eq.  8 is then the 
marginal

MCMC sampling from L(γ ,β) followed by discarding the β component will provide γ 
samples distributed according to the objective (Eq. 8).

In a last step, we introduce a constant exponent κ ∈ N>0 to concentrate the pseudo-
likelihood around favorably high values, a standard technique used in Bayesian design 
[26], for example. This yields the objective

(7)L(γ ) = 1
(

PPγ (s(β) > ε) ≤ δ
)

,

(8)L(γ ) = PPγ (s(β) ≤ ε) = 1− c(γ )

(9)L(γ ,β) = 1(s(β) ≤ ε) · pγ (β) ,

(10)L(γ ) =

∫

B
L(γ ,β)dβ ,
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which we sample using the corresponding joint pseudo-likelihood

Intuitively, this means that instead of a single random individual parameter yielding suf-
ficiently low individual cost, we now require that κ independent parameters simulta-
neously yield low costs. The higher κ is, the lower the population costs of the sampled 
parameters will be on average and the more stringent the following sampling will be.

We propose Algorithm 2 to sample from the joint distribution (Eq. 12). We use a 
Metropolis-Hastings algorithm with the custom proposal distribution:

where q(γ ′
|γ ) is a user-defined proposal distribution, restricted to the population param-

eter. In other words, we first draw a proposal for the population parameter; this proposal 
depends on the last population parameter, but not on the last individual parameters. 
After that, we draw the proposal for the individual parameters directly as independent 
samples from Pγ ′ . This cancels the conditional probability terms in the acceptance ratio. 
We thus need to store 

∏κ
j=1 1

(

s(βj) ≤ ε
)

 , but not the individual parameters.

Two technical aspects are worth noting: first, L0 and L′ are products of indicator 
functions; we can stop sampling values βi as soon as the first indicator function is 
zero to further reduce the computational burden. Second, sampled individual param-
eters βi are already ‘likely’ as they are drawn from the population distribution with 
parameter γ and therefore follow the required conditional distribution. Hence, we do 
not need to compute the conditional probabilities directly. This would also allow us to 

(11)L(γ ) = P
κ
Pγ
(s(β) ≤ ε) ,

(12)L(γ ,β1, . . . ,βκ) =

κ
∏

j=1

1(s(βj) ≤ ε) · pγ (βj) .

(13)q(γ ′,β ′

1, . . . ,β
′

κ |γ ,β1, . . . ,βκ) = q(γ ′
|γ )

κ
∏

j=1

pγ ′(β ′

j ) ,
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replace Pγ with more complex distributions that do not admit a p.d.f. in closed form, 
but from which it is reasonably easy to sample.

An important difference between standard Metropolis-Hastings and our variant is the 
computation of the likelihood ratio, which is stochastic in our algorithm (hence the name 
SLMCMC). An equivalent technique is known as likelihood-free sampling or subset sim-
ulation in the context of Bayesian models, where it is applied to sampling datasets rather 
than parameters [27, 28].

SLMCMC with parallel tempering

Our SLMCMC approach for sampling the viable population space is still an MCMC tech-
nique and suffers from the associated drawbacks, particularly poorly scaling with problem 
dimension and poor mixing for multimodal distributions. Poor scaling can be addressed 
using adaptive proposals [15, 29, 30], and we now describe a parallel tempering (PT) [31] 
extension to improve mixing.

Parallel tempering uses several parallel chains with limiting distributions forming a 
sequence from a ‘flat’ to the target distribution. A popular family of distributions uses an 
inverse temperature parameter � ∈ [0, 1] and limiting distributions of the form f � , where 
f is the desired target. Chains with higher temperature (lower � ) have ‘flatter’ distributions 
which makes it easier to explore the sampling space and avoid local modes. In addition, 
two chains with limiting distributions f and f ′ can ‘swap’ their current states x and x′ with 
probability

Swapping states renders the individual chains non-Markovian, but the set of chains 
remains Markovian on the product space with the product distribution of the chains as 
its invariant distribution [10].

To apply the parallel tempering approach to SLMCMC, we use the number of individ-
ual parameters κ to provide the inverse temperature. Specifically, consider the pseudo-
likelihood Eq.  11 with exponent κmax as our sampling target. We specify a sequence 
of r chains whose targets are the pseudo-likelihoods Eq.  12 with different values 
κ1 < κ2 < · · · < κr = κmax for the parameter κ . This generates a family of r distributions 
for parallel tempering with inverse temperatures κi/κmax.

These chains have different state-spaces Ŵ × Bκi , which prohibits direct application of the 
swapping procedure. We therefore extend the pseudo-likelihoods to the highest-dimen-
sional state-space Ŵ × Bκmax and write the likelihood for the κi chain as

This effectively sets the ’acceptance’ of parameters βj to one for j > κi . With this provi-
sion, and applying Eq. 14, the acceptance probability to swap between two chains with 
parameters κ < κ ′ and samples βi,β ′

i , respectively, is

(14)αswap(f , f
′) =

f
(

x′
)

f ′(x)

f (x)f ′(x′)
.

(15)Lκi(γ ,β1, . . . ,βκmax ) =

κmax
∏

j=1

1
(

s(βj) ≤ ε
)1(j≤κi)pγ (βj) .
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because 1(s(β ′

j ) ≤ ε) = 1 for j > κ and the product cannot exceed one in any case.
Our SLMCMC approach with parallel tempering is given in Algorithm 3. Note that 

the required numbers of samples βj depend on the tempering parameters κi : for two 
chains with κ1 < κ2 , we need κ1 + κ2 samples of individual parameters to update the two 
chains, and additional κ2 − κ1 individual parameters for swapping, that is, 2 · κ2 sampled 
individual parameters in total.

WTC model

We model the dynamics of the total concentrations of the repressor TetR ( RTet ), the 
repressor TetR-Tup1 ( RTup ) and the fluorescent protein Citrine (C) by:

αswap(κ , κ
′) = min





�κ
j=1 1(s(β

′

j ) ≤ ε)
�κ ′

j=1 1(s(βj) ≤ ε)
�κ

j=1 1(s(βj) ≤ ε)
�κ ′

j=1 1(s(β
′

j ) ≤ ε)
, 1





= min





κ ′
�

j=κ+1

1(s(βj) ≤ ε)

1(s(β ′

j ) ≤ ε)
, 1





=

κ ′
�

j=κ+1

1(s(βj) ≤ ε)

(16)
dRTet

dt
=

kTet

1+
(

f ·RTet
θTet

)n
+

(

f ·RTup
θTup

)n − dTet · RTet

(17)
dRTup

dt
= kTup − dTup · RTup

(18)
dC

dt
=

kC

1+
(

f ·RTet
θTet

)n
+

(

f ·RTup
θTup

)n − dC · C .
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Parameters kTet , kTup and kC are maximal expression constants that capture both tran-
scription and translation to keep the model simple. Parameters dTet , dTup and dC are the 
degradation constants.

The two Hill functions represent control terms for TetR and Citrine production, 
respectively. They depend on the active concentrations of the repressors TetR and TetR-
Tup1. Active TetR and TetR-Tup1 molecules are those that are not bound to the inducer 
aTc. Assuming rapid equilibrium for the binding of aTc to TetR and TetR-Tup1 (as in 
Lormeau et al. [4]), the fraction of active TetR and TetR-Tup1 (f) is given by:

Experimental data showed that TetR and TetR-Tup1 have different repression efficien-
cies [11], represented by θ in the model. We therefore decided to model the action of the 
two repressors on their controlled genes as an ‘OR’-gate. This means that we are not tak-
ing into account that the repressors might bind to the same DNA sequences. In contrast, 
we do not expect a difference in Hill coefficient (n) or affinity ( Ka ) to aTc between TetR 
and TetR-Tup1. The SBML version of the model is available as Additional file 1.

We used the ‘deSolve’ package [32] to solve the ODE model. The final time for simula-
tions was set to 25× 106 minutes. To ensure that the model reached steady state, we 
increased simulation time when the relative variation in Citrine observed over the last 
500 min exceeded 10−10.

WTC design problem

The steady-state dose-response curve as a reference behavior takes the aTc concentra-
tion a as a constant input u(t) ≡ a , and yields a constant response Dref(a) ≡ Dref(τ ; a) 
for all τ . We encode the high-IDR, high-ODR objective by defining (a,Dref(a)) to be the 
straight line between (0 nM, 0 nM) and (150 nM, 60 nM).

To quantify the deviation between an individual cell’s behavior and the reference curve, 
we use the individual cost from Eq. 2 based on the dose-response curve (a,D(τ ;β , a)) , 
where cell i has individual parameter set βi = ( k(i)Tet , k

(i)
Tup , k

(i)
C  , d(i)Tup , n, Ka , d(i)Tet , d

(i)
C  , θTet , 

θTup) , and D(τ ;β , a) ≡ D(β , a) is the steady-state ( t → ∞) response to aTc concentra-
tion a. In our implementation, the individual cost function is calculated via a discrete 
version of the L2-norm based on N aTc input doses U = {a1, . . . , aN } , regularly spaced 
(every 25 nM ) between 0 and 150 nM:

Sampling parameter spaces for the WTC 

We defined the pseudo-likelihood for the individual parameter space as:

(19)f =
1

2
−

1+ Kaa−

√

(1+ Ka(RTet + RTup − a))2 + 4Kaa

2Ka(RTet + RTup)
.

(20)s(β) =

√

√

√

√

1

N

N
∑

k=1

(

D(β , ak)− Dref(ak)
)2

.

(21)l(β) = 1(s(β) ≤ ε)
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with ε ∈ {6 nM, 3 nM} , therefore sampling uniformly the viable region 
V ind

= {β ∈ B | s(β) ≤ ε}.
For the naive sampling approach, the pseudo-likelihood for the population parameter 

space was:

with δ = 0.2 . We then obtain uniformly distributed samples from the population viable 
space V pop

= {γ ∈ Ŵ | c(γ ) ≤ δ} . Note that, as c(γ ) depends on the value of ε (Eq.  5), 
L(γ ) and the associated population viable space will also depend on its value.

To compute the population pseudo-likelihood (Eq. 22), however, we need to approxi-
mate c(γ ) , as it is the functional of a distribution (here, a probability). For each value 
of γ , 300 individual parameters were drawn randomly from the underlying log-normal 
distribution Pγ . For each individual parameter vector, we computed the individual cost 
s and approximated c(γ ) as the fraction of samples with individual costs above the cor-
responding threshold ε ∈ {6 nM, 3 nM}.

Note that we are interested in the resulting distribution of the individual costs and 
not in describing Pγ . Thus, although we consider six cell-to-cell variable parameters, a 
sample size of N = 300 individual parameters proved sufficient to reliably represent this 
distribution of individual costs as the underlying distance measure between a constant 
reference and the output of an ODE model is sufficiently smooth. An illustration is given 
in Fig.  2C, where 300 individual dose-response curves from a population distribution 
with high coefficient of variation cover the graph sufficiently.

The log-normal population distribution for our example allows us to reduce the 
required amount of random sampling and to provide more consistent results for the 
approximation of the population pseudo-likelihood. Note that we can reconstruct the 
mean vector µ ∈ R

6 and the 6× 6 covariance matrix C of the underlying multivariate 
Normal distribution from the population parameter γ . We therefore once generated 300 
samples Si from the standard multivariate Normal distribution N(0,  I) in R6 . For each 
value of γ , we constructed the corresponding samples of the individual parameters as 
βi = µ+ C1/2

· Si , where C1/2 is the lower triangular matrix from a Cholesky decompo-
sition of C. This ensures that repeated calls to our approximation of the population cost 
function with the same population parameter γ yields the same cost and requires only a 
single sample of size N = 300.

For SLMCMC sampling, the pseudo-likelihood for the population parameter space 
was:

with κ > 1 and, again, ε ∈ {6 nM, 3 nM} . This form of the population pseudo-likelihood 
will result in a higher density of samples in regions of space that have a lower population 
cost. This is different from the behavior of the uniform population pseudo-likelihood 
used for naive sampling, which does not discriminate between two populations as long 
as both their population costs are below the threshold δ.

For the scalar covariance matrix, we ran parallel tempering with inverse temperatures 
{3}, {3, 5}, {3, 7}, {3, 9} , therefore requiring a (maximum) total of respectively 3, 10, 14 and 
18 individual samples per step, accounting for the swapping step. In the last three cases, 

(22)L(γ ) = 1(c(γ ) ≤ δ)

(23)L(γ ) = Pκ
γ (s(β) ≤ ε)
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the inverse temperature 3 was present to improve mixing only, and we kept only the 
samples associated with the higher inverse temperature. We sampled 200,000 popula-
tions, removed the first half as burn-in, and then took 600 populations by regularly thin-
ning the samples. An approximation of c(γ ) was computed using the same approach as 
for naive sampling. Non-viable populations (i.e., with c(γ ) > 0.2 ) were discarded, and we 
compared the fractions of rejected populations for the different κ values. For the diago-
nal covariance matrix problem, we fixed κ = 7 because this choice yielded most samples 
with population cost distributed between 0 and δ , and a small fraction (always smaller 
than 6.5%) higher than δ . This was assessed a posteriori on obtained samples as well.

Sampling efficiency

To compute the Effective Sample Size (ESS) for each dimension, we used the R package 
‘coda’ [33]. The numbers shown in Table 2 were computed only once on a standard lap-
top, and are subject to variation. Additionally, we expect the numbers involving ESS to 
be highly problem-dependent, even on the same machine using the same software.
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