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Abstract 

Drug repurposing is an exciting field of research toward recognizing a new FDA-
approved drug target for the treatment of a specific disease. It has received extensive 
attention regarding the tedious, time-consuming, and highly expensive proce-
dure with a high risk of failure of new drug discovery. Data-driven approaches are 
an important class of methods that have been introduced for identifying a candidate 
drug against a target disease. In the present study, a model is proposed illustrating 
the integration of drug-disease association data for drug repurposing using a deep 
neural network. The model, so-called IDDI-DNN, primarily constructs similarity matrices 
for drug-related properties (three matrices), disease-related properties (two matri-
ces), and drug-disease associations (one matrix). Then, these matrices are integrated 
into a unique matrix through a two-step procedure benefiting from the similarity net-
work fusion method. The model uses a constructed matrix for the prediction of novel 
and unknown drug-disease associations through a convolutional neural network. The 
proposed model was evaluated comparatively using two different datasets includ-
ing the gold standard dataset and DNdataset. Comparing the results of evaluations 
indicates that IDDI-DNN outperforms other state-of-the-art methods concerning pre-
diction accuracy.
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Introduction
Drug repurposing means a new use of a drug other than its original and approved use 
[1]. In recent years, drug repurposing has attracted the attention of most pharmaceu-
tical companies regarding cost reduction and low failure rate compared to traditional 
drug production methods. Drug repurposing can be useful in identifying new, low-cost, 
and short-time treatments for diseases for which preclinical safety studies have been 
completed. The development of traditional treatment methods to produce a new treat-
ment solution takes nearly 17 years, and its rate of success is less than 10% [2]. Therefore, 
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there is a huge and significant need to produce new medications for diseases for which 
drugs result in side effects and unpleasant effects for patients i.e. emerging ones such as 
COVID-19, which brings the whole world into a fundamental challenge, and rare dis-
eases. Recent research reports show that there exist about seven thousand rare diseases 
that have no effective treatment, which imposes their effect on more than 400 million 
people worldwide [3–5].

In recent years, researchers have conducted studies on drug repurposing. These stud-
ies have been mostly on the analysis and description of drug repurposing methods along 
with their successful examples. Successful examples of drug repurposing include Silde-
nafil (Viagra), which was previously used to treat erectile dysfunction, but now new uses 
have been discovered for it using repurposing. Bupropion, which is generally used to 
treat depression, is now also used for smoking cessation and thalidomide, which was 
introduced for the treatment of morning sickness, is now recommended for multiple 
myeloma [2, 6–12].

Through computational methods based on association analysis between a pair of drug-
disease (DD), one can predict new applications of those range of known drugs used 
previously. In addition, related reliability has also been proven experimentally. Two cat-
egories of such methods for assessing computational experiments are worth drawing 
attention to; one category is based on the drug-disease relationship, which acts based 
on the common protein or gene complex between the drug and the disease. Another 
category, in addition to drugs, diseases, and target associations, also benefits from the 
in-between similarity. Drug repurposing studies generally concentrate on discovering 
similarities in drug mode of action [13], revealing new drug indications [14], investi-
gating common features among drug combinations [15], and discovering drug-disease 
relationships [7]. The major challenge of this kind of study is the identification of the 
real target molecule of a certain drug among hundreds of thousands of additional genes 
that indirectly affect the results of the studies. Classic statistical models and approaches 
are not effective for discovering and distinguishing the target molecule of a certain drug 
among thousands of genes.

Furthermore, the major drawback of many traditional repurposing methods is the use 
of one source of data, because in this way only a specific part of the behavioral knowl-
edge of a living organism is examined. Also, the same methods suffer missing and incor-
rect data affecting their performance. For example, numerous reasons are involved in 
imposing difficulty in defining profiles of gene expression signatures reliably. Moreover, 
when using these genes as drug targets significant changes in gene expression may not 
always occur, leading to inaccurate data. In addition, the lack of clear data for target 
drugs when using the chemical structure and molecular information makes it difficult 
to identify associations of drug targets. As a result, claims of inference and discovery 
regarding the mentioned methods may be unsustainable. Therefore, the integration of 
data from various sources during the development of repurposing computational mod-
els overcomes this challenge [16–18].

Most information-based approaches to detecting drug-disease association pat-
terns obtain their data from patients, healthcare professionals, and pharmaceuti-
cal companies [19–24]. Also, in recent years, the efforts of researchers have gone 
towards predictive models such as machine learning (ML), which are used to discover 
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drug-disease associations during the drug production process or before the com-
mercial introduction of the drug in the market [20]. The two main machine learn-
ing approaches for this purpose are network-based [25–27] and similarity-based 
[28–34]. Network-based ML methods have been introduced recently to predict drug-
disease associations. Because they are capable of extracting and integrating knowl-
edge of multiple information sources such as chemical, biological, target, genomic, 
and pharmaceutical sources. In 2022, Zhao et  al. [35] proposed a geometric deep 
learning (GDL) framework, namely DDAGDL, to predict drug-disease associations 
(DDAs) on heterogeneous information networks (HINs). DDAGDL can take to learn 
the feature representations of drugs and diseases by ingeniously projecting drugs and 
diseases including geometric prior knowledge of network structure in a non-Euclid-
ean domain onto a latent feature space. The model suggests new high-quality drugs 
for Alzheimer’s disease and Breast neoplasms. The results of evaluations in terms of 
accuracy, recall, precision, and F1-score were 0.842, 0.849, 0.836, and 0.843, respec-
tively. In 2023, Zhao et al. [36] proposed a graph learning-based method by integrat-
ing the biological knowledge of drugs and targets with their interactions. They used 
a gradient-boosting decision tree classifier to predict novel drug-target associations. 
They obtained a high performance in their evaluations in terms of AUC, AUPR, and 
F1-score equal to 0.965, 0.967, and 0.899, respectively.

Some network-based ML methods create a drug-target network and discover drug-
disease associations using the strength of network connections or by recognizing 
drug pairs that share drug targets or drug pathways [25–27]. In 2013, Cami et al. [37] 
proposed a drug association network to predict drug-disease associations using the 
network’s topological structure for all known associations. Based on the drug’s intrin-
sic and taxonomic properties, the PPIN reports a sensitivity of 48%, a specificity of 
90%, and an area under the receiver operating characteristic curve (AUROC) of 81%.

Machine learning methods based on similarity for predicting drug-disease associa-
tions mostly use binary classification. The binary similarity measurements vary based 
on adding and subtracting negative matches. In addition, some criteria consider both 
positive and negative weighted matches to obtain optimal performance. Hamming-
based, correlation-based, and inner product-based methods are the main criteria of 
binary similarity [28, 30–33]. For improving prediction performance for DD associa-
tion, in the present research, we propose a computational method that makes use of 
molecular characteristics as well as multiple similarities related to drugs and diseases. 
This method called IDDI-DNN (Integration of Drug-Disease associations for drug 
repurposing by Deep Neural Network) integrates multiple similarities between drugs 
and diseases and employs deep neural networks to capture similarities between them. 
The method first integrates multiple data related to drugs, diseases, and drug-disease 
associations into a unique similarity matrix during three steps, and then, uses the 
constructed matrix to train a convolutional neural network (CNN). The model is used 
to suggest a suitable drug for a target disease. Relying on the results of conducted 
experiments, IDDI-DNN outperforms several state-of-the-art methods through the 
use of benchmark datasets in terms of Receiver Operating Characteristic (ROC) and 
Precision-Recall (PR) performance metrics. In the next section, the proposed method 
is described in detail.
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Methods
The proposed method is elaborated on comprehensively in this section. Figure  1 rep-
resents the framework of the method. In the first step, three drug-related matrices and 
two disease-related matrices as well as a correlation matrix representing the associations 

Fig. 1  Overview of the proposed approach
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between drugs and diseases are prepared as the method input. The Cosine similarity 
function is used to calculate similarities for drug and disease matrices in step 2. Then, 
the similarity network fusion (SNF) method is employed to convert the drug and disease 
similarity matrices into drug and disease similarity matrices in step 3. In the sequel, the 
drug and disease similarity matrices as well as the drug-disease relationship matrix are 
merged to construct a unique matrix in step 4. Finally, the constructed matrix is used to 
train a convolutional neural network which will be utilized to suggest a suitable drug for 
a target disease in the last step.

Dataset

To verify IDDI-DNN, the gold standard dataset used for inferring novel drug indica-
tions was extracted from the previous research by Gottlieb et  al. [28, 30–33]. The 
dataset contains known drug-disease associations, drug-related properties, and disease-
related properties. Drug-related data includes their chemical structure, side effects, and 
target protein obtained from DrugBank and PubChem. Disease-related data consists 
of human phenotype and target protein, which are obtained from OMIM and Inter-
Pro. Drug-disease associations include 593 drugs approved by the FDA that are within 
DrugBank [38], and 313 diseases registered in the Online Mendelian Inheritance in 
Man (OMIM) with 1933 validated DD associations. Both drugs and disease sets have 
similarities of around 1%. Drug pairwise similarity was calculated using the Tanimoto 
score [39] as well as disease pairwise calculation using the semantic similarity measure 
introduced by Slimani [40].

The intended data contains a set of 129,926 samples that are assigned into two classes. 
The first class consists of 48,724 negative samples indicating that the drug is not suitable 
for the disease, while the second class includes 81,202 positive samples showing that the 
drug is appropriate for the disease. To balance the number of positive and negative sam-
ples within the dataset, the synthetic minority oversampling technique (SMOTE) was 
used to generate enough negative samples making the balance rate equal to 0.9.

To further assess the performance of the proposed method, DNdataset was extracted 
from previous research [41]. DNdataset contains 4,516 diseases annotated by Disease 
Ontology (DO) terms, 1,490 drugs registered in DrugBank, and 1,008 known drug-dis-
ease associations derived from DrugBank.

The proposed method

Definitions

Let us define the set of drugs as DR = {dr1, dr2, . . . drm}. and the set of diseases as 
DI = {di1, di2, . . . din}  where m and n denote the number of drugs and diseases, 
respectively. Herein, drug-disease associations called DR_DI are represented by a 
binary matrix Y ∈ Rm×n . Each entry yij in this matrix can be 0 or 1, where 1 indicates 
that drug i is suitable for the treatment of disease j, and 0 indicates that drug i is not 
suitable for disease j. Drug-related similarity is shown by a binary matrix called DRS 
whose elements are displayed as drs ∈ Rm×m . Each entry drsij ∈ {0, 1} can be 1 indicat-
ing that drug i is similar to drug j, and 0 indicating that drug i is not similar to drug j. 
Three DRS matrices are created to represent chemical structure, side effects, and tar-
get protein for each drug. Disease-related similarity is represented by a binary matrix 



Page 6 of 17Amiri et al. BMC Bioinformatics          (2023) 24:442 

called DIS whose elements are displayed as dis ∈ Rn×n . Each entry disij ∈ [0, 1] can be 
1 indicating that disease i is similar to disease j, and 0 indicating that disease i is not 
similar to disease j. Two DIS matrices are created to represent human phenotype and 
target protein for each disease.

Similarity calculation

The term-frequency vectors are typically very long and, sparse (i.e., they possess many 
zero values). Several applications use such structures including retrieval of informa-
tion, clustering text  documents, biological taxonomy, and gene feature mapping. 
The traditional distance measurements do not work well in the case of such sparse 
numeric data. For instance, two term-frequency vectors may have lots of zero values 
in common, meaning that the corresponding samples do not share many words. In 
this study, it is necessary to employ a relevant similarity function that can properly 
deal with sparse data. Herein, the cosine similarity function was used to calculate the 
similarity between each pair of drugs in DRS matrices and also each pair of diseases 
in DIS matrices. The function calculates the similarity between two vectors using the 
inner product operation via the formula:

where ||x|| is the  Euclidean norm  of vector x = (x1.x2. . . . .xp) and defined as 
x21 + x22 + · · · + x2p . Conceptually, it is used to calculate the length of a vector. Simi-

larly, ||y|| is the Euclidean norm of vector y. The measure computes the cosine of the 
angle between vectors x  and y. A cosine value of 0 means that the angle between two 
vectors is 90 degree (orthogonal) without any match. The closer the cosine value to 1, the 
smaller the angle and the greater the match between two vectors [42]. As a result, the 
values within DRS and DIS matrices are replaced with calculated similarities in a range 
of [0, 1].

Integration of similarity matrices

The calculated DRS matrices (three matrices) are integrated into a unique DRS 
(UDRS) matrix using the SNF method. The iterative non-linear process is used by the 
SNF approach based on message-passing theory for consolidating a given set into one 
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comprehensive matrix [43]. Using the SNF approach, the K-Nearest Neighbors (KNN) 
algorithm is iteratively applied to update the UDRS matrix based on three DRS matri-
ces. Similarly, the calculated DIS matrices (two matrices) are integrated into a unique 
DIS (UDIS) matrix using SNF. Following, two comprehensive similarity matrices, 
UDRS and UDIS, for drug and disease similarities integration are represented

Merging matrices

Now, three prepared matrices, including DR_DI, UDRS, and UDIS, are merged to con-
struct a new matrix called F with m × n rows and m + n + 3 columns as represented 
following. As a result, the data collected for drugs, diseases, and their associations are 
integrated into a unique matrix called F:

Neural network architecture

To repurpose a drug and find a new target for disease treatment, a CNN-based model 
was employed. CNN is a class of artificial neural networks (ANNs) that use deep learn-
ing techniques to train its parameters. It is a regularized type of multilayer perceptron 
whereas its layers are organized purposefully to obtain a high accurate output results. 
The fundamental structure of CNN contains a convolution layer, a pooling layer, and 
a fully-connected layer. The convolution layer aims to capture features of the input 
data to reliably predict the output, while the pooling layer summarizes these features 
in a low-dimensional vector. The model’s hyperparameters and associated values were 
tuned through several experiments. The best performance was achieved with a CNN 
having 5 hidden layers each with 300 neurons and a dropout rate of 0.3 for each layer. 
Regarding that drug-disease association prediction is a binary classification prob-
lem, the logistic sigmoid activation function was employed in the output layer, and the 
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binary cross-entropy loss function was used to calculate loss values. The model yields 
the best results when the Nadam optimization algorithm is used to update weights and 
bias parameters. The model was fed batch inputs with a batch size of 64. The number of 
epochs was set to 200 for each run. Figure 2 represents the architecture of the designed 
CNN after several attempts to tune the structure of the model.

Results and discussion
Evaluation criteria

To evaluate the proposed model, fivefold cross-validation has been used. The scheme 
divides the dataset randomly into five different folds. In each cross-validation, four folds 
are considered as training sets and the fifth fold is used for testing. The validation is 
repeated five times randomly, and their average is used to calculate overall variance and 
bias.

The accuracy of the model was evaluated based on different standard criteria. First, the 
confusion matrix is calculated based on the predicted outputs of the model. The matrix 
includes true positive (TP), true negative (TN), false positive (FP), and false negative 
(FN) predictions. To put things into perspective, TP and TN represent correctly pre-
dicted related or unrelated DDs, while FP and FN represent wrongly predicted related 
or unrelated DDs. Using these four basic metrics from the confusion matrix, Accuracy 
(Acc), Precision (Prec), Recall (Rec), and F1-score (F1) measures are calculated via the 
following formulas:

The performance of IDDI-DNN was investigated in comparison to basic machine 
learning models. Also, the robustness of IDDI-DNN was compared to the latest intro-
duced models for predicting drug-disease associations.

(2)Acc =
TP+ TN

TP+ TN + FP+ FN

(3)Prec =
TN

TP+ FP

(4)Rec =
TP

TP+ FP

(5)F1 = 2×
Precision × Recall

precision + Recall

Fig. 2  Summary of the CNN architecture
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Training the model

The training progress of IDDI-DNN was screened during the process in terms of accu-
racy and loss as represented in Fig. 3. To this end, the dataset was divided into 70% of 
training and 30% of testing subsets. The figure shows that the accuracy of the model 
on both training and testing data has reached over 95% during the first 20 epochs. This 
means that the developed deep model is fast enough to reach convergence. In addition, 
the loss plot of the model indicates that the error rate on both training and testing data is 
rapidly decreasing, which means that IDDI-DNN reaches its local minimum in a rational 
time. The trained model is used to predict a drug for a disease. The output of the model 
for each neuron is in the range between 0 and 1, where 1 indicates the absolute recom-
mendation of an input drug for a disease and 0 indicates the rejection of the drug. The 
results represent that the density of predictions is mostly zero or one.

Performance evaluation

The effectiveness of IDDI-DNN was investigated by evaluating its performance in 
terms of different standard machine learning measures and comparing it to the previ-
ously proposed machine learning-based models. The compared methods are decision 
tree (DT) [44], K-nearest neighbor (KNN) [45], QDA [46], Linear-SVM [47], RBF-
SVM [47], and NF-NN [48]. Also, all methods were evaluated using fivefold cross-
validation. Table 1 shows the performance of different models in terms of accuracy, 
precision, recall, and F1-score (top scores are represented in bold). Except for IDDI-
DNN, the results for other classifiers were taken from their related works. These 
results were obtained when the classifiers ran on the gold standard dataset.

The performance of IDDI-DNN was further assessed in comparison to a number 
of state-of-the-art methods including SCMFDD [49], TL-HGBI [50], Graph Embed-
ded matrix Factorization [51], Graph embedded neural network [52], DRSE [53], and 

Fig. 3  IDDI-DNN training progress in terms of accuracy and loss on training and testing sets



Page 10 of 17Amiri et al. BMC Bioinformatics          (2023) 24:442 

DisDrugPred [54]. The overall performance of all methods was evaluated by fivefold 
cross-validation. The experimental results in terms of Receiver Operating Character-
istic (ROC) and Precision-Recall (PR) curves are depicted in Fig. 4A.

The robustness of IDDI-DNN was further validated to perform predictions on 
DNdataset that were used in previous research [41]. After conducting five-fold cross-
validation on the DNdataset, the performance of the proposed model was assessed on 
the dataset. Figure 4B represents the ROC plot of IDDI-DNN in comparison to other 
state-of-the-art methods on DNdataset. The fivefold cross-validation technique was 
repeated for 150 rounds and the average results of ROC and PR obtained by IDDI-
DNN are shown in Table 2 (top scores are represented in bold). Furthermore, Fig. 5 
shows the statistical summary of ROC and PR after 150 rounds in the form of box 
plots.

Table 1  IDDI-DNN performance compared to machine learning-based methods applied on the 
gold standard dataset

Method Accuracy Precision Recall F1-score

DT [44] 0.55 0.88 0.12 0.21

KNN [45] 0.65 0.64 0.68 0.66

QDA [46] 0.64 0.64 0.66 0.65

Linear-SVM [47] 0.70 0.70 0.68 0.69

RBF-SVM [47] 0.53 0.70 0.12 0.20

NF-NN [48] 0.79 0.78 0.81 0.80

IDDI-DNN 0.97 0.69 0.96 0.84

Fig. 4  ROC and PR curves obtained by IDDI-DNN and other state-of-the-art methods on (A) the gold 
standard dataset, and (B) DNdataset
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The accuracy of IDDI-DNN was further assessed on a number of 21,205 randomly 
selected data from the gold standard dataset. Figure 6 represents the confusion matrix 
describing the performance of the model in terms of TP and TN showing the correct 
predictions of positive and negative associations, and FP and FN showing the incor-
rect predictions of positive and negative associations.

Prediction of new drug indications

IDDI-DNN can also be utilized for drugs with no previously known disease associa-
tion. To this end, we analyzed the performance of all methods for drugs, which has 
only one known disease association in the golden dataset. In this case, for a given 
drug, the known associated disease is removed from the dataset, and therefore, the 
dataset has no associated information for that drug in this experiment. Therefore, the 
tests for these drugs are used to assess the ability of the method to predict associa-
tions for new drugs without known disease association.

The gold dataset contains 171 drugs with only one known associated disease. The 
results shown in Fig. 7 represent the number and percentage of drugs with the maxi-
mum precision value of 1.0 obtained by IDDI-DNN and compared to those of other 
state-of-the-art methods reported in [41]. The maximum precision value of 1.0 means 

Table 2  Comparison of IDDI-DNN with other state-of-the-art methods applied to the gold standard 
dataset

Method YEAR ROC PR

TL-HGBI [50] 2014 72.7 3.0

Graph embedding Matrix Factorization 
[51]

2015 75.7 69.3

Graph embedding neural network 
based [52]

2016 77.4 75.2

SCMFDD [49] 2018 63.8 6.0

DisDrugPred [54] 2019 92.0 24.3

DRSE [53] 2021 93.23 94.83

IDDI-DNN 2022 97.01 98.53

Fig. 5  The average PR and ROC obtained by IDDI-DNN after 150 iterations
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that the disease was successfully ranked as the first candidate disease associated with 
the particular drug. It can be seen from the figure that IDDI-DNN achieves the best 
performance among the methods. In addition, 53 out of 171 (30.01%) drugs are pre-
dicted with a maximum accuracy of 1.0 by IDDI-DNN. In this experiment, DRSE and 

Fig. 6  Confusion matrix

Fig. 7  Prediction of new drug indications by different methods with the maximum precision. The results 
except for IDDI-DNN are from [41]
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DisDrugPred showed 48 (28.31%) and 41 (23.04%) drugs with a maximum accuracy of 
1.0, respectively.

Comprehensive prediction for new drugs

After confirming the predictive ability of IDDI-DNN through cross-validation experi-
ments, we employed the method to predict new associations between all drugs and 
diseases. In this experiment, all known drug-disease associations in the gold stand-
ard dataset were used as the training data, and the remaining drug-disease pairs were 
considered as potential drug-disease associations.

A case study was conducted to verify whether the predicted disease is correct 
according to the biological databases including KEGG (https://​www.​genome.​jp/​kegg/) 

Table 3  The novel drug-disease associations for the top diseases identified by IDDI-DNN

Disease name Suggested drug name Drug accession 
number

Drug structure

Anal cancer Capecitabine DB09037

Anal cancer Cisplatin DB00515

Anal cancer Fluorouracil DB00544

Stomach ulcer Berberine DB04115

Stomach ulcer Celecoxib DB00482

Stomach ulcer Rabeprazole DB01129

Bacterial Vaginosis Boric acid DB11326

Bacterial Vaginosis Metronidazole DB00916

Chilblains Secnidazole DB12834

Chilblains Ketoconazole DB01026

Insomnia Solriamfetol DB14754

Insomnia Eszopiclone DB00402

Insomnia Lemborexant DB11951

https://www.genome.jp/kegg/
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and CTD (https://​www.​ctdba​se.​org/). These databases contain evidence of drug-dis-
ease associations and validation. Furthermore, the DGIdb web server (https://​www.​
dgidb.​org) was employed to confirm the results. As a result, new drug-disease asso-
ciations were predicted by IDDI-DNN and annotated by KEGG and CTD. Among 
several selected drugs, validated candidate drug-disease associations are represented 
in Table 3.

Discussion
The introduced model, IDDN-DNN, integrates multiple data extracted from different 
resources for drugs and diseases to accurately repurpose a drug for a disease. In addi-
tion to drug-disease association information, the data includes chemical structure, side 
effects, and target protein for each drug as well as human phenotype and target protein 
for each disease. This data is integrated into a single matrix F and subjected to a CNN-
based deep network to train the model. After training, the model is used to repurpose a 
drug for a target disease.

The proposed model was comprehensively evaluated using two different datasets. 
First, the gold standard dataset extracted from the previous research by Gottlieb et al. 
[28, 30–33] was used to examine the performance of IDDI-DNN and compare the 
results to other machine learning-based methods. The experiments were done using 
fivefold cross-validation to validate the prediction accuracy. Comparing the results in 
Table  1, IDDI-DNN obtains a performance of 0.97 and 0.84 in terms of accuracy and 
F1-score, respectively, higher than other methods.

In another comparative study, the performance of IDDI-DNN was compared to state-
of-the-art methods in terms of ROC and PR as represented in Table 2. The results in 
this table indicate that the proposed method achieves the best score in both measures. 
In this regard, the PR criterion is a more appropriate measure for evaluating the models 
because ROC is more sensitive to many zeroes in the association matrix leading to an 
insignificant increase in this criterion. PR provides more appropriate results by return-
ing known relations, which highlights the capability of the model to predict unrelated 
DDs. It is obvious from Fig. 4A that IDDI-DNN outperforms other compared methods 
in terms of ROC and PR. More specifically, IDDI-DNN achieves a ROC of 0.97, while 
DRSE, DisDrugPred, Graph embedding neural network, Graph embedding Matrix Fac-
torization, TL-HGBI, and SCMFDD obtain inferior results of 0.93, 0.92, 0.77, 0.75, 0.72, 
and 0.63, respectively. In addition, the PR curve illustrates that IDDI-DNN obtains the 
best precision against other methods.

In addition, DNdataset was extracted from previous research [41] and used to further 
validate the robustness of the proposed method. In this experiment, IDDI-DNN achieves 
a ROC value of 0.82 while DRSE, Graph embedding neural network, Graph embedding 
Matrix Factorization, SCMFDD, TL-HGBI, and DisDrugPred obtain inferior results of 
0.94, 0.79, 0.72, 0.65, 0.36, and 0.28, respectively. The maximum precision achieved by 
IDDI-DNN is 0.561, which is higher than other methods.

The ability of the IDDI-DNN in the prediction of unknown DD associations was fur-
ther assessed by removing known associated diseases for all drugs having exclusively one 
known disease. The results in Fig. 7 demonstrate the preference of IDDI-DNN to other 
compared state-of-the-art methods. The new DD associations predicted by the method 

https://www.ctdbase.org/
https://www.dgidb.org
https://www.dgidb.org
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were also investigated using biological databases including KEGG and CTD. The results 
in Table  3 indicate that the IDDI-DNN predicted associations are valid according to 
these biological databases.

Given the importance of drug repurposing, different approaches have been pro-
posed for solving various challenges of this issue, such as predicting new drugs, clas-
sifying biological data, and analyzing data. In this regard, the learning-based approach 
is a powerful and widely used solution to make decisions based on existing data. The 
method introduced by Zhao et al. [36] was recently developed using the learning-based 
approach. The performance of the drug-disease association model can be improved 
using recently introduced clustering analysis algorithms such as DBSCAN, Gaussian 
mixture, mean-shift, and fuzzy approaches. As an example, Hu et al. [55] introduced a 
fuzzy-based graph clustering algorithm, that increases the prediction performance com-
pared to other state-of-the-art clustering algorithms. In this study, the input data in the 
form of binary mode (0 indicates the drug is unsuitable for the disease, and 1 indicates 
the drug is suitable for the disease) is converted to a fuzzy mode ranging between 0 and 
1 (the closer the 0, the more unsuitable drug for the disease, and the closer the 1, the 
more suitable drug for the disease). Furthermore, all prepared matrices (including tree 
matrices for drugs, two matrices for diseases, and a matrix for drug-disease associations) 
are merged using the SNF technique. The proposed method for the integration of data 
prevents information loss and enables the model to accurately repurpose drugs.

Conclusion
In this research, a novel method for drug repurposing, the so-called IDDI-DNN, is pro-
posed to determine unknown associations between drugs and diseases. In IDDI-DNN, 
molecular characteristics of drugs as well as disease-related data are extracted from mul-
tiple repositories and integrated with the known associations between drugs and dis-
eases. The collected data for drugs, diseases, and their associations are integrated into a 
unique matrix. The generated matrix is given to a CNN-based model to capture similari-
ties between pairs of drugs and their target diseases and predict potential associations 
between a drug and a disease. The proposed model was evaluated in terms of accuracy 
and error rate during the training process. In addition, the robustness and reliability of 
the method were assessed and compared to the performance of previously introduced 
methods. The results of assessments demonstrate the preference and applicability of the 
proposed model in comparison to state-of-the-art drug repurposing methods. The pre-
diction of new drug-disease associations concerning the improvement of known asso-
ciations is one of the most difficult challenges. IDDI-DNN has proven its superiority to 
yield fruitful results in this field.
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