
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Kumar et al. BMC Bioinformatics (2023) 24:446
https://doi.org/10.1186/s12859-023-05573-w

BMC Bioinformatics

Transformer‑based tool recommendation
system in Galaxy
Anup Kumar1*, Björn Grüning1 and Rolf Backofen1,2 

Abstract 

Background:  Galaxy is a web-based open-source platform for scientific analyses.
Researchers use thousands of high-quality tools and workflows for their respective
analyses in Galaxy. Tool recommender system predicts a collection of tools that can
be used to extend an analysis. In this work, a tool recommender system is developed
by training a transformer on workflows available on Galaxy Europe and its performance
is compared to other neural networks such as recurrent, convolutional and dense
neural networks.

Results:  The transformer neural network achieves two times faster convergence,
has significantly lower model usage (model reconstruction and prediction) time
and shows a better generalisation that goes beyond training workflows than the older
tool recommender system created using RNN in Galaxy. In addition, the transformer
also outperforms CNN and DNN on several key indicators. It achieves a faster con-
vergence time, lower model usage time, and higher quality tool recommendations
than CNN. Compared to DNN, it converges faster to a higher precision@k metric
(approximately 0.98 by transformer compared to approximately 0.9 by DNN) and shows
higher quality tool recommendations.

Conclusion:  Our work shows a novel usage of transformers to recommend tools
for extending scientific workflows. A more robust tool recommendation model, cre-
ated using a transformer, having significantly lower usage time than RNN and CNN,
higher precision@k than DNN, and higher quality tool recommendations than all three
neural networks, will benefit researchers in creating scientifically significant workflows
and exploratory data analysis in Galaxy. Additionally, the ability to train faster than all
three neural networks imparts more scalability for training on larger datasets consist-
ing of millions of tool sequences. Open-source scripts to create the recommendation
model are available under MIT licence at https://​github.​com/​anupr​ulez/​galaxy_​tool_​
recom​menda​tion_​trans​forme​rs

Keywords:  Galaxy, Tools, Workflows, Artificial intelligence, Transformer,
Recommendation system

*Correspondence:
kumara@informatik.uni-freiburg.
de

1 Bioinformatics Group,
Department of Computer
Science, University of Freiburg,
Georges‑Koehler‑Allee 106,
79110 Freiburg, Germany
2 Signalling Research Centres
BIOSS and CIBSS, University
of Freiburg, Schaenzlestr. 18,
79104 Freiburg, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05573-w&domain=pdf
https://github.com/anuprulez/galaxy_tool_recommendation_transformers
https://github.com/anuprulez/galaxy_tool_recommendation_transformers

Page 2 of 16Kumar et al. BMC Bioinformatics (2023) 24:446

Background
A rapid increase in the number of scientific tools performing various tasks in different
fields of life sciences makes constructing workflows using these tools more complicated.
Assembling such scientific tools into a workflow poses a significant challenge, as the
analysis represented by the workflow should incorporate scientifically significant steps
and produce reproducible results. To simplify creating workflows, a tool recommender
[1] in Galaxy [2] was created using good-quality workflows stored in Galaxy Europe. This
recommender system trains a recurrent neural network (RNN) on existing workflows
and creates a model that predicts scientific tools at each step of creating workflows. Each
step considers the sequence of tools or already created a workflow to recommend tools.

Comparison to state‑of‑the‑art approaches

In comparison to other workflow recommendation systems such as WINGS [3] and
PROPHETS [4] that require explicit annotations in terms of input data types and param-
eters, and functions of tools, the deep learning-based approach (RNN) requires only
sequences of tools for training and creating a recommendation model. In addition, the
accuracy of RNN in recommending tools is significantly higher compared to non-neural
network-based machine learning algorithms such as ExtraTrees classifier [1]. Another
approach that uses collaborative filtering for workflow recommendation achieves low
accuracy of 0.83 AUC on a dataset collected from Canadian Open Neuroscience Plat-
form [5]. Even though RNN architecture has been popular for modelling sequential data
and achieves high accuracy in workflow recommendation, there are a few drawbacks to
such an architecture. First, the training and convergence times of RNN are significantly
higher than the transformer’s as it is harder to parallelise mathematical computations
because of RNN’s recurrent connections. Larger memory consumption allows training
only in small batches of workflows, making it more challenging to train such an architec-
ture as data grows with time. Second, the trained RNN has a considerably larger usage
time, the combination of time needed to recreate the model from its saved format and
predict using a tool or tool sequence, than the transformer. Third, the prediction per-
formance of RNN suffers for longer sequences, and lastly, the generalisation ability of
the transformer is better compared to RNN [6]. Further, the transformer outperforms
convolutional (CNN) and dense (DNN) neural networks on various indicators such as
convergence speed, model usage time, and quality of tool recommendations (see Results
section for detailed comparison). Therefore, the recommendation model is created by
training a transformer architecture using workflows created in Galaxy Europe to acquire
its advantages.

Transformers

Several studies successfully used transformers to model sequential data that achieve
start-of-the-art outcomes. Bidirectional encoder representations from transformers
(BERT) have been vastly used for modelling languages and achieved exceptional results
on eleven natural language tasks [7]. DNABERT creates a novel model taking cues from
BERT architecture by training on DNA sequences. It is used for many downstream
tasks, such as predicting regulatory elements, promoters, splice sites and transcription

Page 3 of 16Kumar et al. BMC Bioinformatics (2023) 24:446 	

factor binding sites with high accuracy [8]. ProteinBERT improves the BERT architec-
ture to model protein sequences and achieves excellent results on various tasks such as
predicting protein functions and gene ontology (GO) annotations [9]. Transformer uses
the attention mechanism [6] to learn representations of sequential data such as natu-
ral languages and DNA and protein sequences. With self-attention (see “Self-attention”
paragraph), each token in a sequence is assigned a weight that explains its correlation
to all other tokens. A token with a larger magnitude of weight is more important than
one with a smaller magnitude in prediction tasks such as sequence classification. These
weights, represented by real numbers, are collectively used to compute predictions. The
architecture of a transformer has several components. The major ones are the encoder
and decoder [6]. For sequential data consisting of input and output sequences, the
encoder learns the representation of input sequences, and the decoder jointly trains on
the input representation by the encoder and the output sequences. In our work, only
the encoder part of the transformer is used to create the recommendation model. This
model recommends tools for both - a tool and a tool sequence. The architecture of the
transformer used for creating the Galaxy tool recommendation system is discussed in
the Architecture section.

Self‑attention

Transformer employs the self-attention mechanism to learn the representation of a
sequence. With self-attention, each token of a sequence relates to all other tokens of
the same sequence but with different magnitudes [6]. Our work uses self-attention to
compute the vector representation of each tool sequence that maps with its multi-hot

Tool A Tool B Tool C

20, 11, 43

Embedding + Positional encoding

Multi-head attention network

Feed-forward network

[0.03, 0.98, 0.54, 0.65, ... , 0.09]

(a)

(b)

(c)

(d)

(e)

(f) Relu

Sigmoid

4x

(g)

(h)

Fig. 1  Neural network architecture of transformer used for recommending tools in Galaxy. Figure 1a–b
represents how a sequence of tools is transformed into a sequence of integers. Figure 1c–g represents
several different neural network layers through which sequences of tools are passed to learn their respective
representations and mapping with their respective labels. Figure 1h represents the output in the form of a
real-valued vector

Page 4 of 16Kumar et al. BMC Bioinformatics (2023) 24:446

encoded labels to predict tools. For example, in a sequence of three tools in Fig. 1a,
we assume that tools A and B are related, but tool A is unrelated to tool C. Therefore,
this magnitude of relatedness, also known as attention weights, is higher between tools
A and B than between tools A and C. All attention weights belonging to each pair of
tokens are utilised in computing a vector representation of the sequence, implying that
the representation contains the context of the entire sequence. RNN [10] works differ-
ently, which creates a sequence’s representation using the last token and the sequence’s
context stored for the last but one token, thereby making it prone to losing context for a
longer sequence.

Implementation
Data preparation

Galaxy workflows [11] are directed acyclic graphs in which nodes are represented by sci-
entific tools, as shown in Additional file 1. All the workflows used in this work have been
collected from Galaxy Europe using a bash script [12]. The workflows extracted from
the script are stored in a tabular file and are pre-processed to extract tool sequences. A
tool or a tool sequence can connect to multiple tools, which become the tool’s or tool
sequence’s labels. There are thousands of tools on Galaxy Europe, and each can con-
nect to many others. Therefore, predicting tools for a tool or a sequence becomes a
multi-class, multi-label classification. To represent tool sequences in a manner to be
interpreted by any neural network, each tool is assigned a unique integer. This step
transforms each sequence of tools into a sequence of integers. A tool or a set of tools
can extend an analysis using a sample workflow in Fig. 1a by adding tools to tool C. A
tool or the set of tools used to extend the workflow “tool A → tool B → tool C” become
the recommended tools of the “tool A → tool B → tool C” workflow. The recommended
tools for each sequence of tools are represented as multi-hot encoding, as shown in
Additional file 2 (part D). The multi-hot encoding of each tool sequence is its label rep-
resented as a 1-dimensional vector. The corresponding pairs of tool sequences and their
respective labels are used for training the transformer to create a tool recommendation
model. Other neural networks, such as RNN, CNN and DNN, also use the same data for
training.

Data statistics

Approximately 60,000 workflows have been collected from Galaxy Europe, which are
published and contain no errors. These workflows are further pre-processed to extract
approximately 7,98,000 linear tool sequences, of which 3,53,000 are unique. The longest
tool sequence contains 28 tools, the shortest ones have two tools, and the median length
is 15. There is a significant variance in the number of occurrences of different tools. For
example, text formatting tools such as “cut” and “filter” are present in over 2,00,000 of
these tool sequences, while a tool such as “graphlan” [13] occurs only 40 times in these
tool sequences. Therefore, to allow the transformer to learn from a similar distribution
of sequences of tools, each training batch is sampled to contain labels with similar fre-
quencies. Each tool or a tool sequence can connect to multiple unique tools. Therefore,
the unique tool sequences are further pre-processed to create tool sequences that may
have more than one tool as labels and are transformed to multi-hot encoded vectors.

Page 5 of 16Kumar et al. BMC Bioinformatics (2023) 24:446 	

This further increases the number of unique tool sequences with their respective multi-
hot encoded labels to approximately 5,00,000. The number of unique tools to create all
used workflows for our work is 2,354.

Architectures

Transformer

The encoder part of the transformer in [6] consists of multiple layers, as shown in Fig. 1.
The first is the embedding and positional encoding layers (Fig. 1c). These two layers work
together to encode tools, where each tool is represented by a unique integer (Fig. 1b) in
a workflow (Fig. 1a). Tools are tokens sequentially arranged in workflows. The encod-
ings of tools contain real-valued vectors that conserve the relative positions of tools in
workflows. The embedding and positional encoding layers are implemented using the
embedding layers [14]. The encodings of sequences of tools are passed to a composite
block consisting of multi-head attention [15] and feed-forward layers (Fig. 1d–e). The
term 4x in Fig. 1d–e represents four attention networks working together in parallel.
Attention weights learned by each attention head are concatenated. The multi-head
attention layer is 128 dimensional, and the feed-forward neural network consists of two
dense layers [16] having 128 dimensions each. Collectively, they compute representa-
tions of sequences based on self-attention weights. Tools related to one another in tool
sequences get higher attention weights. In addition, they capture long-range dependen-
cies among tools and make the trained models more interpretable [6]. In the next step,
these representations are passed to a dense layer with 128 dimensions and relu activa-
tion [17] (Fig. 1f). The predicted output, computed by a different dense output layer, is
a vector of sigmoid [18] scores (Fig. 1h) used to recommend top N tools. The higher the
sigmoid score, the higher the probability of a tool being correctly recommended. The
number of trainable parameters in the transformer architecture is 9,22,291. To meas-
ure the performance of the transformer in recommending tools, its architecture is
compared to three different neural network architectures - RNN, CNN and DNN on
several key indicators such as convergence time, model usage time and the quality of
tool recommendations.

RNN

Gated recurrent units (GRU) [19] layers are used to implement RNN architecture [20]
to model the sequence of tools. The RNN architecture uses an embedding layer to learn
a fixed-size vector representation (128) for each tool, also known as embedding dimen-
sions. The embedding layer is followed by two GRU layers stacked on each other. The
dimensions of both the GRU layers are 128. The output of the second (last) GRU layer is
passed to an output layer, a dense layer with sigmoid activation, and its dimension equals
the number of tools. The total number of trainable parameters of RNN is 2,41,063.

CNN

The CNN architecture [21], like RNN, also has an embedding layer to learn the fixed-size
vector of each tool. The sequences of tools represented by the embeddings of each tool
in sequences are passed to a 2-dimensional convolutional layer [22] having 128 dimen-
sions with a kernel of size 16 x 3 and relu activation. The output of the convolutional

Page 6 of 16Kumar et al. BMC Bioinformatics (2023) 24:446

layer is passed to the maxpooling2D [23] layer for extracting maximum values from each
pool size of 2x2. These values are further passed to a flatten [24] layer that arranges the
output from the maxpooling2D layer horizontally. This horizontally arranged output is
then passed to a dense layer with a dimension 128 connected to an output layer like
RNN. These layers in CNN have 5,772,723 as the total number of trainable parameters.

DNN

The DNN architecture [25] consists of only one embedding layer with a dimension of
128 and two dense layers, each having a dimension of 128. The output layer of DNN is
the same as RNN and CNN architectures. The number of trainable parameters in DNN
is 1,031,603.

Training parameters

Python 3.9 is used to create scripts stored at GitHub [26] to train the different models
such as transformer, RNN, CNN and DNN. All the models are implemented using Ten-
sorFlow 2.9 [27] and are trained on a machine with Rocky Linux release 8.5 with approx-
imately 35 CPU cores and over 100 GB memory for 35,000 iterations with a 512 batch
size. Adam optimiser [28] minimises the binary cross-entropy [29] loss with a stand-
ard learning rate of 0.001. Dropout [30] layers are used in all architectures to minimise
overfitting. The degree of dropout used is 0.2. Hyperparameters of the transformer neu-
ral network are estimated manually. All the sequences of tools (approximately 500,000)
are divided into train and test sets. 80% of the sequences are used for training (approxi-
mately 400,000) and the rest for evaluating (approximately 100,000) the trained model.
The training time for 35,000 iterations varies for all models. Training the transformer
takes approximately 39 h (3.96 s per iteration), RNN takes approximately 43 h (4.4 s per
iteration), CNN takes approximately 50 h (5.1 s per iteration), and DNN takes approxi-
mately 43 h (4.4 s per iteration). Transformer requires the least time for training com-
pared to RNN, CNN and DNN models.

Results
Transformer convergence time

Transformer [31], RNN [20], CNN [21] and DNN [25] architectures are trained on the
same dataset, and their precision@k score collected over 35,000 training iterations on
the test data are compared in Fig. 2. Precision@k is used as the prediction metric and
is popular for evaluating recommender systems [32–34]. The precision@k scores are
averaged over 5 experiment runs. The shaded regions show the standard deviation over
experiment runs. The train and test datasets are randomly created in each run but have
the same size. Figure 2 shows the mean precision@k score in green for the transformer,
red for RNN, blue for CNN and black for DNN. Figure 2 shows that the transformer con-
verges two times faster than RNN. The transformer, consisting of two embedding layers,
a multi-head attention layer, a hidden dense layer and a dense output layer, converges to
the mean precision@k score of approximately 0.98 at iteration 10,000. In contrast, RNN,
consisting of one embedding layer, two stacked GRU layers and one dense output layer,
achieves similar mean precision@k only at iteration 20,000. DNN, consisting of one
embedding layer, two hidden dense layers and one dense output layer, also shows slower

Page 7 of 16Kumar et al. BMC Bioinformatics (2023) 24:446 	

convergence and a lower precision@k score (0.9). On the other hand, CNN consisting
of one embedding layer, one conv2d, one maxpooling2d, one flatten, one hidden dense,
and one dense output layer, converges to a similar precision@k value achieved by the
transformer but is slightly slower in convergence and stabilises around 12,000 iterations.
Further, the transformer achieves a similar mean precision@k score (approximately 0.85)
to CNN but slightly worse than RNN for infrequent tools, making the lowest 25% of all
tools, as shown in Additional file 3. The performance of DNN for the lowest 25% of all
tools is significantly lower (approximately 0.72) compared to other models (Additional
file 3). All other parameters of the experiment remain the same.

Transformer usage time

Transformer, RNN, CNN and DNN architectures are compared for their respective
model reconstruction and prediction time measured at specific intervals over 35,000
training iterations, as shown in Fig. 3. The transformer’s model usage time (= model
reconstruction and prediction) is approximately 0.4 s for a sequence of tools. At the
same time, for RNN, it is over 2 s which is approximately four to five times slower than
the transformer. CNN is also faster than RNN in model usage time but is slower than the
transformer. However, DNN is the fastest, recording the lowest model usage time out of
all models. The model usage time is averaged over all the sequences of tools in the test
dataset. The line plots show the mean usage time, and shaded regions show the standard
deviation over 5 experiment runs (Fig. 3).

Fig. 2  A comparison of precision@k metric, used for evaluating a recommender system, is shown over
training iterations for the transformer (green), RNN (red), CNN (blue) and DNN (black) architectures. The
precision@k values are averaged over 5 experiment runs for each architecture and are shown as line plots.
The shaded regions show the standard deviation across 5 experiment runs

Page 8 of 16Kumar et al. BMC Bioinformatics (2023) 24:446

Generalisation beyond training data

Trained transformer and RNN models are used to compare the top 20 recommendations
made for tools and sequences of tools belonging to multiple scientific analyses, as shown
in Table 1. The ground truth column (third column) shows accurate tools extracted from
the training workflows for a tool or a tool sequence in the second column. The fourth
and fifth columns show the recommended tools by the transformer and RNN models,
respectively. The tools shown in bold are those recommended tools compatible with the
respective tool or tool sequence in the second column, but such connections are not
available in the training workflows. To elaborate, the recommended tool “freebayes”
[35] (shown in the fourth column of the first row of Table 1) can be used on the output
datasets produced by “snpeff_sars_cov_2” [36] tool to extend a workflow for variant call-
ing analysis. However, this connection does not exist in the training workflows used to
train the transformer model as it is absent from the ground truth recommendation of
the “snpeff_sars_cov_2” tool. Similarly, tools such as “mimodd_varcall” [37], “snpfreq-
plot” [38], “gemini_load” [39] and “vcfcombine” [40] can also be used to extend a
scientific analysis after using “snpeff_sars_cov_2” tool but its connections to these rec-
ommended tools do not exist in the training workflows. RNN model also recommends
three tools beyond the seen training workflows, but the transformer recommends five
such tools. Row 4 in Table 1 shows another example from the proteomics field, where
both models correctly predict the ground truth recommendations. However, the trans-
former recommends many other tools that are from the proteomics field and can be
used to extend the “mass_spectrometry_imaging_filtering → “cardinal_preprocessing

Fig. 3  A comparison of the model usage (model reconstruction + prediction) time of transformer (green),
RNN (red), CNN (blue) and DNN (black) is shown. The time is averaged over 5 experiment runs, and the
shaded region shows the standard deviation across 5 experiment runs

Page 9 of 16Kumar et al. BMC Bioinformatics (2023) 24:446 	

Table 1  Comparison of recommendations by transformer and RNN for multiple scientific analyses

Scientific analysis Tool/Tool
sequences

Ground truth Transformer RNN

1. Variant analysis snpeff_sars_cov_2
[36]

snpSift_filter,
snpSift_extract-
Fields, lofreq_filter,
vcf2tsv, multiqc,
collapse_dataset,
CONVERTER_vcf_to_
vcf_bgzip_0 [36]

multiqc, col-
lapse_dataset,
CONVERTER_vcf_
to_vcf_bgzip_0,
snpSift_extractFields,
vcf2tsv, snpSift_filter,
lofreq_filter, free‑
bayes, mimodd_
varcall, snpfreq‑
plot, gemini_load,
vcfcombine [35, 38]

multiqc, collapse_
dataset, vcf2tsv, CON-
VERTER_vcf_to_vcf_
bgzip_0, lofreq_filter,
snpSift_extractFields,
snpSift_filter, tb_vari‑
ant_filter, mimodd_
map, vcffilter2 [37,
40]

2. Single-cell anndata_import [52] scanpy_filter, ann-
data_inspect, ann-
data_manipulate,
ucsc_cell_browser,
scanpy_inspect,
scanpy_filter_cells
[52, 53]

scanpy_filter_cells,
anndata_inspect,
ucsc_cell_browser,
scanpy_filter,
scanpy_inspect, ann-
data_manipulate,
scanpy_normalise_
data, scanpy_plot,
anndata_ops,
scanpy_remove_
confounders,
scanpy_integrate_
harmony, scanpy_
normalize, scpred_
get_feature_space,
scanpy_find_varia‑
ble_genes, scpred_
predict_labels,
scpred_eigen_
decompose [53, 54]

anndata_manipu-
late, scanpy_filter,
scanpy_filter_cells,
ucsc_cell_browser,
scanpy_inspect,
anndata_inspect,
scanpy_plot, scanpy_
normalise_data,
scmap_scmap_clus‑
ter, scmap_scmap_
cell, scanpy_filter_
genes [52, 53, 55]

3. Deep learning keras_train_and_
eval [56]

model_prediction,
ml_visualization_ex
[56]

ml_visualization_ex,
model_prediction,
plotly_regression-_
performanc_plot,
sklearn_discrimi‑
nant_classifier,
plotly_ml_perfor‑
mance_plots [56]

model_prediction, ml_
visualization_ex [56],
nn_classifier [56]

4. Prote-omics mass_spectrom-
etry-_imaging_fil-
tering, cardi-
nal-_preprocessing,
cardinal-_segmenta-
tions [41]

Filter1 Filter1, cardi‑
nal_spectra_plots,
cardinal_combine,
cardinal_mz_
images, cardi‑
nal_classification,
cardinal_data_
exporter, cardi‑
nal_quality_report,
maldi_quant_pre‑
processing,
cardinal_preproc‑
essing, cardinal_
segmentations,
cardinal_filtering,
mass_spectrome‑
try-_imaging_filter‑
ing, maldi_quant_
peak_detection
[41]

Filter1

Page 10 of 16Kumar et al. BMC Bioinformatics (2023) 24:446

→ cardinal_segmentations” [41] (fourth row of Table 1) workflow. Similar examples of
better generalisation of the transformer are found for other scientific analyses, such as
single-cell and deep learning, where the sets of high-quality recommendations by the
transformer going beyond the training workflows are significantly larger than that by
RNN. In conclusion, Table 1 shows that the transformer model generalises better than
the RNN model in recommending tools for scientific workflows as it predicts valid rec-
ommendations that have not been seen while training. Table 1 is further extended to add
tool recommendations by CNN and DNN models and is shown in Additional file 4.

Self‑attention weights

As described in the Self-attention section, this technique is used in this work to learn
vector representations of sequences of tools combining information from different parts
of sequences. Self-attention weights measure the magnitude of relatedness for all pairs
of tools in each tool sequence. It is represented by a matrix of size NxN, where N is the
maximum length of a tool sequence (25). Two such matrices are computed by the trained
transformer model for two tool sequences in the test dataset and plotted as shown in
Figs. 4 and 5. The following two examples provide insights into the model’s inter-
nal mechanism. The first example in Fig. 4 has a workflow from the ChemicalToolBox
(CTB) [42] tool suite. The pairs of tools from CTB such as “ctb_remIons” [42] and “ctb_
remDuplicates” [42] (cell represented by light green colour in the third row of the fourth
column) and “ctb_ob_genProp” [42] and “ctb_remDuplicates” [42] (cell represented by
yellow colour in the third row of the seventh column) show higher attention weights
than all other the CTB tools with the “show beginning1” tool, a general-purpose text
extraction tool in Galaxy. The “show beginning1” tool does not correlate with CTB tools

Fig. 4  The self-attention weights for a tool sequence, read from left to right on the horizontal axis or top
to bottom on the vertical axis, from the tool suite ChemicalToolBox (CTB) [42] in Galaxy Europe are shown.
It is seen that tools from the CTB suite (containing “ctb” prefix) attend to each other as they have higher
correlation weights, but they don’t attend to the “show beginning1” tool, which is only a text formatting tool
and not from the CTB suite

Page 11 of 16Kumar et al. BMC Bioinformatics (2023) 24:446 	

in the workflow, as depicted by extremely low attention weights (represented by deep
violet colour). Another example in Fig. 5 shows a differential expression analysis work-
flow [43, 44] containing tools such as “trimmomatic” [45], “hisat2” [46], “featurecounts”
[47], and “deseq2” [48]. These tools are often used together and correlate more than the
other workflow tools. Tools such as “filter1” (used for filtering datasets), “grep1” (used
for searching in datasets), and “join1” (used for joining two or more datasets) are text
formatting tools that bear little correlation to the tools such as “trimmomatic”, “hisat2”,
“featurecounts” and “deseq2” which are primarily used for analysing genomic sequences.
These two examples show that the transformer model computes the sequence represen-
tation by learning the context from different sections of a tool sequence. These repre-
sentations of tool sequences are further used for mapping to their respective multi-hot
encoded labels. More examples of self-attention weight plots belonging to two scientific
workflows are available in Additional files 5 and 6.

Conclusion and discussion
Transformer architecture provides a robust way to model sequential data, such as lin-
ear sequences of tools extracted from Galaxy workflows and recommends tools with
a high precision (precision@k) of approximately 0.98. It outperforms RNN, CNN and
DNN for creating and using a tool recommendation model on multiple key indicators,
such as faster computation of recommendations and model convergence. In addition,
the transformer model generalises beyond the seen data to recommend higher-quality
tools than all other models. Additionally, the transformer achieves good prediction
accuracy for infrequent tools. These features will benefit researchers in exploring high-
quality tools faster and promote exploratory data analysis in Galaxy. New models can be

Fig. 5  The self-attention weights for a tool sequence, read from left to right on the horizontal axis or top to
bottom on the vertical axis and used for performing differential expression analysis, are shown. It is seen that
tools such as trimmomatic [45], hisat2 [46], featurecounts [47] and deseq2 [48] are more correlated to each
other compared to the text formatting tools such as “join1” or “filter1”

Page 12 of 16Kumar et al. BMC Bioinformatics (2023) 24:446

readily created in Galaxy and deployed using the recommendation model-creating tool.
The proposed approach can be used with workflows created outside of Galaxy to create
a recommendation system. However, the data pre-processing methods may need to be
adapted.

Trained model

The trained model, created in our work, combines trained weight matrices belonging
to different layers of the transformer, Python dictionaries of mapping of tools with their
respective indices and other utility files to create an HDF5 model file [49]. The com-
posite HDF5 file reconstructs the model while recommending tools using an API [50]
in Galaxy Europe. Alternatively, the transformer model can be easily created on Galaxy
Europe by running a tool [51] that executes the same scripts as available in the codebase
[26]. This tool needs Galaxy workflows and tool usage files as inputs. Steps to create and
deploy such a model on any Galaxy server are written in the “README” file [26].

Post processing

The usage of the tool recommendation system can be explored on Galaxy Europe. The
API [50] considers the current sequence of tools from the workflow editor in Galaxy
Europe or any tool for showing recommendations (Additional files 7 and 8). The input
tool or a tool sequence is read by the trained model [49] to predict tools. These predicted
tools may contain a few invalid tools that should not be used to extend the current work-
flow. In the post-processing step of the predicted tools, recommendations are refined to
remove such tools from the predicted list of tools with incompatible datatypes that are
unavailable or deprecated from Galaxy Europe. In addition, the refined list is then sorted
in descending order of their usage in the last year in Galaxy Europe. It enables the highly
used tool in the past year to appear at the top of the recommendations.

Recommended tools in Galaxy

After refining the recommendations made by the trained transformer model in the post-
processing step, the refined list of predicted tools is shown in Galaxy as two user inter-
face (UI) elements - one after running a tool that shows recommended tools as branches
of a tree and the second in the Galaxy workflow editor inside a tool’s box. The right
arrow on the top right corner inside a tool’s box shows a list of recommended tools.
UI elements used in Galaxy for showing tool recommendations are shown in Additional
files 7 and 8.

Future work
To improve the tool recommendation model’s generalisation performance, ways to inte-
grate each tool’s metadata in training workflows may be explored. Transformer provides
a robust architecture to learn high-quality sequential representations. It may allow the
model to improve the grouping of similar tools as recommendations. Another way to use
a transformer is as a sequence-to-sequence model in which a part of a workflow is used
as an input sequence and the remaining part as the output sequence. It could provide

Page 13 of 16Kumar et al. BMC Bioinformatics (2023) 24:446 	

insights into how many ways a tool or a sequence of tools can be used by recommend-
ing multiple future tool sequences. Exploring and utilising its potential for solving more
complex biological problems, such as the prediction of post-translational modification
(PTM) sites such as de-phosphorylation by learning to embed amino-acids and protein
sequences and drug-target interaction prediction would be highly beneficial to the sci-
entific community.

Availability and requirements
Project name: Tool recommender system in Galaxy using Transformers. Project home
page: https://​github.​com/​anupr​ulez/​galaxy_​tool_​recom​menda​tion_​trans​forme​rs. Oper-
ating system(s): Linux. Programming language: Python, XML. Other requirements: Ten-
sorFlow. License: MIT License. Any restrictions to use by non-academics: None

Abbreviations
AUC​	� Area under the receiver operating characteristic (ROC) curve
GB	� Gigabyte
AI	� Artificial intelligence
RNN	� Recurrent neural network
CNN	� Convolutional neural network
DNN	� Dense neural network
PTM	� Post-translational modification
UI	� User interface
BERT	� Bidirectional encoder representations from transformers
WINGS	� Workflow instance generation and specialisation
PROPHETS	� Process realisation and optimisation platform using human-readable expression of temporal-logic

synthesis

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05573-w.

Additional file 1. A sample Galaxy workflow for machine learning analysis consisting of several individual tools.

Additional file 2. A workflow with 3 tools (Tool A, Tool B and Tool C) is represented as a sequence of integers shown
in step B. The set of recommended tools is shown in step C, represented as a one-hot encoded vector shown in step
D.

Additional file 3. Comparison of the precision@k metric for the transformer, RNN, CNN and DNN models for all tools
(solid lines) and the lowest 25% of tools (dotted lines).

Additional file 4. Comparison of tool recommendations (top 20) by different neural network models for various sci-
entific analyses/workflows.

Additional file 5. Attention weights of a workflow from HiC analyses shown as a heatmap.

Additional file 6. Attention weights for "Kc-align" and "Sarscov2formatter" tools along with the text formatting
tools such as "cut1" and "remove beginning1".

Additional file 7. Recommended tools for the "Fastp" tool are shown as a list in Galaxy’s workflow editor.

Additional file 8. Recommended tools for the BWA-MEM tool shown as leaves of a tree.

Acknowledgements
 We thank the Galaxy community, especially Galaxy Europe for their support. We thank Helena Rasche for developing the
data collection scripts.

Author contributions
 A.K. implemented the project and wrote the manuscript. B.G. provided the idea of the project, deployed the project
on Galaxy Europe and contributed to the manuscript. R.B. contributed to the manuscript. All authors approved of the
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was supported by the German Research
Foundation (DFG) under Germany’s Excellence Strategy (CIBSS - EXC-2189 - Project ID 390939984) and German Federal
Ministry of Education and Research (BMBF grant 031A538A de.NBI).

https://github.com/anuprulez/galaxy_tool_recommendation_transformers
https://doi.org/10.1186/s12859-023-05573-w

Page 14 of 16Kumar et al. BMC Bioinformatics (2023) 24:446

Availability of data and materials
 All input data, scripts and models can be found at https://​github.​com/​anupr​ulez/​galaxy_​tool_​recom​menda​tion_​trans​
forme​rs. All datasets containing workflows and recent usage of tools can be found at https://​doi.​org/​10.​5281/​zenodo.​
78259​73. A Jupyter notebook is created at https://​github.​com/​anupr​ulez/​galaxy_​tool_​recom​menda​tion_​trans​forme​rs/​
blob/​master/​noteb​ooks/​evalu​ate_​model.​ipynb to analyse predictions by the RNN and transformer models

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 20 April 2023 Accepted: 17 November 2023

References
	1.	 Kumar A, Rasche H, Grüning B, Backofen R. Tool recommender system in Galaxy using deep learning. GigaScience.

2021. https://​doi.​org/​10.​1093/​gigas​cience/​giaa1​52.
	2.	 The galaxy community: the galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022

update. Nucleic Acids Res 50(W1):W345-W35104 2022. (2022). https://​doi.​org/​10.​1093/​nar/​gkac2​47
	3.	 Gil Y, Ratnakar V, Kim J, Gonzalez-Calero P, Groth P, Moody J, Deelman E. Wings: intelligent workflow-based design of

computational experiments. IEEE Intell Syst. 2011;26(1):62–72. https://​doi.​org/​10.​1109/​MIS.​2010.9.
	4.	 Naujokat S, Lamprecht A-L, Steffen B. Loose programming with prophets. In: de Lara J, Zisman A, editors. Funda-

mental approaches to software engineering. Berlin: Springer; 2012. p. 94–8.
	5.	 Mazaheri M, Kiar G, Glatard T. A recommender system for scientific datasets and analysis pipelines. CoRR arXiv:​2108.​

09275 (2021).
	6.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need.

CoRR arXiv:​1706.​03762 (2017)
	7.	 Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language under-

standing. CoRR arXiv:​1810.​04805 (2018)
	8.	 Ji Y, Zhou Z, Liu H, Davuluri RV. DNABERT: pre-trained bidirectional encoder representations from transformers

model for DNA-language in genome. Bioinformatics. 2021;37(15):2112–20. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btab0​83. (ISSN 1367-4803).

	9.	 Brandes N, Ofer D, Peleg Y, Rappoport N, Linial M. ProteinBERT: a universal deep-learning model of protein sequence
and function. Bioinformatics. 2022;38(8):2102–10. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btac02. (ISSN 1367-4803).

	10.	 Chung J, Gülçehre Ç, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence mod-
eling. arXiv:​1412.​3555 (2014).

	11.	 Galaxy community hub: creating workflows and advanced workflow options, 2021, https://​galax​yproj​ect.​org/​learn/​
advan​ced-​workf​low/, Accessed 02 June 2023.

	12.	 Kumar, A., et. al.: Data extraction script for galaxy tool recommendation, 2020, https://​github.​com/​anupr​ulez/​
galaxy_​tool_​recom​menda​tion/​blob/​master/​extra​ct_​data.​sh, Accessed 13 Apr 2023.

	13.	 Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data
and metadata with graphlan. Peer J. 2015;3: e1029.

	14.	 TensorFlow: Embedding, 2022, https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​layers/​Embed​ding, Accessed
02 June 2023.

	15.	 TensorFlow: MultiHeadAttention, 2022, https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​layers/​Multi​HeadA​
ttent​ion, Accessed 02 June 2023.

	16.	 TensorFlow: Dense, 2022, https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​layers/​Dense, Accessed 02 June
2023.

	17.	 TensorFlow: ReLU activation, 2022, https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​activ​ations/​relu/,
Accessed 02 June 2023.

	18.	 TensorFlow: sigmoid activation, 2022, https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​activ​ations/​sigmo​id,
Accessed 02 June 2023.

	19.	 TensorFlow: GRU, 2022, https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​layers/​GRU, Accessed 02 June 2023.
	20.	 Kumar A, et al. RNN architecture, 2023, https://​github.​com/​anupr​ulez/​galaxy_​tool_​recom​menda​tion_​trans​forme​rs/​

blob/​master/​scrip​ts/​train_​rnn.​py, Accessed 30 May 2023.
	21.	 Kumar A, et al. CNN architecture, 2023, https://​github.​com/​anupr​ulez/​galaxy_​tool_​recom​menda​tion_​trans​forme​rs/​

blob/​master/​scrip​ts/​train_​cnn.​py, Accessed 30 May 2023.
	22.	 TensorFlow: Conv2D, 2022, https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​layers/​Conv2D, Accessed 02

June 2023.

https://github.com/anuprulez/galaxy_tool_recommendation_transformers
https://github.com/anuprulez/galaxy_tool_recommendation_transformers
https://doi.org/10.5281/zenodo.7825973
https://doi.org/10.5281/zenodo.7825973
https://github.com/anuprulez/galaxy_tool_recommendation_transformers/blob/master/notebooks/evaluate_model.ipynb
https://github.com/anuprulez/galaxy_tool_recommendation_transformers/blob/master/notebooks/evaluate_model.ipynb
https://doi.org/10.1093/gigascience/giaa152
https://doi.org/10.1093/nar/gkac247
https://doi.org/10.1109/MIS.2010.9
http://arxiv.org/abs/2108.09275
http://arxiv.org/abs/2108.09275
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1810.04805
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btac02
http://arxiv.org/abs/1412.3555
https://galaxyproject.org/learn/advanced-workflow/
https://galaxyproject.org/learn/advanced-workflow/
https://github.com/anuprulez/galaxy_tool_recommendation/blob/master/extract_data.sh
https://github.com/anuprulez/galaxy_tool_recommendation/blob/master/extract_data.sh
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MultiHeadAttention
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MultiHeadAttention
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://www.tensorflow.org/api_docs/python/tf/keras/activations/relu/
https://www.tensorflow.org/api_docs/python/tf/keras/activations/sigmoid
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU
https://github.com/anuprulez/galaxy_tool_recommendation_transformers/blob/master/scripts/train_rnn.py
https://github.com/anuprulez/galaxy_tool_recommendation_transformers/blob/master/scripts/train_rnn.py
https://github.com/anuprulez/galaxy_tool_recommendation_transformers/blob/master/scripts/train_cnn.py
https://github.com/anuprulez/galaxy_tool_recommendation_transformers/blob/master/scripts/train_cnn.py
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

Page 15 of 16Kumar et al. BMC Bioinformatics (2023) 24:446 	

	23.	 TensorFlow: MaxPooling2D, 2022, https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​layers/​MaxPo​oling​2D,
Accessed 02 June 2023.

	24.	 TensorFlow: Flatten, 2022, https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​layers/​Flatt​en, Accessed 02 June
2023.

	25.	 Kumar A, et. al. DNN architecture, 2023, https://​github.​com/​anupr​ulez/​galaxy_​tool_​recom​menda​tion_​trans​forme​rs/​
blob/​master/​scrip​ts/​train_​dnn.​py, Accessed 30 May 2023.

	26.	 Kumar A, et al. Tool recommender system in Galaxy using Transformers, 2022, https://​github.​com/​anupr​ulez/​
galaxy_​tool_​recom​menda​tion_​trans​forme​rs, Accessed 13 Apr 2023.

	27.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S,
Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore
S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas
F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. TensorFlow: Large-scale machine learning on hetero-
geneous systems, 2015, Software available from https://www.tensorflow.org/. Accessed 13 Apr 2023.

	28.	 Adam. Optimizer that implements the Adam algorithm. Tensorflow, v2.9. 2022. https://​www.​tenso​rflow.​org/​api_​
docs/​python/​tf/​keras/​optim​izers/​Adam. Accessed 13 Apr 2023

	29.	 BinaryCrossentropy, Computes the cross-entropy loss between true labels and predicted labels. Tensorflow, v2.9.
https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​losses/​Binar​yCros​sentr​opy. Accessed 13 Apr 2023

	30.	 TensorFlow: Dropout, 2022, https://​www.​tenso​rflow.​org/​api_​docs/​python/​tf/​keras/​layers/​Dropo​ut, Accessed 02
June 2023.

	31.	 Kumar A, et al. DNN architecture, 2023, https://​github.​com/​anupr​ulez/​galaxy_​tool_​recom​menda​tion_​trans​forme​rs/​
blob/​master/​scrip​ts/​train_​trans​former.​py#​L16, Accessed 30 May 2023.

	32.	 Said A, Bellogín A, de Vries AP. A Top-N recommender system evaluation protocol inspired by deployed systems.
In: Proceedings of the 2013 ACM RecSys Workshop on Large-Scale Recommender Systems, Hong Kong. 2013.
https://​ir.​cwi.​nl/​pub/​21489

	33.	 Kang Z, Peng C, Cheng Q. Top-n recommender system via matrix completion. CoRR (2016). arXiv:​1601.​04800
	34.	 Deshpande M, Karypis G. Item-based top-n recommendation algorithms. ACM Trans Inf Syst. 2004;22(1):143–77.

https://​doi.​org/​10.​1145/​963770.​963776.
	35.	 Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing (2012). arXiv:​1207.​3907
	36.	 Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Land S, Lu X, Ruden D. A program for annotating and predicting

the effects of single nucleotide polymorphisms, snpeff: Snps in the genome of drosophila melanogaster strain
w1118; iso-2; iso-3. Fly. 2012;6(2):80–92. https://​doi.​org/​10.​4161/​fly.​19695. (PMCID: PMC3679285).

	37.	 Maier W. MiModD, 2020, https://mimodd.readthedocs.io/en/latest/, MiModD 0.1.9 Documentation. 2014, Accessed
13 Apr 2023.

	38.	 Maier W, et al. Variant frequency plot. 2020, Generates a heatmap of allele frequencies grouped by variant type for
SnpEff-annotated SARS-CoV-2 data, Accessed 13 Apr 2023.

	39.	 Paila UD, Chapman B, Kirchner R, Quinlan A. Gemini: integrative exploration of genetic variation and genome anno-
tations. PLoS Comput Biol. 2013;9: e1003153. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10031​53.

	40.	 Garrison E, Kronenberg ZN, Dawson ET, Pedersen BS, Prins P. A spectrum of free software tools for processing the vcf
variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput Biol. 2022;18(5):1–14.

	41.	 Föll MC, Moritz L, Wollmann T, Stillger MN, Vockert N, Werner M, Bronsert P, Rohr K, Grüning BA, Schilling O. Acces-
sible and reproducible mass spectrometry imaging data analysis in Galaxy. GigaScience. 2019.

	42.	 Bray SAea. The chemicaltoolbox: reproducible, user-friendly cheminformatics analysis on the galaxy platform. J
Cheminform 2020; https://​doi.​org/​10.​1186/​s13321-​020-​00442-7

	43.	 Batut B, Freeberg M, Heydarian M, Erxleben A, Videm P, Blank C, Doyle M, Soranzo N, van Heusden P, Delisle L.
Reference-based RNA-Seq data analysis (Galaxy Training Materials). [Online; accessed Tue May 30 2023]. https://​train​
ing.​galax​yproj​ect.​org/​train​ing-​mater​ial/​topics/​trans​cript​omics/​tutor​ials/​ref-​based/​tutor​ial.​html.

	44.	 Hiltemann S, Rasche H, Gladman S, Hotz H-R, Larivière D, Blankenberg D, Jagtap PD, Wollmann T, Bretaudeau A,
Goué N, Griffin TJ, Royaux C, Bras YL, Mehta S, Syme A, Coppens F, Droesbeke B, Soranzo N, Bacon W, Psomopoulos
F, Gallardo-Alba C, Davis J, Föll MC, Fahrner M, Doyle MA, Serrano-Solano B, Fouilloux AC, van Heusden P, Maier W,
Clements D, Heyl F, Grüning B, B.B. Galaxy training: A powerful framework for teaching!. PLoS Comput Biol Computa-
tional Biology 2023; 19(1): 1010752 (2023). https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10107​52

	45.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics.
2014;30(15):2114–20. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu170.

	46.	 Kim D, Paggi JM, Park Cea. Graph-based genome alignment and genotyping with hisat2 and hisat-genotype. Nat
Biotechnol. 2019;37:907–15. https://​doi.​org/​10.​1038/​s41587-​019-​0201-4.

	47.	 Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to
genomic features. Bioinformatics. 2013;30(7):923–30. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btt656.

	48.	 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for rna-seq data with deseq2.
Genome Biol. 2014;15:550 (10.1186/s13059-014-0550-8).

	49.	 Transformer trained model, 2023, https://​github.​com/​galax​yproj​ect/​galaxy-​test-​data/​blob/​master/​tool_​recom​
menda​tion_​model_v_​0.2.​hdf5. Accessed 13 Apr 2023.

	50.	 Kumar A, et al. Tool recommendation API, 2023, https://​github.​com/​galax​yproj​ect/​galaxy/​blob/​dev/​lib/​galaxy/​
webap​ps/​galaxy/​api/​workf​lows.​py#​L598, Accessed 13 Apr 2023.

	51.	 Kumar A, et al. Tool recommendation Galaxy tool, 2023, https://​github.​com/​bgrue​ning/​galax​ytools/​blob/​master/​
tools/​tool_​recom​menda​tion_​model/​create_​tool_​recom​menda​tion_​model.​xml, Accessed 13 Apr 2023.

	52.	 Virshup I, Rybakov S, Theis FJ, Angerer P, Wolf FA. anndata: Annotated data. bioRxiv (2021). https://​doi.​org/​10.​1101/​
2021.​12.​16.​473007. https://​www.​biorx​iv.​org/​conte​nt/​early/​2021/​12/​19/​2021.​12.​16.​473007.​full.​pdf

	53.	 Wolf F, Angerer P, Theis F. Scanpy: large-scale single-cell gene expression data analysis. Genome Biol. 2018. https://​
doi.​org/​10.​1186/​s13059-​017-​1382-0.

	54.	 Alquicira-Hernandez J, Sathe A, Ji H, Nguyen Q, Powell J. Scpred: accurate supervised method for cell-type classifica-
tion from single-cell RNA-seq data. Genome Biol. 2019;20:26412. https://​doi.​org/​10.​1186/​s13059-​019-​1862-5.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPooling2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten
https://github.com/anuprulez/galaxy_tool_recommendation_transformers/blob/master/scripts/train_dnn.py
https://github.com/anuprulez/galaxy_tool_recommendation_transformers/blob/master/scripts/train_dnn.py
https://github.com/anuprulez/galaxy_tool_recommendation_transformers
https://github.com/anuprulez/galaxy_tool_recommendation_transformers
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://github.com/anuprulez/galaxy_tool_recommendation_transformers/blob/master/scripts/train_transformer.py#L16
https://github.com/anuprulez/galaxy_tool_recommendation_transformers/blob/master/scripts/train_transformer.py#L16
https://ir.cwi.nl/pub/21489
http://arxiv.org/abs/1601.04800
https://doi.org/10.1145/963770.963776
http://arxiv.org/abs/1207.3907
https://doi.org/10.4161/fly.19695
https://doi.org/10.1371/journal.pcbi.1003153
https://doi.org/10.1186/s13321-020-00442-7
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html
https://doi.org/10.1371/journal.pcbi.1010752
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1093/bioinformatics/btt656
https://github.com/galaxyproject/galaxy-test-data/blob/master/tool_recommendation_model_v_0.2.hdf5
https://github.com/galaxyproject/galaxy-test-data/blob/master/tool_recommendation_model_v_0.2.hdf5
https://github.com/galaxyproject/galaxy/blob/dev/lib/galaxy/webapps/galaxy/api/workflows.py#L598
https://github.com/galaxyproject/galaxy/blob/dev/lib/galaxy/webapps/galaxy/api/workflows.py#L598
https://github.com/bgruening/galaxytools/blob/master/tools/tool_recommendation_model/create_tool_recommendation_model.xml
https://github.com/bgruening/galaxytools/blob/master/tools/tool_recommendation_model/create_tool_recommendation_model.xml
https://doi.org/10.1101/2021.12.16.473007
https://doi.org/10.1101/2021.12.16.473007
https://www.biorxiv.org/content/early/2021/12/19/2021.12.16.473007.full.pdf
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-019-1862-5

Page 16 of 16Kumar et al. BMC Bioinformatics (2023) 24:446

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	55.	 Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data across data sets. Nat Methods.
2018;15(5):359–62. https://​doi.​org/​10.​1038/​nmeth.​4644.

	56.	 Gu Q, Kumar A, Bray S, Creason A, Khanteymoori A, Jalili V, Grüning B, Goecks J. Galaxy-ml: an accessible, reproduc-
ible, and scalable machine learning toolkit for biomedicine. PLoS Comput Biol. 2021;17(6):1–11. https://​doi.​org/​10.​
1371/​journ​al.​pcbi.​10090​14.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/nmeth.4644
https://doi.org/10.1371/journal.pcbi.1009014
https://doi.org/10.1371/journal.pcbi.1009014

	Transformer-based tool recommendation system in Galaxy
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Comparison to state-of-the-art approaches
	Transformers
	Self-attention

	Implementation
	Data preparation
	Data statistics

	Architectures
	Transformer
	RNN
	CNN
	DNN

	Training parameters

	Results
	Transformer convergence time
	Transformer usage time
	Generalisation beyond training data
	Self-attention weights

	Conclusion and discussion
	Trained model
	Post processing
	Recommended tools in Galaxy

	Future work
	Availability and requirements
	Anchor 30
	Acknowledgements
	References

