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Abstract 

Background:  Galaxy is a web-based open-source platform for scientific analyses. 
Researchers use thousands of high-quality tools and workflows for their respective 
analyses in Galaxy. Tool recommender system predicts a collection of tools that can 
be used to extend an analysis. In this work, a tool recommender system is developed 
by training a transformer on workflows available on Galaxy Europe and its performance 
is compared to other neural networks such as recurrent, convolutional and dense 
neural networks.

Results:  The transformer neural network achieves two times faster convergence, 
has significantly lower model usage (model reconstruction and prediction) time 
and shows a better generalisation that goes beyond training workflows than the older 
tool recommender system created using RNN in Galaxy. In addition, the transformer 
also outperforms CNN and DNN on several key indicators. It achieves a faster con-
vergence time, lower model usage time, and higher quality tool recommendations 
than CNN. Compared to DNN, it converges faster to a higher precision@k metric 
(approximately 0.98 by transformer compared to approximately 0.9 by DNN) and shows 
higher quality tool recommendations.

Conclusion:  Our work shows a novel usage of transformers to recommend tools 
for extending scientific workflows. A more robust tool recommendation model, cre-
ated using a transformer, having significantly lower usage time than RNN and CNN, 
higher precision@k than DNN, and higher quality tool recommendations than all three 
neural networks, will benefit researchers in creating scientifically significant workflows 
and exploratory data analysis in Galaxy. Additionally, the ability to train faster than all 
three neural networks imparts more scalability for training on larger datasets consist-
ing of millions of tool sequences. Open-source scripts to create the recommendation 
model are available under MIT licence at https://​github.​com/​anupr​ulez/​galaxy_​tool_​
recom​menda​tion_​trans​forme​rs
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Background
A rapid increase in the number of scientific tools performing various tasks in different 
fields of life sciences makes constructing workflows using these tools more complicated. 
Assembling such scientific tools into a workflow poses a significant challenge, as the 
analysis represented by the workflow should incorporate scientifically significant steps 
and produce reproducible results. To simplify creating workflows, a tool recommender 
[1] in Galaxy [2] was created using good-quality workflows stored in Galaxy Europe. This 
recommender system trains a recurrent neural network (RNN) on existing workflows 
and creates a model that predicts scientific tools at each step of creating workflows. Each 
step considers the sequence of tools or already created a workflow to recommend tools.

Comparison to state‑of‑the‑art approaches

In comparison to other workflow recommendation systems such as WINGS [3] and 
PROPHETS [4] that require explicit annotations in terms of input data types and param-
eters, and functions of tools, the deep learning-based approach (RNN) requires only 
sequences of tools for training and creating a recommendation model. In addition, the 
accuracy of RNN in recommending tools is significantly higher compared to non-neural 
network-based machine learning algorithms such as ExtraTrees classifier [1]. Another 
approach that uses collaborative filtering for workflow recommendation achieves low 
accuracy of 0.83 AUC on a dataset collected from Canadian Open Neuroscience Plat-
form [5]. Even though RNN architecture has been popular for modelling sequential data 
and achieves high accuracy in workflow recommendation, there are a few drawbacks to 
such an architecture. First, the training and convergence times of RNN are significantly 
higher than the transformer’s as it is harder to parallelise mathematical computations 
because of RNN’s recurrent connections. Larger memory consumption allows training 
only in small batches of workflows, making it more challenging to train such an architec-
ture as data grows with time. Second, the trained RNN has a considerably larger usage 
time, the combination of time needed to recreate the model from its saved format and 
predict using a tool or tool sequence, than the transformer. Third, the prediction per-
formance of RNN suffers for longer sequences, and lastly, the generalisation ability of 
the transformer is better compared to RNN [6]. Further, the transformer outperforms 
convolutional (CNN) and dense (DNN) neural networks on various indicators such as 
convergence speed, model usage time, and quality of tool recommendations (see Results 
section for detailed comparison). Therefore, the recommendation model is created by 
training a transformer architecture using workflows created in Galaxy Europe to acquire 
its advantages.

Transformers

Several studies successfully used transformers to model sequential data that achieve 
start-of-the-art outcomes. Bidirectional encoder representations from transformers 
(BERT) have been vastly used for modelling languages and achieved exceptional results 
on eleven natural language tasks [7]. DNABERT creates a novel model taking cues from 
BERT architecture by training on DNA sequences. It is used for many downstream 
tasks, such as predicting regulatory elements, promoters, splice sites and transcription 
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factor binding sites with high accuracy [8]. ProteinBERT improves the BERT architec-
ture to model protein sequences and achieves excellent results on various tasks such as 
predicting protein functions and gene ontology (GO) annotations [9]. Transformer uses 
the attention mechanism [6] to learn representations of sequential data such as natu-
ral languages and DNA and protein sequences. With self-attention (see “Self-attention” 
paragraph), each token in a sequence is assigned a weight that explains its correlation 
to all other tokens. A token with a larger magnitude of weight is more important than 
one with a smaller magnitude in prediction tasks such as sequence classification. These 
weights, represented by real numbers, are collectively used to compute predictions. The 
architecture of a transformer has several components. The major ones are the encoder 
and decoder [6]. For sequential data consisting of input and output sequences, the 
encoder learns the representation of input sequences, and the decoder jointly trains on 
the input representation by the encoder and the output sequences. In our work, only 
the encoder part of the transformer is used to create the recommendation model. This 
model recommends tools for both - a tool and a tool sequence. The architecture of the 
transformer used for creating the Galaxy tool recommendation system is discussed in 
the Architecture section.

Self‑attention

Transformer employs the self-attention mechanism to learn the representation of a 
sequence. With self-attention, each token of a sequence relates to all other tokens of 
the same sequence but with different magnitudes [6]. Our work uses self-attention to 
compute the vector representation of each tool sequence that maps with its multi-hot 
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Fig. 1  Neural network architecture of transformer used for recommending tools in Galaxy. Figure 1a–b 
represents how a sequence of tools is transformed into a sequence of integers. Figure 1c–g represents 
several different neural network layers through which sequences of tools are passed to learn their respective 
representations and mapping with their respective labels. Figure 1h represents the output in the form of a 
real-valued vector
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encoded labels to predict tools. For example, in a sequence of three tools in Fig.  1a, 
we assume that tools A and B are related, but tool A is unrelated to tool C. Therefore, 
this magnitude of relatedness, also known as attention weights, is higher between tools 
A and B than between tools A and C. All attention weights belonging to each pair of 
tokens are utilised in computing a vector representation of the sequence, implying that 
the representation contains the context of the entire sequence. RNN [10] works differ-
ently, which creates a sequence’s representation using the last token and the sequence’s 
context stored for the last but one token, thereby making it prone to losing context for a 
longer sequence.

Implementation
Data preparation

Galaxy workflows [11] are directed acyclic graphs in which nodes are represented by sci-
entific tools, as shown in Additional file 1. All the workflows used in this work have been 
collected from Galaxy Europe using a bash script [12]. The workflows extracted from 
the script are stored in a tabular file and are pre-processed to extract tool sequences. A 
tool or a tool sequence can connect to multiple tools, which become the tool’s or tool 
sequence’s labels. There are thousands of tools on Galaxy Europe, and each can con-
nect to many others. Therefore, predicting tools for a tool or a sequence becomes a 
multi-class, multi-label classification. To represent tool sequences in a manner to be 
interpreted by any neural network, each tool is assigned a unique integer. This step 
transforms each sequence of tools into a sequence of integers. A tool or a set of tools 
can extend an analysis using a sample workflow in Fig. 1a by adding tools to tool C. A 
tool or the set of tools used to extend the workflow “tool A → tool B → tool C” become 
the recommended tools of the “tool A → tool B → tool C” workflow. The recommended 
tools for each sequence of tools are represented as multi-hot encoding, as shown in 
Additional file 2 (part D). The multi-hot encoding of each tool sequence is its label rep-
resented as a 1-dimensional vector. The corresponding pairs of tool sequences and their 
respective labels are used for training the transformer to create a tool recommendation 
model. Other neural networks, such as RNN, CNN and DNN, also use the same data for 
training.

Data statistics

Approximately 60,000 workflows have been collected from Galaxy Europe, which are 
published and contain no errors. These workflows are further pre-processed to extract 
approximately 7,98,000 linear tool sequences, of which 3,53,000 are unique. The longest 
tool sequence contains 28 tools, the shortest ones have two tools, and the median length 
is 15. There is a significant variance in the number of occurrences of different tools. For 
example, text formatting tools such as “cut” and “filter” are present in over 2,00,000 of 
these tool sequences, while a tool such as “graphlan” [13] occurs only 40 times in these 
tool sequences. Therefore, to allow the transformer to learn from a similar distribution 
of sequences of tools, each training batch is sampled to contain labels with similar fre-
quencies. Each tool or a tool sequence can connect to multiple unique tools. Therefore, 
the unique tool sequences are further pre-processed to create tool sequences that may 
have more than one tool as labels and are transformed to multi-hot encoded vectors. 
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This further increases the number of unique tool sequences with their respective multi-
hot encoded labels to approximately 5,00,000. The number of unique tools to create all 
used workflows for our work is 2,354.

Architectures

Transformer

The encoder part of the transformer in [6] consists of multiple layers, as shown in Fig. 1. 
The first is the embedding and positional encoding layers (Fig. 1c). These two layers work 
together to encode tools, where each tool is represented by a unique integer (Fig. 1b) in 
a workflow (Fig. 1a). Tools are tokens sequentially arranged in workflows. The encod-
ings of tools contain real-valued vectors that conserve the relative positions of tools in 
workflows. The embedding and positional encoding layers are implemented using the 
embedding layers [14]. The encodings of sequences of tools are passed to a composite 
block consisting of multi-head attention [15] and feed-forward layers (Fig.  1d–e). The 
term 4x in Fig.  1d–e represents four attention networks working together in parallel. 
Attention weights learned by each attention head are concatenated. The multi-head 
attention layer is 128 dimensional, and the feed-forward neural network consists of two 
dense layers [16] having 128 dimensions each. Collectively, they compute representa-
tions of sequences based on self-attention weights. Tools related to one another in tool 
sequences get higher attention weights. In addition, they capture long-range dependen-
cies among tools and make the trained models more interpretable [6]. In the next step, 
these representations are passed to a dense layer with 128 dimensions and relu activa-
tion [17] (Fig. 1f ). The predicted output, computed by a different dense output layer, is 
a vector of sigmoid [18] scores (Fig. 1h) used to recommend top N tools. The higher the 
sigmoid score, the higher the probability of a tool being correctly recommended. The 
number of trainable parameters in the transformer architecture is 9,22,291. To meas-
ure the performance of the transformer in recommending tools, its architecture is 
compared to three different neural network architectures - RNN, CNN and DNN on 
several key indicators such as convergence time, model usage time and the quality of 
tool recommendations.

RNN

Gated recurrent units (GRU) [19] layers are used to implement RNN architecture [20] 
to model the sequence of tools. The RNN architecture uses an embedding layer to learn 
a fixed-size vector representation (128) for each tool, also known as embedding dimen-
sions. The embedding layer is followed by two GRU layers stacked on each other. The 
dimensions of both the GRU layers are 128. The output of the second (last) GRU layer is 
passed to an output layer, a dense layer with sigmoid activation, and its dimension equals 
the number of tools. The total number of trainable parameters of RNN is 2,41,063.

CNN

The CNN architecture [21], like RNN, also has an embedding layer to learn the fixed-size 
vector of each tool. The sequences of tools represented by the embeddings of each tool 
in sequences are passed to a 2-dimensional convolutional layer [22] having 128 dimen-
sions with a kernel of size 16 x 3 and relu activation. The output of the convolutional 
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layer is passed to the maxpooling2D [23] layer for extracting maximum values from each 
pool size of 2x2. These values are further passed to a flatten [24] layer that arranges the 
output from the maxpooling2D layer horizontally. This horizontally arranged output is 
then passed to a dense layer with a dimension 128 connected to an output layer like 
RNN. These layers in CNN have 5,772,723 as the total number of trainable parameters.

DNN

The DNN architecture [25] consists of only one embedding layer with a dimension of 
128 and two dense layers, each having a dimension of 128. The output layer of DNN is 
the same as RNN and CNN architectures. The number of trainable parameters in DNN 
is 1,031,603.

Training parameters

Python 3.9 is used to create scripts stored at GitHub [26] to train the different models 
such as transformer, RNN, CNN and DNN. All the models are implemented using Ten-
sorFlow 2.9 [27] and are trained on a machine with Rocky Linux release 8.5 with approx-
imately 35 CPU cores and over 100 GB memory for 35,000 iterations with a 512 batch 
size. Adam optimiser [28] minimises the binary cross-entropy [29] loss with a stand-
ard learning rate of 0.001. Dropout [30] layers are used in all architectures to minimise 
overfitting. The degree of dropout used is 0.2. Hyperparameters of the transformer neu-
ral network are estimated manually. All the sequences of tools (approximately 500,000) 
are divided into train and test sets. 80% of the sequences are used for training (approxi-
mately 400,000) and the rest for evaluating (approximately 100,000) the trained model. 
The training time for 35,000 iterations varies for all models. Training the transformer 
takes approximately 39 h (3.96 s per iteration), RNN takes approximately 43 h (4.4 s per 
iteration), CNN takes approximately 50 h (5.1 s per iteration), and DNN takes approxi-
mately 43 h (4.4 s per iteration). Transformer requires the least time for training com-
pared to RNN, CNN and DNN models.

Results
Transformer convergence time

Transformer [31], RNN [20], CNN [21] and DNN [25] architectures are trained on the 
same dataset, and their precision@k score collected over 35,000 training iterations on 
the test data are compared in Fig. 2. Precision@k is used as the prediction metric and 
is popular for evaluating recommender systems [32–34]. The precision@k scores are 
averaged over 5 experiment runs. The shaded regions show the standard deviation over 
experiment runs. The train and test datasets are randomly created in each run but have 
the same size. Figure 2 shows the mean precision@k score in green for the transformer, 
red for RNN, blue for CNN and black for DNN. Figure 2 shows that the transformer con-
verges two times faster than RNN. The transformer, consisting of two embedding layers, 
a multi-head attention layer, a hidden dense layer and a dense output layer, converges to 
the mean precision@k score of approximately 0.98 at iteration 10,000. In contrast, RNN, 
consisting of one embedding layer, two stacked GRU layers and one dense output layer, 
achieves similar mean precision@k only at iteration 20,000. DNN, consisting of one 
embedding layer, two hidden dense layers and one dense output layer, also shows slower 
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convergence and a lower precision@k score (0.9). On the other hand, CNN consisting 
of one embedding layer, one conv2d, one maxpooling2d, one flatten, one hidden dense, 
and one dense output layer, converges to a similar precision@k value achieved by the 
transformer but is slightly slower in convergence and stabilises around 12,000 iterations. 
Further, the transformer achieves a similar mean precision@k score (approximately 0.85) 
to CNN but slightly worse than RNN for infrequent tools, making the lowest 25% of all 
tools, as shown in Additional file 3. The performance of DNN for the lowest 25% of all 
tools is significantly lower (approximately 0.72) compared to other models (Additional 
file 3). All other parameters of the experiment remain the same.

Transformer usage time

Transformer, RNN, CNN and DNN architectures are compared for their respective 
model reconstruction and prediction time measured at specific intervals over 35,000 
training iterations, as shown in Fig.  3. The transformer’s model usage time (= model 
reconstruction and prediction) is approximately 0.4  s for a sequence of tools. At the 
same time, for RNN, it is over 2 s which is approximately four to five times slower than 
the transformer. CNN is also faster than RNN in model usage time but is slower than the 
transformer. However, DNN is the fastest, recording the lowest model usage time out of 
all models. The model usage time is averaged over all the sequences of tools in the test 
dataset. The line plots show the mean usage time, and shaded regions show the standard 
deviation over 5 experiment runs (Fig. 3).

Fig. 2  A comparison of precision@k metric, used for evaluating a recommender system, is shown over 
training iterations for the transformer (green), RNN (red), CNN (blue) and DNN (black) architectures. The 
precision@k values are averaged over 5 experiment runs for each architecture and are shown as line plots. 
The shaded regions show the standard deviation across 5 experiment runs
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Generalisation beyond training data

Trained transformer and RNN models are used to compare the top 20 recommendations 
made for tools and sequences of tools belonging to multiple scientific analyses, as shown 
in Table 1. The ground truth column (third column) shows accurate tools extracted from 
the training workflows for a tool or a tool sequence in the second column. The fourth 
and fifth columns show the recommended tools by the transformer and RNN models, 
respectively. The tools shown in bold are those recommended tools compatible with the 
respective tool or tool sequence in the second column, but such connections are not 
available in the training workflows. To elaborate, the recommended tool “freebayes” 
[35] (shown in the fourth column of the first row of Table 1) can be used on the output 
datasets produced by “snpeff_sars_cov_2” [36] tool to extend a workflow for variant call-
ing analysis. However, this connection does not exist in the training workflows used to 
train the transformer model as it is absent from the ground truth recommendation of 
the “snpeff_sars_cov_2” tool. Similarly, tools such as “mimodd_varcall” [37],  “snpfreq-
plot” [38],  “gemini_load” [39] and “vcfcombine” [40] can also be used to extend a 
scientific analysis after using “snpeff_sars_cov_2” tool but its connections to these rec-
ommended tools do not exist in the training workflows. RNN model also recommends 
three tools beyond the seen training workflows, but the transformer recommends five 
such tools. Row 4 in Table 1 shows another example from the proteomics field, where 
both models correctly predict the ground truth recommendations. However, the trans-
former recommends many other tools that are from the proteomics field and can be 
used to extend the “mass_spectrometry_imaging_filtering → “cardinal_preprocessing 

Fig. 3  A comparison of the model usage (model reconstruction + prediction) time of transformer (green), 
RNN (red), CNN (blue) and DNN (black) is shown. The time is averaged over 5 experiment runs, and the 
shaded region shows the standard deviation across 5 experiment runs
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Table 1  Comparison of recommendations by transformer and RNN for multiple scientific analyses

Scientific analysis Tool/Tool 
sequences

Ground truth Transformer RNN

1. Variant analysis snpeff_sars_cov_2 
[36]

snpSift_filter, 
snpSift_extract-
Fields, lofreq_filter, 
vcf2tsv, multiqc, 
collapse_dataset, 
CONVERTER_vcf_to_
vcf_bgzip_0 [36]

multiqc, col-
lapse_dataset, 
CONVERTER_vcf_
to_vcf_bgzip_0, 
snpSift_extractFields, 
vcf2tsv, snpSift_filter, 
lofreq_filter, free‑
bayes, mimodd_
varcall, snpfreq‑
plot, gemini_load, 
vcfcombine [35, 38]

multiqc, collapse_
dataset, vcf2tsv, CON-
VERTER_vcf_to_vcf_
bgzip_0, lofreq_filter, 
snpSift_extractFields, 
snpSift_filter, tb_vari‑
ant_filter, mimodd_
map, vcffilter2 [37, 
40]

2. Single-cell anndata_import [52] scanpy_filter, ann-
data_inspect, ann-
data_manipulate, 
ucsc_cell_browser, 
scanpy_inspect, 
scanpy_filter_cells 
[52, 53]

scanpy_filter_cells, 
anndata_inspect, 
ucsc_cell_browser, 
scanpy_filter, 
scanpy_inspect, ann-
data_manipulate, 
scanpy_normalise_
data, scanpy_plot, 
anndata_ops, 
scanpy_remove_
confounders, 
scanpy_integrate_
harmony, scanpy_
normalize, scpred_
get_feature_space, 
scanpy_find_varia‑
ble_genes, scpred_
predict_labels, 
scpred_eigen_
decompose [53, 54]

anndata_manipu-
late, scanpy_filter, 
scanpy_filter_cells, 
ucsc_cell_browser, 
scanpy_inspect, 
anndata_inspect, 
scanpy_plot, scanpy_
normalise_data, 
scmap_scmap_clus‑
ter, scmap_scmap_
cell, scanpy_filter_
genes [52, 53, 55]

3. Deep learning keras_train_and_
eval [56]

model_prediction, 
ml_visualization_ex 
[56]

ml_visualization_ex, 
model_prediction, 
plotly_regression-_
performanc_plot, 
sklearn_discrimi‑
nant_classifier, 
plotly_ml_perfor‑
mance_plots [56]

model_prediction, ml_
visualization_ex [56], 
nn_classifier [56]

4. Prote-omics mass_spectrom-
etry-_imaging_fil-
tering, cardi-
nal-_preprocessing, 
cardinal-_segmenta-
tions [41]

Filter1 Filter1, cardi‑
nal_spectra_plots, 
cardinal_combine, 
cardinal_mz_
images, cardi‑
nal_classification, 
cardinal_data_
exporter, cardi‑
nal_quality_report, 
maldi_quant_pre‑
processing, 
cardinal_preproc‑
essing, cardinal_
segmentations, 
cardinal_filtering, 
mass_spectrome‑
try-_imaging_filter‑
ing, maldi_quant_
peak_detection 
[41]

Filter1
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→ cardinal_segmentations” [41] (fourth row of Table 1) workflow. Similar examples of 
better generalisation of the transformer are found for other scientific analyses, such as 
single-cell and deep learning, where the sets of high-quality recommendations by the 
transformer going beyond the training workflows are significantly larger than that by 
RNN. In conclusion, Table 1 shows that the transformer model generalises better than 
the RNN model in recommending tools for scientific workflows as it predicts valid rec-
ommendations that have not been seen while training. Table 1 is further extended to add 
tool recommendations by CNN and DNN models and is shown in Additional file 4.

Self‑attention weights

As described in the Self-attention section, this technique is used in this work to learn 
vector representations of sequences of tools combining information from different parts 
of sequences. Self-attention weights measure the magnitude of relatedness for all pairs 
of tools in each tool sequence. It is represented by a matrix of size NxN, where N is the 
maximum length of a tool sequence (25). Two such matrices are computed by the trained 
transformer model for two tool sequences in the test dataset and plotted as shown in 
Figs.  4 and 5. The following two examples provide insights into the model’s inter-
nal mechanism. The first example in Fig. 4 has a workflow from the ChemicalToolBox 
(CTB) [42] tool suite. The pairs of tools from CTB such as “ctb_remIons” [42] and “ctb_
remDuplicates” [42] (cell represented by light green colour in the third row of the fourth 
column) and “ctb_ob_genProp” [42] and “ctb_remDuplicates” [42] (cell represented by 
yellow colour in the third row of the seventh column) show higher attention weights 
than all other the CTB tools with the “show beginning1” tool, a general-purpose text 
extraction tool in Galaxy. The “show beginning1” tool does not correlate with CTB tools 

Fig. 4  The self-attention weights for a tool sequence, read from left to right on the horizontal axis or top 
to bottom on the vertical axis, from the tool suite ChemicalToolBox (CTB) [42] in Galaxy Europe are shown. 
It is seen that tools from the CTB suite (containing “ctb” prefix) attend to each other as they have higher 
correlation weights, but they don’t attend to the “show beginning1” tool, which is only a text formatting tool 
and not from the CTB suite
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in the workflow, as depicted by extremely low attention weights (represented by deep 
violet colour). Another example in Fig. 5 shows a differential expression analysis work-
flow [43, 44] containing tools such as “trimmomatic” [45], “hisat2” [46], “featurecounts” 
[47], and “deseq2” [48]. These tools are often used together and correlate more than the 
other workflow tools. Tools such as “filter1” (used for filtering datasets), “grep1” (used 
for searching in datasets), and “join1” (used for joining two or more datasets) are text 
formatting tools that bear little correlation to the tools such as “trimmomatic”, “hisat2”, 
“featurecounts” and “deseq2” which are primarily used for analysing genomic sequences. 
These two examples show that the transformer model computes the sequence represen-
tation by learning the context from different sections of a tool sequence. These repre-
sentations of tool sequences are further used for mapping to their respective multi-hot 
encoded labels. More examples of self-attention weight plots belonging to two scientific 
workflows are available in Additional files 5 and 6.

Conclusion and discussion
Transformer architecture provides a robust way to model sequential data, such as lin-
ear sequences of tools extracted from Galaxy workflows and recommends tools with 
a high precision (precision@k) of approximately 0.98. It outperforms RNN, CNN and 
DNN for creating and using a tool recommendation model on multiple key indicators, 
such as faster computation of recommendations and model convergence. In addition, 
the transformer model generalises beyond the seen data to recommend higher-quality 
tools than all other models. Additionally, the transformer achieves good prediction 
accuracy for infrequent tools. These features will benefit researchers in exploring high-
quality tools faster and promote exploratory data analysis in Galaxy. New models can be 

Fig. 5  The self-attention weights for a tool sequence, read from left to right on the horizontal axis or top to 
bottom on the vertical axis and used for performing differential expression analysis, are shown. It is seen that 
tools such as trimmomatic [45], hisat2 [46], featurecounts [47] and deseq2 [48] are more correlated to each 
other compared to the text formatting tools such as “join1” or “filter1”
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readily created in Galaxy and deployed using the recommendation model-creating tool. 
The proposed approach can be used with workflows created outside of Galaxy to create 
a recommendation system. However, the data pre-processing methods may need to be 
adapted.

Trained model

The trained model, created in our work, combines trained weight matrices belonging 
to different layers of the transformer, Python dictionaries of mapping of tools with their 
respective indices and other utility files to create an HDF5 model file [49]. The com-
posite HDF5 file reconstructs the model while recommending tools using an API [50] 
in Galaxy Europe. Alternatively, the transformer model can be easily created on Galaxy 
Europe by running a tool [51] that executes the same scripts as available in the codebase 
[26]. This tool needs Galaxy workflows and tool usage files as inputs. Steps to create and 
deploy such a model on any Galaxy server are written in the “README” file [26].

Post processing

The usage of the tool recommendation system can be explored on Galaxy Europe. The 
API [50] considers the current sequence of tools from the workflow editor in Galaxy 
Europe or any tool for showing recommendations (Additional files 7 and 8). The input 
tool or a tool sequence is read by the trained model [49] to predict tools. These predicted 
tools may contain a few invalid tools that should not be used to extend the current work-
flow. In the post-processing step of the predicted tools, recommendations are refined to 
remove such tools from the predicted list of tools with incompatible datatypes that are 
unavailable or deprecated from Galaxy Europe. In addition, the refined list is then sorted 
in descending order of their usage in the last year in Galaxy Europe. It enables the highly 
used tool in the past year to appear at the top of the recommendations.

Recommended tools in Galaxy

After refining the recommendations made by the trained transformer model in the post-
processing step, the refined list of predicted tools is shown in Galaxy as two user inter-
face (UI) elements - one after running a tool that shows recommended tools as branches 
of a tree and the second in the Galaxy workflow editor inside a tool’s box. The right 
arrow on the top right corner inside a tool’s box shows a list of recommended tools. 
UI elements used in Galaxy for showing tool recommendations are shown in Additional 
files 7 and 8.

Future work
To improve the tool recommendation model’s generalisation performance, ways to inte-
grate each tool’s metadata in training workflows may be explored. Transformer provides 
a robust architecture to learn high-quality sequential representations. It may allow the 
model to improve the grouping of similar tools as recommendations. Another way to use 
a transformer is as a sequence-to-sequence model in which a part of a workflow is used 
as an input sequence and the remaining part as the output sequence. It could provide 
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insights into how many ways a tool or a sequence of tools can be used by recommend-
ing multiple future tool sequences. Exploring and utilising its potential for solving more 
complex biological problems, such as the prediction of post-translational modification 
(PTM) sites such as de-phosphorylation by learning to embed amino-acids and protein 
sequences and drug-target interaction prediction would be highly beneficial to the sci-
entific community.

Availability and requirements
Project name: Tool recommender system in Galaxy using Transformers. Project home 
page: https://​github.​com/​anupr​ulez/​galaxy_​tool_​recom​menda​tion_​trans​forme​rs. Oper-
ating system(s): Linux. Programming language: Python, XML. Other requirements: Ten-
sorFlow. License: MIT License. Any restrictions to use by non-academics: None
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