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Abstract 

Introduction:  Single-cell (SC) gene expression analysis is crucial to dissect the com-
plex cellular heterogeneity of solid tumors, which is one of the main obstacles 
for the development of effective cancer treatments. Such tumors typically contain 
a mixture of cells with aberrant genomic and transcriptomic profiles affecting specific 
sub-populations that might have a pivotal role in cancer progression, whose identifi-
cation eludes bulk RNA-sequencing approaches. We present scMuffin, an R package 
that enables the characterization of cell identity in solid tumors on the basis of a vari-
ous and complementary analyses on SC gene expression data.

Results:  scMuffin provides a series of functions to calculate qualitative and quantita-
tive scores, such as: expression of marker sets for normal and tumor conditions, path-
way activity, cell state trajectories, Copy Number Variations, transcriptional complexity 
and proliferation state. Thus, scMuffin facilitates the combination of various evidences 
that can be used to distinguish normal and tumoral cells, define cell identities, cluster 
cells in different ways, link genomic aberrations to phenotypes and identify subtle 
differences between cell subtypes or cell states. We analysed public SC expression 
datasets of human high-grade gliomas as a proof-of-concept to show the value 
of scMuffin and illustrate its user interface. Nevertheless, these analyses lead to inter-
esting findings, which suggest that some chromosomal amplifications might underlie 
the invasive tumor phenotype and the presence of cells that possess tumor initiating 
cells characteristics.

Conclusions:  The analyses offered by scMuffin and the results achieved in the case 
study show that our tool helps addressing the main challenges in the bioinformatics 
analysis of SC expression data from solid tumors.
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Background
Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular het-
erogeneity of solid tumors, which is one of the main obstacles for the development of 
effective cancer treatments [1]. A relevant number of software tools has been devel-
oped in recent years in the field of SC data analysis [2], a fact that stresses the key 
opportunities and challenges in this field. A recent study has shown that the develop-
ment of tools that address common tasks (e.g., clustering of similar cells) and order-
ing of cells (e.g., definition of cell trajectories) is decreasing, while a greater focus is 
being paid on data integration and classification [2]. These observations reflect the 
growing availability, scale and complexity of SC datasets [2].

SC datasets of solid tumors are typical examples of complex datasets that present 
a series of computational challenges and whose analysis demands domain-specific 
and integrative approaches. In fact, solid tumors typically contain a mixture of cells 
with aberrant genomic and transcriptomic profiles affecting specific sub-populations 
that might play a pivotal role in cancer progression, whose identification eludes bulk 
RNA-sequencing approaches. The use of cell type-specific markers (when available) is 
limited, and the alterations of gene expression that mark cancer cells makes the use of 
markers for normal cells not completely adequate. Moreover, the molecular heteroge-
neity of cancer cells (due to both intra-tumor and inter-individual differences) poses 
intrinsic limits in the definition of such markers. In addition, solid tumor samples 
typically comprise cells from the surrounding tissue or infiltrating cells that need to 
be distinguished from tumor populations for an effective analysis. Another challenge 
is the identification of clinically relevant cell subtypes that may be rare in the tumor 
mass, such as cancer stem cells or drug resistant subclones: because of their relatively 
low number, these cells are typically clustered together with many others. Lastly, an 
intrinsic problem of many SC datasets is the sequencing depth limit at the SC level. 
These limitations bound the number of detectable genes to the few thousands of the 
highest expressed genes, which implies, for example, that some established markers 
may not be used for data analysis.

To address these challenges, we developed scMuffin, an R package that implements 
a series of complementary analyses aimed at shedding light on the complexity of solid 
tumor SC expression data, including: a fast and customizable gene set scoring sys-
tem; gene sets from various sources, including pathways, cancer functional states and 
cell markers; cell cluster association analysis with quantitative (e.g., gene set scores) 
as well as categorical (e.g. mutation states, proliferation states) features; copy num-
ber variation (CNV) analysis; transcriptional complexity analysis; proliferation rate 
quantification; and gene set based multi-dataset analysis (Fig. 1). scMuffin facilitates 
the integrative analysis of these multiple features, thus allowing the identification of 
cell subtypes that elude more general clustering and classification approaches. We 
describe the key aspects of scMuffin implementation and then its user interface by 
means of a case study on a public SC expression dataset of human high-grade gliomas 
(HGG).
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Implementation
scMuffin is implemented as an R package and provides a series of functions that 
allows the user to quantify various genetic and phenotypic characteristics of single 
cells, which can be combined to obtain insights on cell identity and function. The 
functions of scMuffin operate on a common data structure, the “scMuffinList”, by 
adding, changing or removing its elements. Computationally intensive tasks (in par-
ticular, gene set scoring and CNV inference) are parallelized. Package documentation 
includes R vignettes and function documentation, which are also available as “GitHub 
Pages” at the URL https://​emosca-​cnr.​github.​io/​scMuf​fi n. In this section, we describe 
package inputs and the main algorithms and definitions underlying the analyses 
offered by scMuffin.

Input

scMuffin is intended to be used downstream to general purpose tasks like quality con-
trol, normalization, cell clustering and dataset integration, for which there are dedicated 
tools, such as Seurat [3]. scMuffin requires the genes-by-cells raw counts matrix, genes-
by-cells normalized expression matrix and a partition of cells in clusters. Typically, these 

Fig. 1  Overview of scMuffin package. scMuffin offers the possibility to perform several different analyses and 
data integration approaches to address the main challenges of SC gene expression analysis in solid tumors

https://emosca-cnr.github.io/scMuffin
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matrices are filtered during preprocessing steps to exclude low quality cells and genes 
that could negatively affect the analyses. However, the characterization of cells that can 
be achieved with scMuffin offers insights that can be used to (further) filter the dataset 
and/or to decide on which cells apply particular analyses (e.g. biomarker identification). 
In general, according to research questions and experimental design one may want to 
apply strong or mild filters before using scMuffin.

Quantification of gene set expression scores at cell and cluster levels

The quantification of gene set expression scores follows the approach described in [4, 
5], in which a gene set is scored on the basis of its average deviation from an empirical 
null. The approach is implemented enabling the user to tune various parameters (e.g., 
the minimum number of cells in which a gene set must be expressed, the number of bins 
of the null model and the possible removal of missing values) to better address the needs 
of a particular study in relation to the characteristics of the dataset under analysis. In 
particular, the code is implemented to handle missing values, which are one of the main 
issues in SC datasets. For example, this is important to quantify the expression of gene 
sets that are expressed just in a small subset of cells (and have null values elsewhere), or 
to account for the expression of different members of the same pathway in different cells.

The algorithm for gene set scoring is the following. Given a gene set S:

1. the genes occurring in the normalized genes-by-cells matrix are grouped into a 
series of bins according to their average expression across cells;
2. a number k of random gene sets S∗i  : are created, of the same size of S , tossing genes 
from the same bins of S , in order to match the distribution of gene expression of each 
S∗i  with that of S;
3. the averages mc and m∗

ic are calculated, respectively, over the values of S and S∗i  in 
every cell c;
4. the expression score Yc is calculated as the average difference between mc and m∗

ic:

5. the difference between the medians of mc and m∗
ic values in any cluster is used as 

the cluster-level score of S.

CNV estimation based on adjacent gene expression

CNV inference in scMuffin is based on the “adjacent gene windows” approach [4, 6], which 
has been validated using both single nucleotide polymorphism arrays [6] and whole-exome 
sequencing [4]. The approach is implemented in parallel and, like gene set scoring, offers 
various parameter tuning and data filtering possibilities, which allow the investigator to 
optimize the analysis to specific needs. The CNV profile of each cell is calculated as a mov-
ing average of scaled gene expression levels ordered by genomic location. scMuffin offers 
the possibility of subtracting a “normal” reference profile to highlight relative CNVs. Since 
a SC dataset derived from a sample of a solid tumor can either contain or not a proper 
set of physiological cells to be used as reference, this reference can be derived from cells 

Yc =

k
i mc −m∗

ic

k
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that are part of the dataset under analysis (as described in [4]), or using external dataset (as 
described in [6]). The main steps are:

1.	 the reference cells are added to the genes-by-cells matrix (optional);
2.	 the expression of each gene is scaled subtracting its average (optional);
3.	 the gene expression matrix is ordered by chromosome and gene location;
4.	 in each chromosome h, the estimated copy number Vic of cell c is calculated for all 

the ordered genes i ∈
[

w
2 + 1, nh −

w
2

]

:

where w is an even number that defines the window size, that is, the number of genes 
located before and after gene i which contribute to the estimation of Vic , nh is the number of 
genes in h, and ejc is the gene expression value;

5.	Vic values are scaled subtracting their average in a cell (optional);
6.	 cells are clustered by their CNV profile;
7.	 the average CNV profile of the normal reference cells is subtracted from all the CNV 

profiles (optional).
8.	 the CNV score of a cell is calculated as:

Cells are clustered based on their CNV profile using Seurat [3]. A CNV region of a clus-
ter is composed of the adjacent genes i that have absolute median Vic (within the cluster) 
higher than a given threshold. This threshold is by default defined as the standard deviation 
of Vic values of all cells.

Transcriptional complexity

The transcriptional complexity (TC) is calculated using three different approaches. The 
TC-R TR

c  of a cell is inferred based on the number of expressed genes (gc) over the number 
of total mapped reads (transcripts) (tc):

where gc = #{ric ≥ α} , α is a threshold over the gene count ric and defines the gene i as 
“expressed”, and tc =

∑

i ric . Values of  TR
c  higher (lower) than 1 indicate a higher (lower) 

number of expressed genes in relation to the total transcripts of the cell.
The TC-LMR (linear model residual) of a cell corresponds to its residual in the linear 

regression model between gc and tc:

Vic =

i+ w
2

∑

j=i− w
2

ejc

w + 1

Cc =
∑

i

(Vic)
2

TR
c =

gc

tc
·

max
c

(tc)

max
c

(

gc
)

log10
(

gc
)

= β0 + β1log10(tc)+ εc
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Positive (negative) residuals indicate higher (lower) number of expressed genes in rela-
tion to total transcripts.

The TC-H (entropy) is quantified as the transcriptional entropy of the cell [7]:

where pic = ric/tc . The higher the entropy the higher the number of expressed genes.

Proliferation rate

The proliferation rate Pc of a cell is quantified as the maximum between the two gene set 
scores Yc(S1) and Yc(S2) , calculated on the gene sets S1 and S2 that contain, respectively, 
genes involved in G1/S and G2/M cell cycle phases:

where S1 and S2  are defined as in Tirosh et al. [4].

Cluster enrichment analysis for quantitative and categorical features

The association between cell clusters and any cell-level feature is performed through Cell 
Set Enrichment Analysis (CSEA) and Over Representation Analysis (ORA) for, respec-
tively, quantitative and categorical values. Importantly, these two types of analysis are 
implemented in parallel, which is particularly important for CSEA that uses permuta-
tions to build an empirical null distribution.

CSEA is the application of Gene Set Enrichment Analysis (GSEA) [8] to cells and cell 
sets in place of, respectively, genes and gene sets: a ranked cell list is used instead of a 
ranked gene list, and cell sets (cell clusters) are tested instead of gene sets. In addition, 
the code is implemented to handle missing values. Therefore, scMuffin tests whether the 
cells assigned to a cluster are located at the top (bottom) of a ranked list of cells.

The assessment of cluster enrichment in a particular value of a categorical feature is 
computed using the over-representation analysis (ORA) approach [9], which is based 
on the hypergeometric test. Here, this test assesses whether the occurrence of a par-
ticular value between the cells of a cluster in relation to all other clusters is higher than 
expected in a hypergeometric experiment.

Overlap between partitions of cells

Cell partitions resulting from different clustering analyses are compared by calculat-
ing the overlap coefficients among all-pairs of clusters. Given two partitions A and B, 
defined as sets of cell clusters A = {ai} and B =

{

bj
}

 , the similarity between the cell 
clusters ai and bj is calculated as:

TLMR
c = log10

(

gc
)

−
[

β0 + β1log10(tc)
]

.

TH
c = −

∑

ic

[pic log(pic)]

Pc = max(Yc(S1),Yc(S2))

oij =

∣

∣ai ∩ bj
∣

∣

min
(

|ai|,
∣

∣bj
∣

∣

)
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Results and discussion
In this section, we present the user interface (Table 1), taking advantage of the results 
obtained on the SC dataset generated by Yuan et al. [10] from human high-grade glioma 
(HGG) samples (available on the Gene Expression Omnibus (GEO) repository [11] with 
identifier GSE103224, see Supplementary Methods in Additional file 1).

Gene set scoring

scMuffin provides functions to set up one or more gene set collections and perform 
SC-level estimation of gene set expression scores in relation to an empirical null model 
(see Implementation section). This can be applied to any gene set and can therefore be 
used to estimate several different cell phenotypes, like pathway activities or marker set 
expression.

The function prepare_gsls() allows the user to collect gene sets of cell types, 
pathways, cancer functional states, as well as other collections of gene sets (e.g. posi-
tional gene sets, hallmarks) from CellMarker [12], PanglaoDB [13], CancerSEA [14] and 
MSigDB [8] databases. Unlike many existing tools that are used to perform marker-
based cell annotation [15], the availability of these gene sets within scMuffin package 

Table 1  Main tasks and corresponding functions in scMuffin

Task Description User interface

Create the scMuffinList Create the scMuffinList from counts and 
normalized expression data

create_scMuffinList()

Add a partition Add a partition of cell (clusters) add_partition()

Gene set expression scoring Average gene set expression deviation 
from matched empirical reference
Provided gene sets from CellMarker [12], 
PanglaoDB [13], CancerSEA [14] and 
MSigDB [8]

prepare_gsls()
calculate_gs_scores()
calculate_gs_scores_in_clusters()

CNV Estimation of CNVs by means of the 
“moving window” approach, that is, 
considering the expression of adjacent 
genes
Calculation of CNV deviation from a 
normal reference profile
Processing of normal tissue-specific 
expression data from GTEx
Detection of CNV regions

CNV_analysis()
process_GTEx_gene_reads()

Transcriptional complexity Number of expressed genes in relation 
to the total reads, calculated using a 
ratio, linear model residuals and entropy

transcr_compl()

Proliferation Maximum between G1/S and G2/M 
gene set scores

proliferation_analysis()

Cell state trajectory Diffusion map computation diff_map()

Cell cluster annotation Assessment of cluster enrichment for 
quantitative and categorical features

assess_cluster_enrichment()

Comparison of datasets Assessment of cluster markers or gene 
set expression across multiple datasets

inter_dataset_comparison()

Visualization Automated UMAP visualizations for 
multiple features
Heatmaps: gene set scores, CNV, overlap 
between clusters
Boxplots and barplots of cluster enrich-
ment
Diffusion maps

boxplot_cluster()
dotplot_cluster()
heatmap_CNV()
plot_profile_CNV()
plot_umap_colored_features()
plot_heatmap_features_by_clusters()
plot_diff_map()
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spares the user the effort of data collection and harmonization. The function, which also 
accepts any user-given gene sets, applies a series of criteria (e.g., minimum and maxi-
mum number of genes in a gene set) to filter the chosen gene sets.

The cell-level expression scores for these gene sets can be calculated using calcu-
late_gs_scores(). For instance, the following code shows how to quantify the 
activity of “Cancer functional states” from CancerSEA [14] at cell and cell cluster level:
gsc <- prepare_gsls(gs_sources = "CancerSEA", scMuffinList = 

scML)

scML <- calculate_gs_scores(scMuffinList = scML, gs_list = 
gsc$CancerSEA)

scML <- calculate_gs_scores_in_clusters(scMuffinList = scML, partition_id = 
"global_expr")

where scML is the data structure that contains expression data and cell clusters 
(“global_expr”).

Cluster-level gene sets scores can be visualized as a heatmap to obtain a useful sum-
mary visualization that can provide insights for cluster annotation. This is accomplished 
by means of the function plot_heatmap_features_by_clusters(), which 
relies on the powerful ComplexHeatmap R package [16]). For example, the analysis of 
the CancerSEA functional states in the HGG sample PJ016 showed that the two groups 
of cell clusters that are spatially separated in the UMAP visualization, that is clusters {0, 
6, 8, 9} and {1, 2, 3, 4, 5, 7} (Fig. 2a), reflect distinct functional states (Fig. 2b). Cell-level 
gene set scores can be visualized over the UMAP by means of plot_umap_colored_
features() (Fig. 2c). 

CNV estimation and association with CancerSEA functional states

CNV inference from SC transcriptomics in cancer provides a means to assess the pres-
ence of relevant genomic aberrations (duplications and deletions) based on the expres-
sion of adjacent genes. This knowledge offers crucial clues to address the difficult task 
of distinguishing normal from malignant cells and provides quantitative informa-
tion to reconstruct the tumor clonal substructure. Moreover, CNV patterns allow the 
investigator to hypothesize link between genomic alterations and cell phenotypes. As 

Fig. 2  Quantification of CancerSEA functional states in the HGG sample PJ016. a UMAP visualization where 
cells are coloured by expression clusters. b Cluster-level expression scores (z-score) of all the CancerSEA 
functional states. c UMAP visualization where cells are colored by “Invasion” gene set score
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a proof-of-concept, we describe CNV inference in scMuffin with and without a refer-
ence expression profile, and the association of CNV clusters with CancerSEA functional 
states.

CNV inference is performed by means of the function CNV_analysis(): 
scML <- CNV_analysis(scMuffinList = scML, reference = GTEx_

mean, center_genes = TRUE)

where GTEx_mean contains a reference expression profile, which can be obtained by 
means of the function process_GTEx_gene_reads() starting from data available 
at The Genotype-Tissue Expression (GTEx) portal [17]. The resulting scMuffinList scML 
contains the matrix with CNV values for each genomic regions in every cell, cell clusters 
by CNV, detected CNV regions and mapping information between gene locations and 
CNV regions.

Heatmaps that show CNV profiles of every cell, clustered by similarity, can be gen-
erated by means of plot_heatmap_CNV(). In the considered dataset (PJ030), we 
observed that the reference profile (normal brain samples from GTEx) is included into 
cluster 3, while clusters 0, 1 and 2 show large aneuploidies, some of which are typical 
of HGG, like the amplification of chromosome 7 as reported by dataset authors [10] 
(Table 2, Fig. 3a, b). The median CNV profile of every cell cluster can be visualized by 
means of plot_profile_CNV() (Fig.  3c) while boxplots of the distribution of CNV 
score by clusters can be visualized through boxplot_points() (Fig. 3d).

The analysis of another dataset (PJ016, without reference profile) showed two groups 
of clusters ({0, 1, 4} and {2, 3}) that map to separated regions of the UMAP visualization 
(Fig. 4a, b). Interestingly, clusters 2 and 3 are marked by peculiar amplifications in chro-
mosome arms 1p and 19p. These “CNV clusters” correspond to expression clusters {0, 6, 
8, 9} (Fig. 4c). The similarity of multiple cell partitions can be quantified using the func-
tion overlap_matrix().

An example of integrative analysis enabled by scMuffin is the functional assessment 
of CNV clusters. We quantified the expression scores of CancerSEA functional states 
throughout the CNV clusters of sample PJ016. As expected, the two aforementioned 
groups of CNV clusters {0, 1, 4} and {2, 3} are characterized by different functional states 
(Fig. 4d). This finding suggests that the peculiar amplifications of chromosomes 1 and 19 
that characterize these clusters might underlie two phenotypes. A suggestive evidence 
of such hypothesis, with regards to the CancerSEA functional state “Invasion”, is the 

Table 2  CNV regions detected in chromosomes 7 and 19 of sample PJ030

Chr Start (location) Stop (location) Cluster Length

chr7 497,259 132,784,870 0 132,287,611

chr7 497,259 132,784,870 1 132,287,611

chr7 497,259 132,784,870 2 132,287,611

chr19 416,582 48,872,391 0 48,455,809

chr19 1,793,3014 58,551,565 1 40,618,551

chr19 416,582 49,906,825 2 49,490,243
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location of the two Invasion markers YBX1 (Y-Box Binding Protein 1) and HNRNPM 
(Heterogeneous Nuclear Ribonucleoprotein M) within the amplified regions of chro-
mosomes 1p and 19p (Fig. 4a). YBX1 is a DNA/RNA-binding protein and transcription 
factor which plays a central role in coordinating tumor invasion in glioblastoma [18]. 
HNRNPM belongs to a family of spliceosome auxiliary factors and is involved in the 
regulation of splicing; the upregulation of these factors results in tumor-associated aber-
rant splicing, which promotes glioma progression and malignancy [19, 20]. In particular, 
HNRNPM was identified as an interactor of the DNA/RNA binding protein SON, which 
drives oncogenic RNA splicing in glioblastoma [21]. While it is beyond the scope of this 
article to validate this hypothesis, these findings clearly highlight the usefulness of the 
integrative analysis of CNVs and CancerSEA functional states provided by scMuffin.

Cluster enrichment analysis: association of clusters and features

scMuffin contains functions for assessing the association between cell clusters and quan-
titative as well as categorical features, by means of CSEA and ORA, respectively. The 
function assess_cluster_enrichment() performs CSEA and ORA accordingly 
to the feature type under consideration. For example, the following instruction runs 
CSEA over the gene set scores, considering the partition “global_expr”:
scML <- assess_cluster_enrichment(scMuffinList = scML, fea-

ture_name = "gene_set_scoring", partition_id = "global_expr")

Fig. 3  CNV analysis (PJ030). a CNV heatmap where cells (columns) are grouped into “CNV clusters”; the 
cluster of cells that include the reference profile is highlighted through a red label. b UMAP visualizations 
where cells are colored by CNV clusters. c z-score of cluster 0 median CNV profile. d Distribution of cell CNV 
score (C) in clusters
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Fig. 4  CNV analysis and CancerSEA functional states (PJ016). a CNV heatmap where cells (columns) are 
grouped into “CNV clusters”. b UMAP visualizations where cells are colored by CNV clusters. c Overlap indices 
between expression clusters (prefix “EXPR_”) and CNV clusters (prefix “CNV_”). d Heatmap of CancerSEA 
functional state expression score (z-score) in CNV clusters

Table 3  The output of CSEA analysis for a quantitative feature

This result is relative to the CancerSEA Invasion gene set on dataset PJ016

ES Enrichment score, p CSEA p value, p (BH) p value after Bonferroni–Hochberg correction, NES Normalized enrichment 
score, q (FDR) q value of FDR

Cluster ES p p (BH) NES q (FDR)

0 0.67 0.01 0.02 2.38 0.01

1 0.22 0.99 0.99 0.80 0.97

2 -0.21 0.01 0.02 0.00 1.00

3 -0.15 0.01 0.02 0.00 1.00

4 -0.11 0.01 0.02 0.00 1.00

5 0.25 0.80 0.89 0.92 0.90

6 0.29 0.31 0.39 1.05 0.41

7 0.33 0.11 0.18 1.14 0.20

8 0.32 0.13 0.19 1.13 0.18

9 0.71 0.01 0.02 2.43 0.01
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The results of CSEA and ORA include several quantities, such as the normalized 
enrichment score (NES), the enrichment ratio (ER) and the false discovery rate (FDR) 
(Tables 3, 4). These results can be visualized as boxplots (quantitative features) and bar-
plots (categorical features). For instance, the cluster 0 of sample PJ016 is particularly 
enriched—as expected—in “Invasion” markers (Table  3, Fig.  5a) and cells assigned to 
G2/M or S phases (Table 4, Fig. 5b). The function extract_cluster_enrichment_
table() provides a means to obtain tables of enrichment results across clusters, which 
can be visualized as heatmaps (Fig.  5c), while extract_cluster_enrichment_
tags() defines the most significant features as cluster labels that are therefore available 
for annotating UMAPs (Fig. 5d).

Transcriptional complexity, proliferation rate and cell state trajectories

The number of expressed genes and proliferation rate are two relevant pieces of informa-
tion for the characterization of cell type and cell state in cancer.

Undifferentiated stem or progenitor cells show a high number of expressed genes 
(open chromatin state) compared to differentiated cell types. In cancer context, a high 
number of expressed genes might suggest tumor initiating cells (TICs) or might indicate 
de-differentiation processes of tumor progression [22, 23]. For instance, in a recent study 
on glioblastoma, chromatin accessibility was associated with a specific subpopulation 
of putative tumor-initiating Cancer Stem Cells (CSCs) with invasive phenotype and low 
survival rate prediction [24]. The transcriptional complexity of a cell can be calculated as 
follows:
scML <- transcr_compl(scMuffinList = scML, min_counts=3, min_

cells=10, min_genes=500)
where min_counts is the threshold above which a gene is considered expressed, min_

cells is the minimum number of cells in which a gene must be expressed and min_genes 
is the minimum number of genes that a cell must express. In SC datasets, transcriptional 
complexity quantification is complicated by the presence of a linear relationship between 
number of expressed genes and total transcripts detected, where biological variability 

Table 4  The output of an ORA analysis for a categorical feature

Enrichment of every cluster in cells in “G2M” phase (dataset PJ016). The cell cycle phase was calculated by means of the 
function “CellCycleScoring()” from Seurat package [3]

N Number of cells, wb Number G2M cells, bb N-wb, wbd Number of G2M cells in the cluster, exp Expected number of G2M 
cells in the cluster, ER Enrichment ratio, p Hypergeometric p, p (BH) p value after Bonferroni–Hochberg correction

Cluster N wb bb bd wbd exp ER p p (BH)

0 2828 380 2448 499 239 67.05 3.56 1.67 × 10−105 8.34 × 10−105

1 2828 380 2448 475 4 63.83 0.06 1.00 1.00

2 2828 380 2448 378 4 50.79 0.08 1.00 1.00

3 2828 380 2448 309 2 41.52 0.05 1.00 1.00

4 2828 380 2448 296 7 39.77 0.18 1.00 1.00

5 2828 380 2448 257 0 34.53 0.00 1.00 1.00

6 2828 380 2448 185 4 24.86 0.16 1.00 1.00

7 2828 380 2448 172 0 23.11 0.00 1.00 1.00

8 2828 380 2448 142 5 19.08 0.26 1.00 1.00

9 2828 380 2448 115 115 15.45 7.44 2.47 × 10−108 2.47 × 10−107
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is entangled with sequencing deepness. scMuffin provides three measures of transcrip-
tional complexity, which show three different – but complementary—relations with the 
number of total transcripts (t): the ratio (TC-R) prioritizes cells with a relatively low t 
(Fig. 6a); the linear model residuals (TC-LMR) are independent from t (Fig. 6b); lastly, 
the transcriptional entropy (TC-H) [7] highlights genes with relatively high number of 
t (Fig. 6c). All three measures may provide useful insights for the identification of par-
ticular cell types or states. For example, TC-R could be used when one is not interested 
in cell with a relatively abundant RNA production, like can be the case of quiescent cells 
with stem-like properties.

The proliferation rate is a relevant indicator for distinguishing cell types in solid 
tumors and helps to identify cells with potential clinical relevance and interest as candi-
date therapeutic targets [25, 26]. Cell proliferation rate is quantified based on the expres-
sion of G1/S and G2/M genes:

Fig. 5  Cluster enrichment analysis (PJ016). a Output of boxplot_cluster() function for a quantitative 
feature—CancerSEA functional states—in cluster 0: distribution of gene set scores values (red) and 
corresponfing null models (gray, suffix “_ref”) (top); Normalized Enrichment Score (z-score) and FDR q-value 
(bottom). b Output of barplot_cluster() function for a categorical feature—cell cycle phase—in 
cluster 0: expected (“exp”) and observed (“obs”) occurrences of every possible category (top); enrichment 
ratio (ER) and hypergeometric p-value (bottom). c Heatmap of NES values for CancerSEA functional states 
in expression clusters; asterisks indicate FDR q-value < 0.01. d UMAP visualization where clusters are labelled 
with the top three most significant CancerSEA functional states
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scML <- proliferation_analysis(scMuffinList = scML).
As a proof-of-concept we jointly analysed cell TC and cell proliferation of sample 

PJ016 and visualized the results on a diffusion map [27]—which can be run by means of 
the wrapper function diff_map(). This joint analysis shows that cells with the highest 
values of TC-R tend to have lower proliferation scores (Fig. 6d). These cells are located 
more closely to the branching point of the diffusion map (Fig. 6e), while the cells with 
the highest proliferation rates are located at a corner of one of the branches (Fig. 6f ). 
This evidence suggests that the cells with high TC and low proliferation are interesting 
candidates for further analyses aimed at finding TICs in this dataset of HGG. Interest-
ingly, this particular pattern is captured by TC-R, but not by TC-LMR and TC-H (Addi-
tional file 1: Fig. S1).

Comparison of datasets

A SC dataset carries an extensive amount of information. The integration of multiple SC 
datasets is a challenging task and multiple approaches have been proposed to address it 
[28]. Typically, the integrated datasets are computationally demanding due to their huge 
size. An alternative possibility lies in cross-checking the expression of cluster markers 
between datasets: the expression of the cluster markers of every dataset is assessed in 
all considered datasets. For example, Nguyen et al. [5] used this approach to study the 
occurrence of the characteristic cell types of normal mammary gland across samples col-
lected from different subjects.

scMuffin provides a function to quantify the expression of a series of gene sets across 
multiple datasets:

Fig. 6  Transcriptional complexity, proliferation rate and cell state trajectories (PJ016). a Transcriptional 
Complexity Ratio (TC-R) of cells. b Transcriptional Complexity Linear Model Residuals (TC-LMR) of cells. c 
Transcriptional Complexity Entropy (TC-H) of cells. d Distribution of TC-R values split by cell proliferation score 
e–f Distribution of cells according to the first two “diffusion components” (DC)
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res <- inter_dataset_comparison(seu_obj_list = seu_obj_

list, gsl = cluster_markers_list)
where seu_obj_list is a list of Seurat objects (each containing a SC dataset). If 

the gene sets are defined as cluster markers (“cluster_markers_list” in the code above), 
then the analysis sheds light over the possible presence of cells with similar expres-
sion profiles across datasets.

We performed this analysis on three datasets (PJ016, PJ017, PJ030) and found 
cell clusters that are more similar to clusters of other datasets than clusters of the 
same dataset, suggesting the presence of similar cells (Fig. 7a), like cluster 7 of PJ030 
(“PJ030_C7”), which is close to clusters {0, 6, 8, 9} of PJ016. Importantly, the same 
analysis can be done using gene sets with a functional meaning, to obtain a functional 
characterization of similar cell types across datasets (Fig. 7b).

scMuffin and scCancer

scCancer [29] is an R package for automated processing of SC expression data in can-
cer. The two packages (scMuffin and scCancer) address the same challenge and are 
complementary. Indeed, each of them offers some analyses that the other does not 
(Additional file 1: Table S1). Examples of this are cluster association analysis (CSEA 
and ORA), comparison of multiple cell partitions and inter-dataset gene set expres-
sion assessment, available in scMuffin, and cell interaction, expression programs and 
cancer micro-environment cell classification, provided by scCancer. Other types of 
analyses are common to both packages but differ by the underlying algorithm and/or 
implementation. This is the case, for instance, of gene set scoring and CNV analysis.

Fig. 7  Inter-dataset comparison of gene set expression. a Heatmap of cluster marker (columns, “_Mx” suffix, 
where “x” indicates cluster number) expression scores across clusters (rows, “_Cx” suffix, where “x” indicates 
cluster number) of datasets PJ016, PJ017 and PJ030. b Heatmap of CancerSEA functional states scores across 
clusters of datasets as in panel (a)
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Conclusions
Here, we presented scMuffin, an R package that provides a series of functions to per-
form and integrate various types of analyses on SC expression data. As a proof-of-
concept, to illustrate the user interface and its potentialities, we analysed publicly 
available SC expression datasets of human HGG. We described two examples of inte-
grative analyses which returned particularly interesting findings that would deserve 
further investigations: the functional characterization of CNVs highlighted a possible 
link between amplifications of chromosomes 1p and 19p and invasive tumor pheno-
type; the joint analysis of transcriptional complexity, proliferation rate and cell state 
trajectories spotted cells that have some characteristics of TICs. Despite the infer-
ence of CNV from SC expression data is a challenging task, subject to various issues 
(e.g., missing data, number of aberrancies), it provides useful insights to clarify cell 
identity, like the distinction between a more aberrant cluster and the others or the 
distinction of tumoral and normal cells. The functions of scMuffin can be combined 
conveniently to address various tasks. For example, different partitions of the same 
dataset obtained using the same clustering method with different parameters can be 
characterized by means of their overlap and gene set expression, to gain insights on 
the appropriate number of clusters. The analyses offered by scMuffin and the results 
achieved in the proof-of-concept show that scMuffin helps addressing the main chal-
lenges in the bioinformatics analysis of SC datasets from solid tumors.
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