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Introduction
Ligand binding prediction is an important issue in the structure-based drug design. 
With the breakthrough of AlphaFold2 (AF2) in protein structure prediction [1], a new 
challenge category, ligand binding prediction was added to the 15th Community Wide 
Experiment on the Critical Assessment of Techniques for Protein Structure Prediction 
(CASP15). Previously, the Community Structure–Activity Resource (CSAR) [2] dis-
seminated experimental datasets of diverse protein–ligand complexes to improve ligand 
docking and scoring. After 2015, the Drug Design Data Resource (D3R) [3] replaced 
CSAR and released valuable benchmarking datasets containing experimentally deter-
mined binding structures and affinity data. However, unlike the CSAR and D3R chal-
lenges, the ligand binding predictions of CASP15 provide only the target sequences 
without structural or ligand binding site information. These predictions are much more 
difficult and can be classified as blind docking. Unlike the typical blind docking, CASP 
only provides sequence information for the receptors. Therefore, it is necessary to 
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predict the structures of these receptors. The predicted receptor structures may deviate 
from the experimental structures, regardless of the main chains or side chains, further 
increasing the difficulty of ligand blind docking. In addition, multiple ligands binding to 
one specific target make the problem even more complicated in CASP15.

Several computational methods have been developed for ligand binding predic-
tion. Well-known ligand prediction programs include DOCK [4], AutoDock [5], Vina 
[6], Glide [7], GOLD [8], and MDock [9]. Recently, template-based methods have been 
widely used to predict ligand structures. Huang et  al. proposed an enhanced Virtual 
Screening (VS) approach, EViS [10], which integrates ligand docking, protein pocket 
template searching, and ligand template shape similarity calculations. Zou et  al. [11] 
proposed a new template-guided method using dissimilar ligands as templates, which 
significantly outperformed traditional molecular docking methods. PocketShape [12] 
used the Hungarian algorithm and the Downhill simplex method to solve the problem 
of binding site comparison, and achieved excellent performance in distinguishing similar 
from dissimilar ligand binding site pairs. To enrich the AlphaFold model with ligands 
and cofactors, AlphaFill [13] uses sequence and structural similarities to align small mol-
ecules and ions from experimentally determined structures with AF2 predicted protein 
models.

In addition, convolutional neural networks (CNNs) have been used in structure-based 
virtual screening and scoring. Ragoza et al. [14] showed that a fully CNN scoring func-
tion (GNINA scoring function) using only spatial and atom type information as input 
can outperform empirical and feature-based machine learning approaches for virtual 
screening. Deane et al. [15] used a Densely connected CNN (DenseNet) with a transfer 
learning approach to produce an ensemble of protein family-specific models for virtual 
screening. Jones et al. [16] fused models of 3D-CNNs and spatial graph neural networks 
(SG-CNNs) to make more accurate predictions than the previous docking scoring and 
MM/GBSA rescoring.

In CASP15, we participated in the category of ligand binding prediction. Owing to the 
advantages of template-based modeling and the GNINA scoring function, we combined 
these two methods to predict the binding modes of small molecules or metal ions. For 
most of the CASP15 ligand systems, our fusion docking protocol achieved successful or 
partially successful results. Considering its robust predictive performance, our docking 
protocol is a good alternative for the ligand binding predictions.

Methods
3D alignment algorithm

In a previous work, we queried Protein Data Bank (PDB) [17] for template structures 
using sequence similarity searching. This sequence-based template search strategy has 
been used for protein–protein docking prediction [18, 19]. For ligand binding predic-
tion, a structure-based 3D alignment algorithm was developed by our group and used 
for both pocket template searching and ligand alignment. For the pocket template 
searching, CA atoms in the protein pocket were set as nodes. The cutoff distance used 
to select CA atoms around the center of the ligand was 12 Å. For the ligand alignment, 
all atoms in the ligand except hydrogen were set as nodes. For the 3D alignment algo-
rithm, a single graph representation was combined with the clique detection method. 
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In a single graph representation, each node represents a pairing of atoms. One from 
the query structure and the other from the template structure. Adjacent nodes are two 
nodes for which both atoms from the query and template structures are separated by 
equivalent distances. First, a set of fully adjacent nodes is defined as a clique, which is 
a completely connected subgraph. Matching is then formulated as a graph theoretical 
problem that attempts to find completely connected subgraphs within an undirected 
graph. This 3D alignment algorithm is similar to the method used in the UCSF DOCK 
program [4]. In contrast to the exhaustive matching algorithm in the DOCK program, 
we used a greedy algorithm to improve speed, search for the most similar template, and 
generate orientation for alignment. We calculated the similarity coefficient as ST = NS/
NT, where NS is the number of unique atoms shared between the query structure and 
the template structure, and NT is the number of unique atoms in the template. The tem-
plates with ST > 0.8 were defined as the high similar templates.

GNINA scoring function

We used the GNINA scoring function to rescore the receptor-ligand complex [14, 20]. 
The GNINA scoring function is a CNN-based model [14]. The size of the box in this 
scoring function was 24 Å × 24 Å × 24 Å and was centered on the binding site with a 
default resolution of 0.5  Å. Each grid point stores information regarding the types of 
heavy atoms at that point. The ligand and protein atoms have distinct atom types, and 
each atom type is represented in a different channel (analogous to the RGB channels in 
the images) of the 3D grid. GNINA defined a total of 34 distinct types, with 16 recep-
tor types and 18 ligand types. The new GNINA scoring function was trained using the 
PyTorch deep learning framework. The CNN model in the GNINA program was trained 
on the cross-docking and redocking datasets, and could predict both the pose score and 
binding affinity. The final ligand docking poses were evaluated and ranked using the 
GNINA scoring function.

Docking protocol

Template-based modeling and the GNINA scoring function were combined for ligand 
binding prediction, and the flow chart is shown in Fig. 1. For each target, the receptor 
structure was predicted using AF2, or that disclosed by the CASP Organizing Commit-
tee. We queried BioLiP [21] using the 3D alignment algorithm and extracted potential 
pocket templates for the receptor. BioLiP is a widely used databases for protein–ligand 
interactions, and the data were primarily collected from the Protein Data Bank (PDB). 
Because ligand molecules are often used as additives to solve protein structures, not all 
ligands present in the PDB database are biologically relevant. BioLiP uses a composite of 
automated and manual procedures to examine the biological relevance of ligands. There-
fore, BioLiP is very useful for template-based protein–ligand docking. If an appropri-
ate template was available, the initial ligand binding pocket was identified based on the 
template. The ligand conformations were then generated from the SMILES string using 
RDKit [22]. The ligand conformations were aligned to small molecules of the template 
using the 3D alignment algorithm to generate various docking poses. Finally, these bind-
ing poses were evaluated using the GNINA scoring function. Therefore, the box size in 
the docking protocol was the same as that of the GNINA scoring function. We provided 
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a web server to users to facilitate the use of our docking program (https://​codoc​kliga​nd.​
schan​glab.​org.​cn).

Results and discussion
Docking protocol test

Upon participating in the ligand prediction assessment of CASP15, we standardized the 
algorithm as a docking protocol. It was tested on CASF-2016 [23], and compared with 
the widely used AutoDock-Vina program [24]. We also compared the test results of the 
combination of AutoDock-Vina and GNINA scoring (AutoDock-Vina + GNINA scor-
ing). The docking box of AutoDock Vina was defined as the center of the native ligand 

Fig. 1  Flow chart of the CoDock-Ligand protocol. First, the receptor pocket templates are searched in the 
template library using the pocket 3D alignment algorithm. Second, multiple ligand conformations are 
generated using RDKit. Finally, the ligand conformations are aligned to the small molecules from the pocket 
template, and the variety binding poses are sorted by the GNINA scoring function

https://codockligand.schanglab.org.cn
https://codockligand.schanglab.org.cn
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coordinates with dimensions of 28 Å × 28 Å × 28 Å to include the residues of the entire 
cavity. The exhaustiveness value was 10. The root-mean-square deviation (RMSD) was 
calculated for all non-hydrogen atoms in the ligand relative to the native structure. To 
avoid introducing biases into the docking tests, we removed the overlapping systems 
between BioLiP and the test set of CASF-2016. As shown in Fig.  2, CoDock-Ligand 
achieved better performance than AutoDock-Vina and AutoDock-Vina + GNINA scor-
ing in terms of the success rates of the top ranking poses. For the Top1 pose, 76.5% of the 
systems were predicted successfully using CoDock-Ligand with RMSD ≤ 1 Å, and 83.9% 
of the systems were predicted successfully with RMSD ≤ 2 Å. Correspondingly, the suc-
cess rates of AutoDock-Vina were 47.7% and 62.9%, respectively. Although the GNINA 
scoring function was the same, the success rates of AutoDock-Vina + GNINA scoring 
were 47.7% and 69.3%, respectively. These comparisons demonstrated the advantages of 
incorporating experimental data during docking.

The overview in CASP15

Considering that many targets in CASP15 are multimers with duplicate subunits, we 
only take one subunit as an example to show ligand binding prediction. For each target, 
five models were submitted with five different poses in each model. There were 25 bind-
ing poses for each ligand, and RMSD values were calculated to reference the experimen-
tal structures. The lowest RMSD values of the 25 binding poses for each target are listed 
in Table 1. These results are consistent with those shown in Figs. 3, 4, 5, 6, 7, 8 and 9, 
and are convenient for comparing the predicted ligands with their crystal structures. In 
Table 1, high quality predictions are defined as RMSD ≤ 2.0 Å, accepted site predictions 
as 2.0 Å < RMSD ≤ 5 Å and failed predictions as RMSD > 5.0 Å. The CASP only provides 
sequence information for the receptors. The predicted receptor structures may devi-
ate significantly from the experimental structures, regardless of the main chains or side 
chains, further increasing the difficulty of ligand docking. The prediction with RMSD 
between 2 and 5 Å is also important, showing that the site is correct but pose is not. In 
previous studies [11, 25], the RMSD cutoff of 5 Å was used as the criterion.

Fig. 2  Histogram of the comparison between AutoDock-Vina, AutoDock-Vina + GNINA scoring and 
CoDock-Ligand in the CASF-2016 dataset. A Success rates of three programs with RMSD ≤ 1.0 Å. B Success 
rates of three programs with RMSD ≤ 2.0 Å
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For some target systems, complex templates with high similarity scores were identi-
fied, including H1114, R1117, T1124, T1127, H1135, T1146, T1152, T1158, T1170, 
H1171, H1172 and T1186. For ligands identical to those in the complex template, struc-
ture-based alignment was directly used to obtain the ligand position in the predicted 

Table 1  Performance of CoDock-Ligand in CASP15

a In these targets, our group achieved successful results in ligand binding predictions
b In these targets, our group achieved partially successful results in ligand binding predictions

CASP ID Template Oligomeric 
state

Ligand Lowest RMSD

L_RMSD ≤ 2.0 Å 2.0 Å < L_
RMSD ≤ 5.0 Å

L_RMSD > 5.0 Å

H1114a 5Y4N, 4UE3, 
4KO2, 2FRV

A4B8C8 7/56 0.65(001/3NI) 
1.20(009/F3S) 
0.56(017/F3S) 
0.69(025/F3S) 
0.82(033/FCO) 
1.28(041/MG)

3.87(049/MQ7)

R1117 2L1V, 3FU2 A1 1/1 1.17(001/PRF)

T1118b 5JJ5,6Z8A A1 5/9 0.40(002/FE) 4.15(001/FE) 
4.35(004/LIG) 
4.73(005/LIG)

9.13(003/LIG)

T1124 7WDW A2 2/4 1.92(001/SAH) 2.71(003/TYR)

R1126 5OB3, 7L0Z A1 1/1 27.29(001/K)

T1127 3BJ7, 3BJ8, 2B4D, 
2B4B, 2JEV, 2B58

A2 2/5 3.17(001/COA) 
2.16(003/EPE)

H1135 6R16, 6R15, 6R2I A9B3 2/12 0.08(004/K) 11.32(001/CL)

R1136 4KZD, 5OB3 A1 3/3 72.05(001/1TU) 
24.27(002/J93) 
64.57(003/K)

T1146 4Q5K, 4Q68 A1 1/1 0.58(001/NAG)

T1152 4B8V A2 1/1 0.81(001/NAG)

T1158v1 5UJA, 6D3R, 
6PZ9, 6PZI, 6UY0

A1 1/1 1.85(001/XPG)

T1158v2 5UJA, 6D3R, 
6PZ9, 6PZI, 6UY0

A1 1/1 3.90(001/P2E)

T1158v3 5UJA, 6D3R, 
6PZ9, 6PZI, 6UY0

A1 1/1 1.66(001/XH0)

T1158v4 5UJA, 6D3R, 
6PZ9, 6PZI, 6UY0

A1 4/4 0.79(001/ATP) 
1.24(002/ATP) 
0.14(003/2MG) 
0.65(004/2MG)

T1170 6CHS A6 3/9 1.20(001/ADP) 
0.77(007/MG)

2.45(004/AGS)

H1171 6CHS A6B1 3/9 1.52(001/ADP) 
1.57(007/MG)

2.48(004/AGS)

H1172 6CHS A6B2 3/9 1.06(007/MG) 2.09(001/ADP) 
2.38(004/AGS)

T1181 5W6H, 4OJ6, 
4OJ5, 4OJP, 
4OJO

A3 6/8 4.45(006/ZN) 10.63(001/OAA) 
16.33(002/OAA) 
36.99(005/ZN) 
5.69(007/ZN) 
27.23(008/CA)

T1186 1FCM, 4R1G A1 1/1 1.05(001/LIG)

T1187 – A2 1/2 14.36(001/NAG)

T1188 2YBT, 6BT9 A1 5/5 3.96(001/DW0) 
2.05(004/CD)

6.02(002/DW0) 
11.01(003/CD) 
15.42(005/CO)
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Fig. 3  Ligand prediction of H1114. The receptor protein and ligands of the crystal structure are colored light 
blue and orange, respectively. The predicted ligand structures are colored pink. A Ligands of Ni ion, FCO, and 
Mg ion. B Ligands of F3S and MQ7

Fig. 4  Prediction of four different ligand binding with T1158. The receptor protein and ligands of the crystal 
structure are colored light blue and orange, respectively. The predicted ligand structures are colored pink. 
A Ligand of T1158v1. B Ligand of T1158v2. C Ligand of T1158v3. D Ligands of 001 ATP and 003 Mg ion in 
T1158v4. E Ligands of 002 ATP and 004 Mg ion in T1158v4

Fig. 5  Ligand prediction of T1170-H1172. The receptor protein and ligands of the crystal structure are 
colored light blue and orange, respectively. The predicted ligand structures are colored pink. A, D are ligands 
of T1170. B, E are ligands of H1171. C, F are ligands of H1172
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target. For example, the ligand of R1117 and metal ions of H1114 were predicted in this 
manner. For the ion ligands, a simple coordinate transformation was used for docking 
prediction. For ligands chemically similar to those in the complex templates, template 
guided docking protocol was used to obtain the target-ligand complex structure. It was 
applied for the ligand predictions of T1124, T1158 v1, T1158 v2, and T1152. For target 
systems without appropriate complex templates, such as T1181 and T1187, traditional 
docking was performed using Glide [7]. Previous study compared Glide and GNINA 

Fig. 6  Successful ligand prediction of six systems. The receptor protein and ligands of crystal structure are 
colored light blue and orange, respectively. The predicted ligand structures are colored pink. A Ligand of 
R1117. B Ligands of T1124. C Ligands of T1127. D Ligand of T1146. E Ligand of T1152. F Ligand of T1186

Fig. 7  Partial successfully ligand prediction of four systems. The receptor protein and ligands of crystal 
structure are colored light blue and orange, respectively. The predicted ligand structures are colored pink. A 
Ligands of T1118. B Ligands of H1135. C Ligands of T1181. D Ligands of T1188
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on the CASF-2016 dataset [25], and demonstrated that Glide performed slightly better 
than GNINA. When no acceptable template structures were found, Glide was used for 
docking.

Successfully predicted targets

H1114

H1114 is the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis (PDB: 7UUS) 
[26]. The Huc catalytic subunits form an octameric complex containing 56 metal cofac-
tors and small molecules. For this system, 5Y4N, 4UE3, 4KO2, and 2FRV were selected 
as the templates. Six metal cofactors and one small-molecule compound, MQ7, were 
predicted for each subunit. As shown in Fig. 3, the binding poses of six metal cofactors 
were predicted correctly with RMSD < 2.0 Å. For the MQ7 ligand, the binding site was 
correct, but the lowest RMSD was 3.87 Å.

T1158

T1158 v1 to v4 are MRP4-mut E1202Q protein in four states, binding to four differ-
ent ligands, respectively. It is a multidrug resistance-associated protein that transport 
compounds out of cells. 5UJA, 6D3R, 6PZ9, 6PZI, and 6UY0 were identified as highly 
similar templates and used for ligand binding prediction. Based on the protein function 
and ligand binding in the template structures, it was deduced that the binding site was 

Fig. 8  Analysis the effect of the side chain on ligand prediction. The crystal structures of receptor protein and 
ligand are colored light blue and orange, respectively. The predicted structures of receptor protein and ligand 
are colored light green and pink, respectively. A Prediction of MQ7 in H1114. The side chain of TYR275 leads 
to the incorrect conformation of MQ7. B Prediction of DW0 in T1188. The side chain of TRP120 leads to the 
orientation change of the aromatic ring in DW0

Fig. 9  Failed ligand prediction of three systems. The receptor protein and ligands of crystal structure are 
colored light blue and orange, respectively. The predicted ligand structures are colored pink. A Ligands of 
R1126. B Ligands of R1136. C Ligands of T1187
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located in the center channel of the protein. As shown in Fig. 4, the ligands in v1, v3, and 
v4 states were predicted correctly with RMSD < 2.0 Å. For the P2E ligand in v2 state, the 
binding site was predicted correctly, but the lowest RMSD was 3.9 Å.

T1170‑H1172

T1170-H1172 are RuvAB branch migration motor in complex with the Holliday junction 
(PDBs: 7PBR, 7PBL, and 7PBP) [27]. These systems bind to the same ligands, includ-
ing AGS, ADP, and Mg ion. The only difference is that H1171 and H1172 are in differ-
ent multimer states. To simplify the analysis, we compared only the ligands in one of 
these states. For these systems, 6CHS was selected as the template. As shown in Fig. 5, 
AGS, ADP, and Mg ion were correctly predicted in these three systems. Most of ADP 
and Mg ion were predicted correctly with RMSD < 2 Å. However, AGS has more rotat-
able bonds than ADP, and its lowest RMSDs in these three systems were 2.45, 2.48 and 
2.38 Å, respectively.

Other six systems

The four systems, R1117, T1146, T1152, and T1186, are relatively simple, with only one 
ligand to be predicted. R1117 is a PreQ1 class I type III riboswitch, and we selected 2L1V 
and 3FU2 as the templates. For the T1146 system, 4Q5K and 4Q68 were used as the 
templates. T1152 is a clostridium thermocellum CtCBM50 structure in complex with 
beta-1,4-GlcNAc trisaccharide (PDB: 7R1L), and we used 4B8V as the template. T1186 
is a beta-lactamase with dicloxacillin, and we selected 1FCM and 4R1G as the templates. 
As shown Fig. 6A, D–F, the ligand structures of these four systems were correctly pre-
dicted, and the lowest RMSDs were 1.17, 0.58, 1.52 and 1.05 Å, respectively.

The other two systems, T1124 and T1127, were more complex than the above four sys-
tems, and both had two ligands to be predicted. T1124 is an L- and D-tyrosine O-meth-
yltransferase from the marformycin biosynthesis pathway of Streptomyces drozdowiczii, 
with SAH and L-tyrosine bound (PDB: 7UX8) [28]. For this system, 7WDW was used 
as the template. For the T1127 system, 3BJ7, 3BJ8, 2B4D, 2B4B, 2JEV, and 2B58 were 
selected as the templates. As shown Fig. 6B, C, the lowest RMSDs of the ligands in these 
two systems were close to 2.0–3.0 Å.

Partial successfully predicted targets

Four systems

T1118 is an outer membrane FoxA with (2:3) Fe-bisucaberin bound. According to the 
CASP information, the FoxA structure in complex with another ligand, nocardamine, 
has been solved (PDB: 6Z8A) [29]. For this system, 5JJ5 and 6Z8A were used as the tem-
plates. As shown in Fig. 7A, the binding sites of the ligand were correctly predicted, but 
the orientations of the two ligands (a Fe ion and a bisucaberin) were far away from the 
crystal structure. The RMSDs were 4.15 and 9.13 Å, respectively.

The oligomeric state of H1135 was A9B3, and we took one subunit for analysis (see 
Fig. 7B). For this system, 6R16, 6R15, and 6R2I were used as the templates. The K ion 
was functionally relevant and its predicted deviation was less than 1.0 Å. Although the 
pose of Cl ion was incorrect, it was not functionally relevant.
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T1181 is a trimer, and one subunit was shown for the ligand binding prediction in 
Fig. 7C. For this system, 5W6H, 4OJ6, 4OJ5, 4OJP, and 4OJO were used as the templates. 
The ligand OAA is a polysaccharide molecule containing 47 rotatable bonds. Thus, only 
one Zn ion were predicted with RMSD < 5.0 Å, but the ligands OAA and Ca ion were 
incorrectly predicted.

T1188 had five ligands to be predicted, including two DW0 ligands and three metal 
cofactors. For this system, 2YBT and 6BT9 were used as the templates. As shown in 
Fig. 7D, the poses of two DW0 and a Cd ion in T1188 were basically correct, and the 
RMSDs were 3.96, 6.02 and 2.05  Å, respectively. However, the lowest RMSDs of the 
other two metal ions, Cd and Co ions were 11.01 and 15.42 Å, respectively.

In the above successful and partial successfully prediction targets, we also determined 
the reasons why some ligands were located in the correct binding pocket but had a large 
RMSD value. Because the receptor structure was predicted, the side chain orientations 
or main chain conformations of the receptor were different between the predicted struc-
ture and the experimental structure. In some cases of CASP15, subtle rotamer rearrange-
ments of side chains greatly affect the docking results and lead to incorrect predictions 
of ligand poses, especially for those with π–π interactions. As shown in Fig. 8, the side 
chain orientations of TYR275 and TRP120 led to remarkable deviations in the ligand 
predictions for MQ7 in H1114 and DW0 in T1188. For the T1188 system, the RMSD 
value was still larger than 5.0 Å despite the correct predicted site of DW0.

Failed prediction targets

Three systems

The target structures of R1126 and R1136 are RNA molecules in the Traptamer and 
Apta-FRET forms, respectively. The ligand of R1126 is K ion, and those of R1136 are 
1TU, J93, and K ion, respectively. We found some templates with similar ligands for 
these two systems. However, we used the receptor structures provided by the CASP for 
RNA targets. Actually, the final evaluation shows that the backbone deviations between 
these predicted receptor structures and the experimental structures were 52.637 and 
54.508 Å, respectively. Thus, the ligands could not be aligned correctly by our modeling 
method (see Fig. 9A, B).

Another failed target is T1187, which is a tobacco lectin Nictaba in complex with tria-
cetylchitotriose (PDB: 8AD2). For this system, our docking protocol did not identify any 
appropriate complex templates, so traditional docking was performed using Glide. As 
shown in Fig. 9C, the predicted binding site deviated from the actual binding site, and 
the lowest RMSD was 14.36 Å.

Here we proposed a template based docking protocol, CoDock-Ligand, and applied 
in CASP15 Ligand prediction category. An atom-type based 3D align algorithm was 
designed to capture potential pocket templates and perform ligand alignment. Com-
bined with GNINA scoring function, CoDock-Ligand achieved better performance 
than AutoDock-Vina in terms of the success rates of ligand poses. Our group (CoDock) 
was ranked as No. 1 in the ligand prediction category, showing remarkable accuracy in 
receptor-ligand complex structure prediction. However, the receptor structure showed 
significant impact for the ligand binding predictions. Such as the ligand predictions for 
MQ7 in H1114 and DW0 in T1188, subtle side-chain conformation changes of pocket 
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residues made the bad predictions for ligand poses. For RNA-ligand interactions, poor 
RNA structure predictions led to final failures for ligand binding predictions. It is neces-
sary to consider the conformation flexibility of proteins and further understand of RNA 
interactions [30–34], which may help to improve the ligand binding predictions in the 
future.

In recent years, ODE-based theoretical modeling studies have been widely applied on 
gene/protein signaling networks [35–37]. Combine with these methods, the docking 
models could contribute to understand regulatory mechanisms and find potential thera-
peutic targets in diseases. In addition, some new computational methods, such as graph 
convolutional neural networks, have been used to predict interactions, which provide 
valuable insights into genetic markers and related diseases [34, 38, 39]. These models will 
be helpful to improve the docking protocol and further provide atomic details for inter-
actions between bio-molecules.

Conclusion
Our docking protocol combines template-based modeling and the GNINA scoring func-
tion for receptor-ligand structure prediction. The template-based modeling method 
adopts a structure-based 3D alignment algorithm developed by our group that can accu-
rately identify templates from the structure database. This method captured similar tem-
plates for most targets, and CoDock-Ligand achieved successful or partially successful 
predictions for these systems in CASP15. Meanwhile, we analyzed the failed systems to 
determine the reasons. If there was a remarkable backbone deviation between the pre-
dicted receptor structure and the experimental structure, such as the RNA-ligand sys-
tems R1126 and R1136, our docking protocol failed in the ligand binding prediction. 
Because the receptor structures are predicted in the ligand prediction assessment of 
CASP15, the side chain conformations, especially the orientations of the aromatic rings 
have a significant impact on ligand binding predictions. Therefore, the flexibility of the 
receptor should be considered in the docking protocol, and the precise receptor struc-
ture greatly contributes to ligand binding predictions.
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