
Image‑centric compression of protein
structures improves space savings
Luke Staniscia1 and Yun William Yu1,2* 

Background
For over half a century, determining protein structure has been a primary means of
understanding function and behavior [1, 2]. After proteins are characterized by research-
ers using various methods such as X-ray crystallography, NMR spectroscopy, and cryo-
electron microscopy, various files are generated describing the protein and stored in
online repositories such as the Protein Data Bank [3, 4]. One such file, the FASTA file,
contains strings of characters representing the amino acids that make up the protein
and its variants [5]. Other files, such as PDB (Protein Data Bank format) and mmCIF

Abstract 

Background:  Because of the rapid generation of data, the study of compression
algorithms to reduce storage and transmission costs is important to bioinformaticians.
Much of the focus has been on sequence data, including both genomes and pro-
tein amino acid sequences stored in FASTA files. Current standard practice is to use
an ordinary lossless compressor such as gzip on a sequential list of atomic coordi-
nates, but this approach expends bits on saving an arbitrary ordering of atoms, and it
also prevents reordering the atoms for compressibility. The standard MMTF and BCIF
file formats extend this approach with custom encoding of the coordinates. However,
the brand new Foldcomp tool introduces a new paradigm of compressing local angles,
to great effect. In this article, we explore a different paradigm, showing for the first
time that image-based compression using global angles can also significantly improve
compression ratios. To this end, we implement a prototype compressor ‘PIC’, special-
ized for point clouds of atom coordinates contained in PDB and mmCIF files. PIC
maps the 3D data to a 2D 8-bit greyscale image and leverages the well developed
PNG image compressor to minimize the size of the resulting image, forming the com-
pressed file.

Results:  PIC outperforms gzip in terms of compression ratio on proteins over 20,000
atoms in size, with a savings over gzip of up to 37.4% on the proteins compressed. In
addition, PIC’s compression ratio increases with protein size.

Conclusion:  Image-centric compression as demonstrated by our prototype PIC
provides a potential means of constructing 3D structure-aware protein compression
software, though future work would be necessary to make this practical.

Keywords:  Protein structure, Compression, Image

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437
https://doi.org/10.1186/s12859-023-05570-z

BMC Bioinformatics

*Correspondence:
ywyu@cmu.edu

1 Department of Mathematics,
University of Toronto, Toronto,
ON, Canada
2 Ray and Stephanie Lane
Computational Biology
Department, Carnegie Mellon
University, Pittsburgh, PA, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05570-z&domain=pdf

Page 2 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437

(macromolecular Crystallographic Information File) files, contain structural information
about the protein [6]. Although the Protein Data Bank is no longer growing exponen-
tially, the number of new structures deposited is still quite formidable [4]; furthermore,
the recent publication of AlphaFold predicted structures has increased total available
structures by orders of magnitude [7].

FASTA files are used for storing both protein and genomic sequence information, and
much work has been done to create customized sequence compression algorithms. It
bears mentioning that the genomic sequence compression literature has recently seen
significantly more activity with the advent of next-generation sequencing [8–11], and
many protein sequence compressors take advantage of that work. For protein sequences,
[12] introduce a single and double pass version of a amino acid sequence compressor for
FASTA files that makes use of substitution matrices. MFCompress was introduced by
[13], and converts the amino acid sequences to their corresponding DNA bases, divides
the data into three streams, and compresses the resulting streams. CoMSA is another
compression algorithm for FASTA files introduced by [14] based on a generalized Bur-
rows-Wheeler transform. Similarly to MFCompress, The Nucleotide Archival Format
(NAF) introduced by [15] is another compressor that works on amino acid sequences
converted to their corresponding DNA bases by dictionary encoding this transformed
string.

In addition to directly transforming and compressing the sequences in FASTA files,
a significant amount of research has gone into read-reordering algorithms for genomic
sequences in the BEETL [16], SCALCE, [17], MINCE [18], and more. These methods are
applicable when FASTA (and the related FASTQ) files are used to store multiple small
fragments (‘reads’) of sequences; next-generation sequencing produces these reads in no
particular order, so the reads can be safely reordered without losing important informa-
tion. When properly performed, this reordering can significantly improve the compres-
sion ratio of standard compressors.

On the other hand, the primary data component of PDB and mmCIF protein struc-
ture files is a point cloud of coordinates belonging to the atoms that make up the pro-
tein. In the standard formats, each atom has its own separate ASCII-formatted line entry
in the file that contains the type of atom, type of amino acid to which it belongs, atom
and amino acid identifiers, followed by three floating point Cartesian coordinates, along
with other information. The coordinates are measured in units of Angstroms Å, where
1µm = 10,000 Å [19]. Unlike their FASTA counterparts, comparatively less work has
been done to create compressors customized for the structural data contained in PDB
and mmCIF files, though there have been a number of recent tools/formats like MMTF
[20], BCIF [21], and the brand new Foldcomp [22]. We note with especial interest Fold-
comp, which introduces a new paradigm for compressing atomic coordinates using local
angles, which is a radical shift from what both MMTF and BCIF do. In this manuscript,
we explore yet another different direction in the form of image-centric compression and
global angle computations.

Valasatava et al. [23] did a deep investigation on compressing 3D coordinates of atoms
in proteins by investigating a full gamut of compression techniques. Their final recom-
mendation was to apply “intramolecular compression”, which aims to reduce the size of
each protein via three steps: encoding, packing, and entropy compression. The encoding

Page 3 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437 	

step transforms floating point coordinates into alternate representations, such as Integer,
Delta, Predictive, Wavelet, and Unit Vector encodings. Integer encoding as described by
[23] multiplies the floating point location coordinates by a power of 10 and rounds the
result to the nearest integer. This encoding strategy is lossy when not all decimal places
of precision are kept in the integer encoded value, but it can be lossless when used in
MMTF and BCIF with a sufficiently large power of 10. However, some amount of loss of
precision can be acceptable because of both measurement error, and due to the natural
uncertainty of exact atom locations in a protein—PIC will use a lossy variant of integer
encoding. Going back to [23], the authors suggest that after packing the encoded coor-
dinate vectors using either recursive indexing or variable packing, the resulting packed
coordinates are entropy encoded using standard methods like gzip [24] or brotli [25],
which are both combinations of LZ77 dictionary based encoding and Huffman encoding.

However, [23]’s investigation focused primarily on compression of atomic coordinates
as sequential objects stored within a text file, treating the data as sequential, much like in
FASTA files without reordering. However, unlike protein/genomic sequences, 3D atomic
point clouds are not naturally sequential, and the sequence of atoms listed is purely an
artifact introduced by using a sequential file format to store the atoms. Thus, preserv-
ing the order of the atoms as listed out in a PDB or mmCIF file is largely irrelevant for
the purposes of compression, so long as the original information can be reconstructed.
Given the background above, one logical next step would be to perform a principled
reordering of the atoms to improve compressibility, similar to the technique used by
read-reordering algorithms (where again, the order of reads output by the sequencer is
inconsequential). The remaining question is of course how to perform that reordering,
as point clouds are very different from sequenced genomic reads in underlying structure.

To resolve this question, we turn to an alternate paradigm for compressing point cloud
data sets proposed in the field of LIDAR (light detection and ranging) imaging. Houshiar
and Nüchter [26] proposed a new compression algorithm for the 5D point cloud data
generated by LIDAR scans of real-world scenes. The LIDAR scans produced tuples of
data points containing coordinates of a point in space in the scene, along with reflec-
tance and colour data of the surface at that location. Their compression algorithm con-
verts the Cartesian coordinates to spherical coordinates, maps the angular coordinates
to the axes of an image, and the radial component, colour, and reflectance data to pixel’s
fields at the mapped location. The radial component, colour, and reflectance data are
written to the R, G, and B components respectively of a single coloured image as well as
the greyscale intensity field of three separate consecutive images. The resulting images
were compressed using PNG, JPEG 100 (lossless, perfect quality JPEG), JPEG2000, no
compression TIFF, LZW TIFF, and Pack Bits TIFF lossless image compressors. The
authors of [26] found that compressing three greyscale images using the PNG compres-
sor performed the best in terms of compression ratio.

In this manuscript, we take inspiration from the next-generation sequencing read-
reordering literature and combine the intramolecular compression techniques of [23]
with the image-centric methods of [26]. In “Implementation” section, we outline our
new compression algorithm, PIC, for the structural protein data contained in PDB
and mmCIF files. Design choices and methodology are examined in detail followed
by a pseudo-code outline of the compression algorithm. In “Results” section, we give

Page 4 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437

compression results for the atomic coordinates of 20 proteins of a variety of different
sizes compressed using both PIC and gzip and show PIC outperforms gzip in terms of
compression ratio for proteins over 20,000 atoms in size. We also give the images that
constitute the compressed files for a few of the compressed proteins. Furthermore,
although PIC is not a full compressor as it does not compress metadata, for the sake of
completeness, we also compare PIC file sizes against full compression software MMTF,
BCIF, and Foldcomp. In “Discussion” section, we highlight some trends in the compres-
sion results and make note of the advantages of the PIC compressor over gzip for struc-
tural protein data compression.

Algorithm 1  PIC compression algorithm

Implementation
The PIC compression algorithm has has three main components, namely mapping each
atom to a position in an image, encoding information at that position, and compressing
the resulting image. A high-level overview is given in Algorithm 1 and Fig. 1, and details
are furnished in the following text.

Mapping

Cartesian coordinates of atoms stored in the protein’s PDB or mmCIF file are extracted
and the global centroid µ of all the coordinates is computed. The coordinates are trans-
lated by −µ so that the global centroid becomes the new reference point or origin for
the coordinates. This transformation minimizes the instances of collisions when map-
ping the coordinates to the image. To decompress the images, µ is stored along with the
images.

The translated coordinates are then transformed to spherical coordinates. Each spher-
ical coordinate component is rounded to a precision of one decimal place. Valasatava
et al. [23] noted that experimental measurements that produce the Cartesian coordi-
nates determine an atom’s position with a degree of uncertainty, greater than 0.2Å . This

Page 5 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437 	

allows for the exploitation of lossy compression to store the coordinates only up to a
tenth of an Å , which is generally sufficient to preserve the essential structural informa-
tion provided by lossless representation.

Fig. 1  Flow chart diagram of the PIC compression algorithm. µ is the global centroid of all atoms used to
center the image, and r∗ is the maximal radial component that needs to be stored after centering. The basic
intuition is to store atoms and their coordinate data in a pixel corresponding to the radial coordinates, and
then compress with PNG

Page 6 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437

The radial r and azimuth φ spherical coordinate components of each atom are posi-
tionally encoded to the horizontal and vertical axis of an eight bit pixel greyscale
image as follows

where ε is a user-defined parameter that sets the number of pixels per azimuth angle
degree. Letting r∗ be the maximal radial component across all spherical coordinates, the
dimensions of the resulting image are 10r∗ × 360ε . Further note that while x ∈ Z≥0 , y
is not necessarily an integer. However, ε is chosen such that 360ε, 8y ∈ Z≥0 for all y and
ε ≥ 1.25 . This ensures there is at least one bit available per tenth of an azimuth angle
degree and each y coordinate has an integer bit-level position on the vertical axis. In this
way, we view each column in the image as a bit string that is being written to.

Care must be taken when choosing ε . Setting ε too large will produce a large image,
degrading the compression ratio. On the contrary, choosing a small ε will induce
more collisions when data is mapped to the image. This results in increased compres-
sion time, as alternate data storage locations need to be considered. A decrease in the
compression ratio may also be experienced in this case as more data points will need
pointers to their intended locations and additional images may need to be populated
to store all the required data.

The remaining elevation angle θ is stored in the image’s pixel intensity values begin-
ning at the data point’s (x, y) encoding position in the image. Further details on how
the elevation angle is formatted or packed and stored in the image is described in
“Packing” section. This encoding scheme was selected as it positionally encodes the
spherical coordinates r and φ with the largest range of values and encodes the small-
est ranging coordinate θ in the image’s pixel’s intensity values. Thus each coordinate
takes up the fewest amount of pixels when encoded into the image, allowing for more
data to be stored in the image before another image needs to be generated.

In the event that a data point is mapped to a position that does not have availa-
bility to hold all the required information, an alternate encoding position (x∗, y∗)
is determined systematically. A position (x, y) has availability if all bits at posi-
tions between and including (x, y) and (x, y+ l − 1/8) , where l is the length of
the encoded elevation angle in bytes, have not had data previously written to
them. Beginning at the data point’s target encoding position (x, y), the positions
(x, y+ i/8 mod 360ε), 0 < i < 8 · 360ε = 2880ε are scanned subsequently to find the
first position with availability. This position is the alternate encoding position. All
encoding positions (x, y) also satisfy y < y+ l − 1/8 < 360ε , ensuring no data points
begin at the bottom of the image and finish at the top to enable proper decompression
of the image.

If (x∗, y∗) is the alternate encoding position for a data point with target position (x, y),
and y ≤ y∗ < y+ 0.1ε , the encoded elevation angle is stored begining at (x∗, y∗) as is.
Otherwise, a pointer p is encoded and stored along with the encoded elevation angle at
(x∗, y∗) . p points to the largest y′ ∈ {i/8|0 ≤ i < 2880ε} that satisfies y ≤ y′ < y+ 0.1ε ,
namely y′ = y+ 0.1ε − 1/8 . The stored pointer is the integer p = 8(y∗ − y′) . Note that
p > 0 as y∗ > y′ . The decompressor then knows that the intended azimuth angle for the
data point is that belonging to the position (y∗ − p/8) = y′.

(x, y) = (10r, εφ)

Page 7 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437 	

In the case that an alternate encoding position cannot be found in the current image,
another image is generated, if not already done by a previous data point. The above map-
ping procedure is repeated in that image to locate an encoding position for the data
point. This process repeats until an encoding position is determined for each atom’s
coordinate.

Packing

Elevation angles are stored in pixels’ greyscale values beginning at their corresponding
data point’s (x, y) encoding position. Each pixel has an 8-bit intensity field. Due to the
variable lengths of the binary elevation angles and use of pointers, the following packing
scheme is used to store the elevation angles so they can be properly decompressed.

If no pointer is needed, the elevation angle is integer encoded as 10θ and con-
verted into its binary representation. If the binary representation has length less than
⌈log2(1801)⌉ = 11 bits, 0 bits are added to the front until the representation is 11 bits
long. Two additional bits 1 and 0 are added to the front of the resulting binary string
in that order to signify the start of a new data point and to notify the decompressor the
data point has no pointer, respectively.

If a pointer is required, a similar but expanded packing scheme is used. The second bit
is set to 1 instead of 0 to signify to the decompressor that the data point has a pointer.
The pointer p is converted to its binary representation and prefixed with 0 bits until it
has length ⌈log2(2880ε)⌉ . The adjusted binary representations of the pointer and eleva-
tion angles follows the two bit prefix in that order.

For 0 ≤ i < 8l , bit i of the packed string is mapped to the bit at position (x, y+ i/8)
in the image. This packing scheme ensures that each data point has one of two possi-
ble lengths, the exact length of which can be determined by the second bit located at
(x, y+ 1/8) . This is a key feature that allows for the proper decompression of the image.

Cropping and compression

The resulting image(s) are cropped and compressed using the PNG lossless image com-
pressor on the highest compression ratio setting. These image(s) make up the com-
pressed version of the protein’s point cloud of atom coordinates in the PDB or mmCIF
file.

Images are cropped to remove any all-black rows and columns on the edge of the
image. To decompress the images, two cropping parameters are stored along with each
image generated to reverse the cropping.

Other lossless image compressors investigated in [26] were also examined. Similarly
to the results found by Houshiar at al., PNG was selected for use in the algorithm as it
offers the highest compression ratios of the aforementioned compressors at comparable
compression times.

Decompressed file

The original and decompressed files are identical up to the coordinates of the atoms. As
noted in “Mapping” section, since there is a tolerance of up to 0.2Å in each coordinate
component, each decompressed coordinate is within a euclidean ball of radius 0.2

√
3Å

about the original coordinate.

Page 8 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437

Results
Atomic cloud coordinate compression

We benchmarked PIC against the gzip compression after the integer compression/
precision reduction of [23], the primary relevant prior work. Valasatava et al. [23]
explored a variety of methods for entropy compression, but we found the differences
between methods to be swamped out by the integer encoding step, and thus chose
gzip as a representative method for sequential compression. We did not compare
against plain gzip for that reason, as the compression ratios without the integer com-
pression were not at all comparable. All further references to gzip are to gzip after the
[23] integer compression.

Table 1 gives statistics and compression results on 20 proteins compressed using
gzip and PIC where ε = 2.5 and the decompressed files are identical to the original
with the lossy coordinate transform. Figures 2 and 3 compare the 3D structures of
proteins to the images created by the PIC compressor. Figure 4 compares PIC vs

Fig. 2  3D structure [27] and PIC compressor PNG image output for 2ign. Some attributes and symmetries in
the 3D structure are observed in the corresponding PIC-compressed image. The upper and lower parts of the
3D structure of protein 2ign can be seen in PIC generated image as two separate masses of black pixels, one
over the other

Fig. 3  3D structure [28] and PIC compressor PNG image output for 4v60. Some attributes and symmetries
in the 3D structure are observed in the corresponding PIC-compressed image. The spiked edge of the 4v60
protein can be seen on the right side of the first outputted image from the PIC compressor

Page 9 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437 	

Fig. 4  PIC compression ratios plotted against gzip compression ratios (using integer precision reduction for
both methods reduced to a tenth of an angstrom for comparability) for each protein compressed in Table 1.
Points in the region above the diagonal indicates a protein with better compression ratios using PIC than
gzip. Vice versa below the diagonal. PIC demonstrates substantially higher compression ratios for nearly all
proteins tested

Fig. 5  PIC and gzip compression ratios (using integer precision reduction for both methods as suggested
by [23] for comparability) for the proteins compressed in Table 1 plotted against the number of atoms that
make up the compressed protein. All but the smallest proteins showed a higher compression ratio when
using PIC; for the small proteins, the extra overhead of PIC dominates, but for any large protein, PIC performs
better. Note that this comparison is fair to gzip, as instead of gzipping the original files, we only apply gzip
after using the same lossy precision encoding that PIC uses; thus, the comparison here is really between
sequential storage of a text file using gzip, and spherical storage using PIC

Page 10 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437

gzip compression ratios, whereas Fig. 5 visualizes some of the same results found in
Table 1, but plotted against atom size.

As can be seen from Table 1, the proposed PIC algorithm has superior compression
ratio performance than the standard gzip text compressor for all proteins over 20,000
atoms in size. This is seen visually in Fig. 5, as all except two points belonging to the two
proteins with the fewest number of atoms lie above the diagonal, the region where PIC
has better compression ratio performance. In Fig. 5, the gzip compression ratio decays
while PIC’s compression ratio increases with atom count.

Furthermore, unlike most compression algorithms, we can visually inspect the trans-
formed image because it is itself a projection mapping of the original 3D structure. In
Figs. 2 and 3, we show the PIC outputted images. For easier viewing, these images are
inverted, five-fold contrast enhanced versions of the actual images outputted by the PIC
compressor.

These results were obtained by running the PIC.py script in the command terminal
with the “-e” option. These experiments were ran on a Ubuntu 20.04.4 LTS machine with
an AMD Ryzen Threadripper 3970X 32-Core Processor and 256 GB of memory in sin-
gle-thread mode without parallelization. However, the code has also been tested on an
Apple MacBook Pro with a 3.5 GHz dual-core processor and 16 GB of memory, with
comparable results. Thus, the code can run nearly as well on personal laptops.

Full PDB/mmCIF compression benchmark

Although PIC is designed as a prototype to showcase image-centric compression and
thus only compressed the atomic point clouds, it is still instructive to compare against
full compression software, such as MMTF, BCIF, and Foldcomp. In order to create a fair
comparison, the total metadata space also needs to be included when comparing PIC—
as such, we decided to use use MMTF to compress only the metadata, and then add that
size to the size of the PIC image output. This is of course impractical for use as a com-
pressor, but simply serves to level the playing field.

In Table 2, we compare the same benchmark proteins as in Table 1 with original PDB
size, BCIF, MMTF, MMTF-lossy, PIC+MMTF-meta, and Foldcomp. MMTF-lossy nota-
bly both decreases precision to tenth of an Angstrom (same as PIC), but also only stores
the C-alpha atoms, which allows them to take the least space at the cost of not storing
all atoms. We were only able to get Foldcomp v0.0.5 to work on one of our proteins,
4v60, because most of our benchmark proteins had discontinuous chains, which is not
supported by Foldcomp, and several of the other proteins caused segfaults. However, on
both 2jan and 4v60, Foldcomp does substantially better than PIC or any of the other
compressors other than MMTF-lossy.

Discussion
As expected, as atom count increases, more images are populated by PIC and more of
the image space of the constructed images is used. In addition to the increased data load
in only a slightly larger image width wise, this is due to an increased number of collisions
as atom count increases. This causes the use of pointers, increasing the average number
of bits used per data point, and, when no alternate location can be found in the current
image, the population of a new image, increasing the image count.

Page 11 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437 	

Ta
bl

e 
1 

Co
m

pr
es

si
on

 a
nd

 ru
nt

im
e

co
m

pa
ris

on
s

of
 g

zi
p

an
d

PI
C

PI
C

co
m

pr
es

si
on

 a
lg

or
ith

m
, ε

=
2
.5

 , r
es

ul
ts

. R
ou

nd
ed

 C
oo

rd
in

at
es

 Te
xt

 S
iz

e
an

d
Bi

na
ry

 S
iz

e
ar

e
th

e
si

ze
s

of
 th

e
te

xt
 a

nd
 b

in
ar

y
fil

es
 (i

n
ki

lo
by

te
s,

i.e
. 1

00
0 ×

 b
yt

es
, r

at
he

r t
ha

n
ki

bi
by

te
s)

, r
es

pe
ct

iv
el

y,
 th

at
 c

on
ta

in
 o

nl
y

th
e

Ca
rt

es
ia

n
co

or
di

na
te

s
fo

un
d

in
 th

e
or

ig
in

al
 fi

le
, r

ou
nd

ed
 to

 o
ne

 d
ec

im
al

 p
la

ce
. T

he
 b

in
ar

y
fil

e
(w

hi
ch

 u
se

s
a

va
ria

bl
e-

le
ng

th
 e

nc
od

in
g)

 is
 th

en
 g

zi
pp

ed
. T

he
 g

zi
p

an
d

PI
C

co
m

pr
es

si
on

 ra
tio

s
(C

R)
 a

re
 th

e
ra

tio
s

of
 th

e
Ro

un
de

d
Co

or
di

na
te

s T
ex

t S
iz

e
to

 th
e

si
ze

 th
e

gz
ip

 fi
le

 a
nd

 P
N

G
 im

ag
e

ou
tp

ut
(s

) f
ro

m
 th

e
PI

C
co

m
pr

es
so

r,
re

sp
ec

tiv
el

y.
 B

ol
de

d
va

lu
es

 a
re

 th
e

be
st

 o
f g

zi
p

an
d

PI
C.

 C
om

pr
es

si
on

 a
nd

 d
ec

om
pr

es
si

on
 ti

m
es

 a
re

 fo
r t

he
 P

IC

al
go

rit
hm

; n
ot

e
th

at
 o

ur
 c

od
e

is
 u

no
pt

im
iz

ed
, a

s
th

e
fo

cu
s

is
 o

n
co

m
pr

es
si

on
 ra

tio
s,

bu
t w

e
in

cl
ud

e
th

es
e

tim
es

 h
er

e
fo

r c
om

pl
et

en
es

s.
A

s
an

 a
si

de
, (

de
)c

om
pr

es
si

on
 fo

r g
zi

p
ta

ke
s

ne
gl

ig
ib

le
 ti

m
e

fo
r fi

le
s

of
 th

is
 s

iz
e.

 W
e

al
so

 in
cl

ud
e

RM
SD

 v
al

ue
s

to
 m

ea
su

re
 th

e
lo

ss
in

es
s

of
 P

IC
 c

om
pr

es
si

on
. I

m
ag

e
Sp

ac
e

U
se

d
gi

ve
s

th
e

pr
op

or
tio

n
of

 th
e

im
ag

e
sp

ac
e

th
at

 w
as

 u
se

d
to

 e
nc

od
e

th
e

pr
ot

ei
n

co
or

di
na

te
 d

at
a,

 o
r p

ar
t t

he
re

of
, i

n
ea

ch
 im

ag
e

co
ns

tr
uc

te
d

by
 th

e
PI

C
co

m
pr

es
so

r (
fo

r l
ar

ge
 p

ro
te

in
s,

m
or

e
th

an
 o

ne
 im

ag
e

is
 n

ee
de

d
to

 re
pr

es
en

t a
ll

th
e

at
om

s)

Pr
ot

ei
n

A
to

m
O

ri
gi

na
l

Ro
un

de
d

co
or

di
na

te
s

gz
ip

PI
C

Co
m

pr
es

si
on

Im
ag

es
D

ec
om

pr
es

si
on

ID
Co

un
t

Fi
le

Te
xt

Bi
na

ry
Si

ze
CR

Si
ze

CR
RM

SD
Ti

m
e

N
um

be
r

Sp
ac

e
Ti

m
e

si
ze

 (K
B)

si
ze

 (K
B)

si
ze

 (K
B)

(K
B)

(K
B)

(m
in

:s
ec

)
us

ed
us

ed
 (%

)
(m

in
:s

ec
)

2j
a9

14
58

16
3.

3
24

.1
6.

6
6.

3
3.

83
4

10
.0

2.
41

2
0.

03
1

0:
0.

1
1

[0
.9

]
0:

0.
4

2j
an

12
59

1
11

01
.2

20
6.

1
56

.7
54

.1
3.

81
3

61
.2

3.
36

8
0.

04
7

0:
1.

3
1

[2
.7

]
0:

2.
1

2j
bp

27
36

7
23

97
.4

44
7.

8
13

3.
4

13
0.

2
3.

43
9

10
8.

8
4.

11
7

0.
04

3
0:

4.
1

1
[1

1.
1]

0:
5.

0

2j
a8

32
00

0
28

31
.2

50
7.

6
14

4.
0

13
9.

6
3.

63
7

13
8.

0
3.

67
8

0.
04

3
0:

5.
6

1
[6

.5
]

0:
7.

0

2i
gn

41
75

8
35

79
.2

66
6.

7
18

7.
9

18
0.

8
3.

68
8

14
7.

3
4.

52
6

0.
06

9
0:

9.
0

1
[9

.5
]

0:
11

.4

2j
d8

50
35

1
44

57
.6

82
8.

1
22

6.
6

21
9.

7
3.

76
9

19
6.

8
4.

20
7

0.
05

6
0:

12
.8

1
[7

.7
]

0:
15

.9

2j
a7

63
92

4
56

05
.5

10
77

.0
28

7.
7

27
8.

6
3.

86
6

25
8.

8
4.

16
1

0.
05

5
0:

19
.6

1
[1

0.
2]

0:
24

.7

2f
ug

73
91

6
63

86
.9

11
80

.7
36

0.
3

34
7.

5
3.

39
8

28
3.

3
4.

16
8

0.
06

0
0:

26
.2

1
[1

0.
7]

0:
33

.3

2b
9v

80
71

0
68

18
.4

12
79

.8
39

3.
5

37
9.

4
3.

37
3

28
9.

0
4.

42
8

0.
07

3
0:

32
.2

1
[1

0.
3]

0:
39

.5

2j
28

95
35

8
81

52
.3

15
26

.2
42

9.
1

41
2.

2
3.

70
2

34
6.

6
4.

40
3

0.
05

5
0:

47
.0

1
[1

3.
7]

1:
0.

2

6h
if

11
87

53
12

72
6.

2
21

05
.2

53
4.

4
51

6.
2

4.
07

8
37

2.
2

5.
65

6
0.

06
2

1:
30

.5
2

[3
4.

0,
 0

.1
]

1:
48

.6

3j
7q

14
05

40
16

02
7.

2
25

29
.7

73
7.

8
70

7.
6

3.
57

5
47

5.
6

5.
31

8
0.

05
8

2:
28

.2
1

[2
0.

3]
2:

44
.4

3j
9m

15
83

84
17

99
5.

2
28

45
.4

77
2.

1
76

5.
8

3.
71

6
52

5.
7

5.
41

3
0.

06
9

3:
28

.8
1

[2
1.

7]
3:

55
.9

6g
aw

17
83

72
20

82
5.

4
31

79
.9

86
9.

6
86

2.
1

3.
68

8
58

7.
6

5.
41

1
0.

07
1

4:
58

.1
1

[2
3.

5]
5:

39
.1

5t
2a

20
01

72
22

78
7.

6
32

53
.9

90
0.

8
87

2.
4

3.
73

65
1.

7
4.

99
3

0.
06

8
7:

8.
2

2
[3

1.
1,

 1
.7

]
8:

59
.1

4u
g0

21
87

76
24

90
6.

9
38

41
.4

10
66

.5
10

56
.7

3.
63

5
70

7.
3

5.
43

1
0.

06
9

8:
34

.2
2

[3
3.

8,
 1

.7
]

9:
25

.5

4v
60

24
19

56
24

37
7.

8
42

07
.8

11
79

.5
11

67
.2

3.
60

5
73

0.
2

5.
76

2
0.

12
0

9:
50

.8
2

[4
5.

6,
 2

.1
]

13
:4

8.
9

4w
ro

26
00

90
35

66
1.

1
43

63
.1

12
67

.9
12

46
.2

3.
50

1
84

8.
8

5.
14

0.
08

6
13

:5
4.

0
1

[2
9.

6]
16

:6
.9

6f
xc

28
15

10
31

32
9.

0
50

67
.1

14
77

.9
14

24
.2

3.
55

8
91

7.
7

5.
52

2
0.

10
0

15
:5

2.
9

2
[3

4.
6,

 1
.0

]
17

:1
1.

6

4w
q1

29
99

51
40

13
0.

9
50

42
.1

14
62

.3
14

38
.0

3.
50

6
96

8.
8

5.
20

4
0.

08
7

19
:5

9.
6

2
[3

4.
7,

 0
.2

]
22

:3
9.

0

Page 12 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437

Furthermore, as noted in the respective figures, our prototype PIC implementation is
not optimized for speed. It is not intended as a drop-in replacement for gzip or MMTF,
but is instead meant to show that image-centric compression of protein atomic point
clouds can provide significant space savings. The Python implementation takes on the
order of a few minutes for a single compression/decompression, which is significantly
slower than the order of seconds for gzip compression.

Other values of ε investigated include {1.25, 5, 10} . Only the results for ε = 2.5 are
shown as this value produced the best compression ratios. As stated in “Mapping”
section, higher ε increased image sizes and consequently decreased the compression
ratios. Setting ε = 1.25 increased compression times as collisions increased due to the
decreased image size and alternate mapping locations needed to be considered. Com-
pression ratios also decreased slightly as gains in the compression ratios from decreased
image sizes were overcame by the additional use of pointers and higher number of
images generated by the PIC algorithm. Importantly, in this prototype study, we have
given results from only a single set of parameters for all sizes of proteins for princi-
pled benchmarking. In future work, it may be preferable to set parameters dynamically
for each protein and to store them, as in standard practice in many file compression

Table 2  Compression of entire PDB/mmCIF files benchmark

Actual compressed file sizes. We compare PIC, MMTF, Foldcomp, and BCIF formats. However, because PIC does not compress
atomic metadata, we compressed the metadata-only with MMTF and then added that to the PNG sizes from PIC. All uses
of MMTF were followed-up with standard Gzip compression on the MMTF file, as is standard, whereas BCIF is already a fully
compressed file format. All sizes are in kilobytes (1000 × bytes). We also include the RMSD for PIC coordinates here. Lastly,
unfortunately, most of the proteins we chose for our benchmark were discontinuous, or had other quirks, so Foldcomp 0.0.5
was unable to compress them after running for 24 h. However, Foldcomp does substantially better on both 2jan and 4v60
than all but MMTF-reduced (Cα-lossy), which not only decreases precision but also only keeps the alpha carbons

PDB/ BCIF MMTF MMTF PIC (lossy precision) Foldcomp

Protein CIF size Size Size Cα-lossy Coord MMTF- Total RMSD (Lossy precision)

(KB) (KB) (KB) (KB) (KB) Meta (KB) (KB) (Å) (KB)

2ja9 163 24 13 3 9 4 14 0.030680 segfault

2jan 1101 108 98 15 61 22 84 0.047302 26

2jbp 2397 224 214 30 108 52 161 0.043140 runtime>day

2ja8 2831 299 249 42 138 59 197 0.043373 runtime>day

2ign 3579 329 321 41 147 71 219 0.068555 runtime>day

2jd8 4457 382 384 49 196 88 285 0.056100 runtime>day

2ja7 5605 534 488 74 258 110 369 0.055422 runtime>day

2fug 6386 580 566 82 283 128 412 0.060134 runtime>day

2b9v 6817 594 608 73 288 128 417 0.072982 runtime>day

2j28 8152 738 586 70 346 50 396 0.055343 runtime>day

6hif 12726 877 894 167 372 194 566 0.061988 runtime>day

3j7q 16027 1211 1027 108 475 234 710 0.058150 runtime>day

3j9m 17995 1339 1198 160 525 282 807 0.069300 runtime>day

6gaw 20825 1584 1359 184 587 324 911 0.070872 runtime>day

5t2a 22787 1628 1396 151 651 262 914 0.068460 segfault

4ug0 24906 1827 1606 177 707 364 1072 0.069050 runtime>day

4v60 24377 1509 1618 242 730 191 922 0.119788 491

4wro 35661 2336 1902 171 848 447 1296 0.085947 runtime>day

6fxc 31328 1961 1678 181 917 103 1020 0.099960 segfault

4wq1 40130 2646 2212 216 968 523 1492 0.086623 runtime>day

Page 13 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437 	

formats. This will play a greater role as the structures of more complex proteins are
deconstructed, stored in databases, and transmitted amongst researchers. Further, as the
PIC algorithm leverages the standard and widely used PNG image compressor, the algo-
rithm can be easily implemented on a variety of platforms and systems.

Although we ran benchmarks, the comparisons against MMTF, BCIF, and Foldcomp
were not especially informative for a couple of reasons. First, PIC does not compress
metadata, so we had to use MMTF for that portion to create reasonable comparisons.
Second, different tools made different design choices about what to focus on: MMTF-
lossy also only stores the C-alpha atoms, rather than all atoms as PIC and Foldcomp
do, and Foldcomp is not designed for discontinuous chains, which were common in
our benchmark data set. Still, it does seem that if only C-alpha atomic coordinates are
needed, MMTF-lossy is better, and where Foldcomp works, it is also better.

Conclusion
In this paper, we have introduced PIC, an new compression algorithm that leverages
positional encoding techniques and the well-developed, widely available PNG image
compressor to encode and compress structural protein data in PDB and mmCIF files.
The algorithm encodes two of the three dimensions of an atomic coordinate from the
point cloud stored in the file to a position in the image space and stores the remain-
ing dimension in pixels’ intensity values around that location. The resulting image is
then compressed with the lossless image compressor PNG. We showed PIC has a com-
pression ratio superior of that of gzip for proteins with more than 20,000 atoms, and
improves with the size of the protein being compressed, reaching up to 37.4% on the
proteins we examined. Although as of September 2023, only 6.7% of the structures in the
RCSB PDB are over 20,000 atoms, they represent at least 21% of the database in terms
of total atom count, so PIC has fair applicability. Additionally, the advent of Cryo-EM
in recent years has substantially increased the number of large structures deposited in
the PDB, and this growth in the number of large structures is expected to continue. The
improvement in compression is also orthogonal to the lossy storage of atomic coordi-
nates to a precision of only a tenth of an angstrom, as we compared against gzip on files
with that precision level.

More important than just providing a prototype, we demonstrate in this paper that
the paradigm of image-centric compression is superior in efficacy than simply applying
a standard sequential compressor to the atomic point clouds. This result is consistent
with examples from point-cloud compression in LIDAR imaging, read-reordering for
NGS sequence compression, and also the recent Foldcomp compressor which stores
internal angles instead. Importantly, this improvement in compression ratios persists
even though we store the necessary metadata to undo any atom-reorderings; thus, the
only lossy portion of PIC is in coordinate positions. Still, we would recommend that the
ordering information be entirely discarded, as it is for LIDAR and read re-ordering—we
only kept all of that information to ensure that we performed a fair comparison in our
benchmarks. Were we to discard that information, PIC’s benchmark results would be
even stronger.

We do note that as a prototype implementation, our runtimes and file formats are
not suitable for everyday use, but our hope is that future compression algorithms will

Page 14 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437

be designed with our findings in mind. Ultimately, we hope that this study points the
way for future image-centric (or more generally structure-aware) compression of pro-
tein structures. Indeed, the contemporaneous Foldcomp [22] makes use of internal bond
angles and torsions in protein compression, which is a different means of exploiting the
3D structure than our image-centric approach, and that shows greater promise even
than PIC—as the Foldcomp software matures, we expect that it will potentially be the
benchmark to beat in the future.

The PIC algorithm itself, if reimplemented in a faster language, is certainly competitive
on compression ratios already, and furthermore is easy to implement because the PNG
image format is already implemented on many platforms. However, we mostly envision
that image-centric compression will simply form a part of other more complex compres-
sion methods. As structural protein files with increasing complexity are deconstructed,
added to databases, and transmitted amongst researchers, targeted compression tech-
niques will become ever more necessary.

Abbreviations
PDB:	� Protein Data Bank
mmCIF:	� Macromolecular Crystallographic Information File
LIDAR:	� Light detection and ranging

Acknowledgements
We would like to thank Jim Shaw, Ziye Tao, and Alex Leighton for their thought-provoking questions that inspired parts
of this work.

Author contributions
LS and YWY jointly conceived of the study. LS implemented most of the code, under YWY’s oversight. Both authors were
fully involved in writing the manuscript.

Funding
This work was supported by the Ontario Graduate Scholarship Program. We acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada (NSERC), (NSERC grant RGPIN-2022-03074), and the DND/NSERC
Discovery Grant Supplement for 2022.

Availability of data and materials
Project name: PIC Compression and Decompression Prototype
Project home page: https://​github.​com/​lukes​tanis​cia/​PIC
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 3.0 or higher
License: MIT License
Any restrictions to use by non-academics: No

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 1 January 2023 Accepted: 15 November 2023

References
	1.	 Ramachandran G. Protein structure and crystallography. Science. 1963;141(3577):288–91.
	2.	 Ilari A, Savino C. Protein structure determination by X-ray crystallography. Bioinformatics. 2008;452:63–87.

https://github.com/lukestaniscia/PIC

Page 15 of 15Staniscia and Yu ﻿BMC Bioinformatics (2023) 24:437 	

	3.	 Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutta S, Feng Z, et al. The
RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res.
2016;45(D1):D271–81.

	4.	 Berman HM, Kleywegt GJ, Nakamura H, Markley JL. The protein data bank at 40: reflecting on the past to prepare for
the future. Structure. 2012;20(3):391–6.

	5.	 Pearson WR. Using the FASTA program to search protein and DNA sequence databases. In: Computer analysis of
sequence data. Springer; 1994. p. 307–331.

	6.	 Westbrook JD, Fitzgerald PM. The PDB format, MMCIF formats, and other data formats. Struct Bioinform.
2003;44:159–79.

	7.	 Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, et al.
Alphafold protein structure database: massively expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic Acids Res. 2022;50(D1):439–44.

	8.	 Fritz MH-Y, Leinonen R, Cochrane G, Birney E. Efficient storage of high throughput DNA sequencing data using
reference-based compression. Genome Res. 2011;21(5):734–40.

	9.	 Daniels NM, Gallant A, Peng J, Cowen LJ, Baym M, Berger B. Compressive genomics for protein databases. Bioinfor-
matics. 2013;29(13):283–90.

	10.	 Yu YW, Yorukoglu D, Peng J, Berger B. Quality score compression improves genotyping accuracy. Nat Biotechnol.
2015;33(3):240–3.

	11.	 Hernaez M, Pavlichin D, Weissman T, Ochoa I. Genomic data compression. Annu Rev Biomed Data Sci. 2019;2:19–37.
	12.	 Hategan A, Tabus I. Protein is compressible. In: Proceedings of the 6th nordic signal processing symposium, 2004.

NORSIG 2004. IEEE; 2004. p. 192–5.
	13.	 Pinho AJ, Pratas D. MFCompress: a compression tool for FASTA and multi-FASTA data. Bioinformatics. 2013;30(1):117–

8. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btt594.
	14.	 Deorowicz S, Walczyszyn J, Debudaj-Grabysz A. CoMSA: compression of protein multiple sequence alignment files.

Bioinformatics. 2018;35(2):227–34. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty619.
	15.	 Kryukov K, Ueda MT, Nakagawa S, Imanishi T. Nucleotide archival format (NAF) enables efficient lossless reference-

free compression of DNA sequences. Bioinformatics. 2019;35(19):3826–8. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btz144.

	16.	 Cox AJ, Bauer MJ, Jakobi T, Rosone G. Large-scale compression of genomic sequence databases with the burrows-
wheeler transform. Bioinformatics. 2012;28(11):1415–9.

	17.	 Hach F, Numanagić I, Alkan C, Sahinalp SC. Scalce: boosting sequence compression algorithms using locally consist-
ent encoding. Bioinformatics. 2012;28(23):3051–7.

	18.	 Patro R, Kingsford C. Data-dependent bucketing improves reference-free compression of sequencing reads. Bioin-
formatics. 2015;31(17):2770–7.

	19.	 Goodsell, D.S.: PDB101: learn: guide to understanding PDB data: introduction to PDB data (n.d.). https://​pdb101.​rcsb.​
org/​learn/​guide-​to-​under​stand​ing-​pdb-​data/​intro​ducti​on.

	20.	 Bradley AR, Rose AS, Pavelka A, Valasatava Y, Duarte JM, Prlić A, Rose PW. MMTF—an efficient file format for the
transmission, visualization, and analysis of macromolecular structures. PLoS Comput Biol. 2017;13(6):1005575.

	21.	 Sehnal D, Bittrich S, Velankar S, Koča J, Svobodová R, Burley SK, Rose AS. BinaryCIF and CIFtools—lightweight, effi-
cient and extensible macromolecular data management. PLoS Comput Biol. 2020;16(10):1008247.

	22.	 Kim H, Mirdita M, Steinegger M. Foldcomp: a library and format for compressing and indexing large protein struc-
ture sets. Bioinformatics. 2023;39(4):btad153.

	23.	 Valasatava Y, Bradley AR, Rose AS, Duarte JM, Prlići A, Rose PW. Towards an efficient compression of 3D coordinates
of macromolecular structures. PLoS ONE. 2017;12(3):1–15. https://​doi.​org/​10.​1371/​journ​al.​pone.​01748​46.

	24.	 Deutsch P, et al. Gzip file format specification version 4.3. RFC Editor. 1996.
	25.	 Alakuijala J, Farruggia A, Ferragina P, Kliuchnikov E, Obryk R, Szabadka Z, Vandevenne L. Brotli: a general-purpose

data compressor. ACM Trans Inf Syst (TOIS). 2018;37(1):1–30.
	26.	 Houshiar H, Nüchter A. 3D point cloud compression using conventional image compression for efficient data

transmission. In: 2015 XXV international conference on information, communication and automation technologies
(ICAT). 2015. p. 1–8. https://​doi.​org/​10.​1109/​ICAT.​2015.​73404​99.

	27.	 Divne C. 2IGN: crystal structure of recombinant pyranose 2-oxidase H167A mutant. 2006. https://​www.​rcsb.​org/​
struc​ture/​2IGN.

	28.	 Kato K, Zhou Y, Tanaka H, Yao M, Yamashita M, Tsukihara T. 4V60: the structure of rat liver vault at 3.5 angstrom reso-
lution. 2014. https://​www.​rcsb.​org/​struc​ture/​4V60.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btt594
https://doi.org/10.1093/bioinformatics/bty619
https://doi.org/10.1093/bioinformatics/btz144
https://doi.org/10.1093/bioinformatics/btz144
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction
https://doi.org/10.1371/journal.pone.0174846
https://doi.org/10.1109/ICAT.2015.7340499
https://www.rcsb.org/structure/2IGN
https://www.rcsb.org/structure/2IGN
https://www.rcsb.org/structure/4V60

	Image-centric compression of protein structures improves space savings
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Implementation
	Mapping
	Packing
	Cropping and compression
	Decompressed file

	Results
	Atomic cloud coordinate compression
	Full PDBmmCIF compression benchmark

	Discussion
	Conclusion
	Acknowledgements
	References

