
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Xu et al. BMC Bioinformatics (2023) 24:461
https://doi.org/10.1186/s12859-023-05580-x

BMC Bioinformatics

Lokatt: a hybrid DNA nanopore basecaller
with an explicit duration hidden Markov model
and a residual LSTM network
Xuechun Xu1*, Nayanika Bhalla2, Patrik Ståhl2 and Joakim Jaldén1 

Abstract 

Background:  Basecalling long DNA sequences is a crucial step in nanopore-based
DNA sequencing protocols. In recent years, the CTC-RNN model has become the lead-
ing basecalling model, supplanting preceding hidden Markov models (HMMs)
that relied on pre-segmenting ion current measurements. However, the CTC-RNN
model operates independently of prior biological and physical insights.

Results:  We present a novel basecaller named Lokatt: explicit duration Markov model
and residual-LSTM network. It leverages an explicit duration HMM (EDHMM) designed
to model the nanopore sequencing processes. Trained on a newly generated library
with methylation-free Ecoli samples and MinION R9.4.1 chemistry, the Lokatt basecaller
achieves basecalling performances with a median single read identity score of 0.930,
a genome coverage ratio of 99.750%, on par with existing state-of-the-art structure
when trained on the same datasets.

Conclusion:  Our research underlines the potential of incorporating prior knowledge
into the basecalling processes, particularly through integrating HMMs and recur-
rent neural networks. The Lokatt basecaller showcases the efficacy of a hybrid
approach, emphasizing its capacity to achieve high-quality basecalling performance
while accommodating the nuances of nanopore sequencing. These outcomes
pave the way for advanced basecalling methodologies, with potential implications
for enhancing the accuracy and efficiency of nanopore-based DNA sequencing
protocols.

Keywords:  Basecalling, HMM, LSTM, Nanopore sequencing

Introduction
The concept of nanopore-sequencing was first drafted in 1989 as a hand-sketched illus-
tration by David Deamer on a page of a notebook [1]. 30 years later, the technology is
now commercially available from Oxford Nanopore Technologies (ONT) [2]. Nanop-
ore sequencing works by threading a single-stranded DNA (ssDNA) molecule through
a protein-formed pore in a membrane, where the sequence of nucleotides along the
ssDNA can be indirectly recorded through their effect on an ion current flowing through

*Correspondence:
chunx@kth.se; chunxxc@gmail.
com

1 Division of Information
Science and Engineering, KTH
Royal Institute of Technology,
11428 Stockholm, Sweden
2 Department of Gene
Technology, Science for Life
Laboratory, KTH Royal
Institute of Technology, Solna,
17165 Stockholm, Sweden

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05580-x&domain=pdf

Page 2 of 20Xu et al. BMC Bioinformatics (2023) 24:461

the pore. However, transforming the current measurements into a sequence of nucleo-
tide bases, i.e., basecalling, is challenging for several reasons [3]. Firstly, multiple nucleo-
tides along the ssDNA, also known as a k-mer where k is the number of nucleotides,
simultaneously affect the noisy current measurements at any given time. Secondly, the
ssDNA’s translocation speed through the pore is fast and unstable, leading to a random
and apriori unknown number of current samples per nucleotide base in the measure-
ments. Further, the short-term average translocation speed and the noise level are also
variable across a long sequencing run due to measurement induced changes in the
experimental conditions. These challenges made early nanopore sequencing unusable
for most clinical and research applications. Although these problems have now been
mitigated by, e.g., selecting and modifying various protein pores with narrower con-
striction, using improved DNA ratcheting enzymes to control the ssDNA’s translocation
speed, and better basecalling algorithms, the technology is still limited for many applica-
tions due to high error rates, amounts of material, and costs [4–6].

Early basecalling algorithms worked by first segmenting the current measurements
into a sequence of probabilistic events [7]. These events were then treated as observa-
tions in a graphical model, usually as a Hidden Markov model (HMM) with latent states
representing the dominating k-mers [1, 8]. The representation of observation probabili-
ties in HMMs went from simple Gaussian distributions parameterized by the mean and
variance of the ionic current during an event [9, 10] to more elaborate models such as
hierarchical Dirichlet processes [11]. With the probabilistic model in place, the final
basecalling step could be completed using standard inference algorithms for HMMs,
such as the Viterbi and the beam search (BS) algorithms. However, the performance
of the HMM remained severely limited by the quality of the segmentation step and the
choice of features used to model the distribution of the events.

To avoid the limitations of the HMM basecallers, most modern basecallers are based
on end-to-end deep neural networks (DNN), following the pioneering work that led
to the Chiron basecaller [12]. Specifically, Chiron applied a recurrent neural network
(RNN) to process the current measurements and a connectionist temporal classification
(CTC) layer from natural language processing (NLP) to replace the event-based HMM
for data alignment. The resulting network was then trained in an end-to-end manner.
The previously used event features have thus been replaced by neural networks, which
obviate the need for explicit feature engineering, and the HMMs were replaced by the
much simpler CTC structure. The ONT open-source software Bonito, which also uses
a CTC-RNN structure and end-to-end training, performs on par with the current state-
of-the-art commercial software Guppy, which presumably also uses a deep learning
solution.

Inspired by these pioneering projects, recent research into basecallers has mainly
explored variations in the neural network structure. Networks with recurrent units
such as long-short term memory (LSTM) networks and RNNs, temporal convolution
networks (TCNs), and attention/transformer networks such as the convolution-aug-
mented transformer have all showed acceptable basecalling accuracy when combined
with a CTC layer [13–15]. Another popular approach is to build the basecaller with the
attention structure. However, basecallers built solely with attention have not yet demon-
strated higher accuracy for basecalling [16]. This may be because nanopore signals have

Page 3 of 20Xu et al. BMC Bioinformatics (2023) 24:461 	

more vague transitions between nucleotides than words in NLP tasks, especially within
homopolymers or repeated sequences of purines or pyrimidines.

This said, the lack of linguistic rules for DNA sequences does not mean there is no
prior knowledge about the process that generated the nanopore data. For example, some
studies model the ratcheting enzyme, e.g., a helicase, as finite state space machines with
well-defined state transition probabilities driven by ATP concentration [17]. However,
it is not straightforward to incorporate such knowledge in basecallers solely built with
deep learning, although we believe that incorporating such prior knowledge could pro-
vide a pledge of in-depth understanding of nanopore sequencing and a new direction for
future developments.

With this in mind, we wanted to revisit HMMs for basecalling while explicitly address-
ing some of the shortcomings of prior HMM basecallers. To this end, we propose a new
hybrid basecaller called Lokatt that uses an explicit duration HMM (EDHMM) model
with an additional duration state that models the dwell time of the dominating k-mer.
The duration state allows the basecaller to be applied directly to the raw current meas-
urements by circumventing the need to pre-segment the data, which was problematic in
previous HMM basecallers. It also allows us to explicitly model the probability distribu-
tion of k-mer dwell times within the pore, e.g., based on a physical understanding of the
ratcheting enzyme. However, we still use a neural network to estimate the individual k-
mer probabilities, and we train our basecaller using end-to-end training.

We trained and evaluated the Lokatt model on a methylation-free Ecoli dataset
acquired locally with an ONT MinION device and Guppy. In order to establish a com-
parative baseline with the state-of-the-art architecture, we also trained the Bonito model
from scratch using the identical training dataset. Additionally, to assess the models’ gen-
eralization capability, we extended our evaluation by employing a dataset from [18] that
consists of ten different bacteria. Our benchmarking provides a proof of concept indicat-
ing that such hybrid models can exhibit comparable performance to the Bonito model
in raw read accuracy and consensus assembly quality when training on the same dataset
while opening up possibilities for engineered structures.

The Lokatt model
An HMM is a generative Bayesian model used to represent the relationship between
a sequence of latent states, which are assumed to be generated according to a Markov
process, and a corresponding sequence of observations. For the basecalling task at hand
we focus on building a hierarchical HMM structure to encode the temporal dependen-
cies between a k-mer sequence of length M, denoted by K � {K1,K2, . . . ,KM} where
Km ∈ K � {1, . . . , 4k} , and a current measurement sequence of length N, denoted by
{X1,X2, . . . ,XN } , where typically M ≪ N .

The duration of any state with a self-transition in a Bayesian state-space model is
always geometrically distributed. This is inconsistent with the dwell times reported
for both polymers and helicases [19, 20], two popular candidates for ratcheting
enzymes. This inconsistency causes basecalling errors in regions rich in homopoly-
mers since current variations are relatively small here, implying that the basecaller
can only rely on the statistical modeling of the translocation speed. We address this
problem via the introduction of a sequence of M explicit duration variables [21],

Page 4 of 20Xu et al. BMC Bioinformatics (2023) 24:461

denoted by D � {D1,D2, . . . ,DM} where Dm ∈ N . This provides flexibility in terms of
assigning an arbitrary dwell-time distribution. Each pair (Km,Dm) for m = 1, . . . ,M
thus encodes the mth k-mer and its dwell time. However, to encode potentially very
long dwell times using a limited number of states, we will also allow self-transitions
between the states encoding the distribution of Dm for m = 1, . . . ,M.

In the following two subsections, we formalize the hybrid data model on which
Lokatt is based, beginning with the EDHMM and continuing with the DNN observa-
tion model.

The EDHMM structure

We consider a hierarchical and generative Bayesian EDHMM for the nanopore data,
constructed as follows. We first draw the number of k-mers, M ∈ N , from some distri-
bution ζ(M) . Then, we draw the first-order Markov sequence of k-mers K starting with
K1 from a distribution ξ0(K1) followed by recursive draws of Km from Km−1 according to
a conditional distribution ξ(Km|Km−1) for m = 2, . . . ,M . At the same time, we draw the
sequence of dwell-times D by drawing each Dm independently from some distribution
η(D) for m = 1, . . . ,M . Finally, Dm measurements X(m,d) for d = 1, . . . ,Dm are drawn for
each k-mer Km for m = 1, . . . ,M , from a conditional distribution ϕ(X(m,d)|Km) . Here the
state variable d acts as a counter that counts down to the next draw of a k-mer.

For notational convenience, we let X denote the sequence of measurements in the order
of which they would be obtained, i.e.,

and use simply Xn for n = 1, . . . ,N  , where N =
∑M

m=1 Dm , when speaking of the nth
consecutive measurement. The joint probability distribution of the model is given in
Eq. (1).

To allow for computationally efficient inference using the model, we make two addi-
tional assumptions on the model: First, we assume that the sequence length is geometri-
cally distributed such that ζ(M) = (1− α)αM for some α ∈ [0, 1) ; Second, we assume
the duration distribution has a geometric tail such that η(D + 1) = γ η(D) for all D ≥ D̄
for some γ ∈ [0, 1) and some maximum explicit duration constant D̄ ∈ N . The value of
these assumptions is that they are inherently encoded in a finite state-space model using
self-transitions between states. The generative model can, with these assumptions, be
encoded as a state model with a start state A, an end state B, and |K| × D̄ intermediate
state pairs (K, d) representing joint k-mer and duration states. The intermediate states
are stochastically reset according to the explicit duration probability η upon drawing
new k-mers. The set of paths from A to B is isomorphic with the set of pairs (K ,D) , and
a pair can be drawn from p(K ,D) by a random walk from A to B with the following state
transition rules:

(1)

p(X ,K ,D) = ζ(M)× ξ0(K1)

M

m=2

ξ(Km|Km−1)

Transition model

×

M

m=1

η(Dm)

Duration model

×

M

m=1

Dm

d=1

ϕ(X(m,d)|Km)

Observation model

X �
{
X(1,D1), . . . , X(1,1), X(2,D2), . . . , X(M,DM), . . . , X(M,1)

}
,

Page 5 of 20Xu et al. BMC Bioinformatics (2023) 24:461 	

1.	 State A transitions into state (K1, d) with probability αξ0(K1)η(D = d) for any
d = 1, . . . , D̄ − 1 , into state ( K1, D̄) with probability α(1− γ)−1ξ0(K1)η(D̄) , and
directly into state B with probability 1− α.

2.	 State (Km, d) deterministically transitions into state (Km, d − 1) with the same k-mer
for any Km ∈ K , d = 2, . . . , D̄ − 1 , and m ≥ 1.

3.	 State (Km, D̄) self transition into state (Km, D̄) with the same k-mer with probability γ
for any Km ∈ K , and transitions into state (Km, D̄ − 1) with probability 1− γ.

4.	 State (Km−1, 1) transitions into state (Km, d) with new drawn k-mer with probabil-
ity αξ(Km|Km−1)η(d) for any (Km−1,Km) ∈ K×K and d = 1, . . . , D̄ − 1 , transitions
into state ( Km, D̄) with probability α(1− γ)−1ξ0(Km|Km−1)η(D̄) , and transitions
into state B with probability 1− α.

The state-space model is a standard implementation of an EDHMM [21]. The mth
time the process returns to a state of the form (Km, 1) for Km ∈ K marks the end of k-
mer Km in the data. Each measurement, Xn = X(m,d) , can also be drawn directly based
on the value of state (Km, d) , although we, in our particular implementation, assume
that the observations are independent of d.

The value of the state-space representation is that it allows for efficient inference
while maintaining model interpretability [22]. From the specific model presented
above, the EDHMM can be constructed into a graph with size (M × D̄)× N  , as illus-
trated in Fig. 1. The joint data likelihood and k-mer sequence p(K,X) can, using
this graph, be efficiently computed with Eq. (1) by applying the forward algorithm.
The data likelihood p(X) can, similarly, be efficiently computed by applying the for-
ward algorithm to a slightly altered graph, where Km ∈ K can be arbitrary. The two
graphs are sometimes referred to as the clamped and free-running models, respec-
tively [23, 24], and allow us to efficiently compute the posterior sequence likelihood
as p(K|X) = p(K,X)/p(X) . The conditionally most likely sequence of states and

Fig. 1  Illustration of EDHMM structure, with example of K3 = {K1, K2, K3} and X5 = {X1, . . . , X5} , hence
M = 3 , D̄ = 2 and N = 5 . States in the upper half represent (Km , d = 1) while states in lower half represent
(Km , d = 2) . The blue path goes through five states (K1, d = 2), (K1, d = 1), (K2, d = 2), (K2, d = 1), (K3, d = 1) ,
representing the sequence of pairs (K1,D1 = 2), (K2,D2 = 2), (K3,D3 = 1) ; The yellow path goes
through (K1, d = 1), (K2, d = 1), (K3, d = 2), (K3, d = 2), (K3, d = 1) , representing the sequence of pairs
(K1,D1 = 1), (K2,D2 = 1), (K3,D3 = 3)

Page 6 of 20Xu et al. BMC Bioinformatics (2023) 24:461

dwell-times (K ,D) can be computed using the Viterbi algorithm, and the condition-
ally most likely sequence of states K can be approximately obtained using any of our
recently introduced greedy marginalized BS (GMBS) algorithms [25].

Choosing the exact distributions in the model are also rather straightforward. The k-
mer transition probabilities ξ(Km|Km−1) can, for example, be estimated with a maximum
likelihood (frequency counting) estimator from a reference genome; or by using uni-
form probabilities for k-mers Km that originate from Km−1 , e.g., set to 14 for each possible
one-base transition and zero for any other combination, in order not to bias the model
towards any particular genome. The value of α needs to be set very close to 1 for the
model to plausibly generate reads on the order of hundreds of thousands of bases, and
for all intents and purposes, one can set α = 1 in the implementation of the inference
algorithms which we also do, although this does, strictly speaking, lead to an ill-defined
prior distribution. The dwell-time distribution η(Dm) can be estimated from sequences
realigned at the sample-to-k-mer level. In the particular realization of Lokatt studied
herein, we use a log-logistic distribution for η with parameters estimated using linear
regression from the average number of large changes in the signal amplitude per sample.
At the same time, we choose the tail factor γ so that η(D) provides a representative mean
dwell time. We also perform a read-specific duration estimation during training and
inference in our implementation since the average duration is longer for reads obtained
later during the sequencing run due to ATP depletion. Finally, we replaced ϕ(X(m,d)|Km)
with scores obtained from a match network ϕθ

n,K (X) , where K ∈ K , n = 1, . . . ,N and
where θ are the trainable weights of the (match) DNN described next.

The DNN structure

Lokatt relies on a neural network to dynamically extract the features from the current
samples, then map them into scores associated with each k-mer, i.e., ϕθ

n,K (X) . As we
want the basecaller to be capable of handling various lengths of inputs, we construct a
network with convolution kernels and recurrent units. In particular, we use two types of
blocks: i) two residual-convolution blocks consisting of three convolution layers, with
32, 64, 32 features respectively, and a skip connection [26]; and ii) two bi-directional
LSTM blocks [27], with 256 features in the first block and 1024 for the second block on
each direction. In the end, a dense layer is applied to map the 2× 1024 = 2048 features
into |K| = 4k output dimensions, which in Lokatt is 1024 with k = 5 . Lokatt contains
two of each block type, resulting in a total of 15.3 million weights. We used layer-wise
normalization and Swish activation between each layer in the network, which nonline-
arly interpolates between a linear function and the ReLU function [28, 29]. The complete
network is shown in Fig. 2A with a decomposition of the residual-convolution block in
Fig. 2B and the bi-directional LSTM block in Fig. 2C.

Methods
Data generation

To evaluate Lokatt, we performed ONT MinION sequencing on non-methylated E.coli
genomic DNA (D5016, Zymo Research) in two repeated runs. The choice of this DNA
type stemmed from an initial assumption regarding the potential significance of DNA
methylation in basecalling. The sequencing libraries were prepared by fragmenting the

Page 7 of 20Xu et al. BMC Bioinformatics (2023) 24:461 	

genomic DNA using Covaris g-TUBE and a Ligation sequencing kit (SQK-LSK109,
Oxford Nanopore). The first sequencing run, conducted in December 2019, used Flow
Cell chemistry R9.4.1 and was basecalled with Guppy 3.2.2. The second sequencing run
took place in November 2021 with Flow Cell chemistry R9.4.1 and Guppy 5.0, aimed
at obtaining a recent comparison with state-of-the-art software and generating distinct
datasets for training and evaluation purposes.

Furthermore, short-read Illumina sequencing was performed using TruSeq PCR-free
library preparation on the MiSeq sequencing platform (Illumina, USA). A draft assembly
was constructed from the Illumina data using SPAdes v3.6.0 [30], serving as the refer-
ence genome. The ground-truth nucleotide sequence for each raw read was obtained by
mapping its tentative sequence, provided by Guppy, to the reference genome using the
aligner program Minimap2 [31].

The data were divided into batches based on their position on the genome. We divided
the data from the 2019 sequencing run into batch 1.A and batch 1.B, by separating
reads corresponding to the first and second half of the reference genome, respectively.
The 2021 sequencing run was similarly divided into batch 2.A and batch 2.B. The data
in batch 1.A was used as training data for the model, while the remaining batches were
used for validation and performance evaluations. This allowed us to ensure that the
model was not over-fitted to the underlying genome by comparing the performance on
batch 2.A, where an obvious homology exists, with the performance on batch 1.B and
2.B where no clear homology between the training and test data should exist. Similar
data division strategies have been used for human genome data sets, where the training
and testing were based on different chromosomes [16].

Fig. 2  The overall structure of the Basecaller: A The main components of Lokatt, from the bottom up, are
normalized input, the neural network, the EDHMM layer, and output. The neural network is expanded into
main component layer blocks on the right side: two residual blocks, two bi-directional LSTM clocks, and a
dense layer. B The inner structure of the residual block consists of three layers of 1D convolution, followed
by layer-normalization, and the Swish activation, of which the outputs are taken and added with the inputs
of the residual block followed by cross-layer normalization. C The inner structure of the bi-directional LSTM
layer consists of two independent LSTM layers, one in the forward direction and the other in the backward
direction. The outputs of the two LSTM layers are then concatenated along the feature dimension, making
the output sequence the same length as the inputs

Page 8 of 20Xu et al. BMC Bioinformatics (2023) 24:461

We have also randomly selected 8000 reads from a data batch 1.A to generate the pre-
training data set. For each read and its corresponding nucleotide sequence, we applied
the Viterbi algorithm on the clamped EDHMM to find the most likely k-mer and dwell-
time sequence, establishing a sample-to-k-mer level alignment.Here, the EDHMM used
for such alignment assumes the Gaussian observation probabilities and is trained using
the Baum-Welch algorithm on data batch 1.A.

For further assessment of the decoding efficacy and model generalization capabilities,
we employed the test dataset established in [18], referred to as data batch 3. This dataset
encompasses a diverse spectrum of microbial species, including four distinct variants
of Klebsiella pneumoniae, along with six other bacterial entities, namely Acinetobacter
pittii, Haemophilus haemolyticus, Serratia marcescens, Shigella sonnei, Staphylococcus
aureus and Stenotrophomonas maltophilia. Notably, these samples comprise methylated
sequences and underwent sequencing utilizing both R9.4 and R9.4.1 chemistries during
the temporal interval spanning the years 2017 to 2018.

End‑to‑end training

The list of parameters contained in the Lokatt models includes the k-mer transition
probability ξ , dwell-time distribution η , tail factor γ and the weights of the DNN θ . As
described in Sect. 2.1, all parameters were directly obtained by performing maximum
likelihood estimation with the training data, except for the weights in Lokatt’s DNN,
which were trained end-to-end with (semi)-supervised learning using a modified condi-
tional maximum likelihood (CML) approach.

The vanilla CML objective maximizes the conditional log-likelihood, i.e. log p(K|X) ,
which is often decomposed as log p(K|X) = log p(K,X)− log p(X) . The clamped state-
space model is used to compute log p(K,X) and the free-running model is used to com-
pute log p(X) , respectively, the former with latent states representing the particular
target k-mer sequence and the latter with latent state from K representing all possible
sequences. Through the two graphs, the gradients of p(K,X) and p(X) with respect to
ϕθ
n,K (X) can be computed as follows [24]

and

where p(Kn = K |X,K) and p(Kn = K |X) represent the probability of a visit to k-mer
state K at time n, given the observation samples X with its corresponding state sequence
K or for all possible state sequences, respectively. The computation of ∂ϕθ

n,K (X)/∂θ can
be achieved through error back-propagation within the DNN structure using the built-in
functionality of standard software for deep learning.

During the training of Lokatt, we realized that this strategy led to a network that
did not generalize well and gave low testing scores. In a sense, the model learned to

∂p(K,X)

∂θ
=

p(Kn = K |X,K)

ϕθ
n,K (X)

∂ϕθ
n,K (X)

∂θ

∂p(X)

∂θ
=

p(Kn = K |X)

ϕθ
n,K (X)

∂ϕθ
n,K (X)

∂θ
,

Page 9 of 20Xu et al. BMC Bioinformatics (2023) 24:461 	

maximize log p(K|X) by minimizing log p(X) and hence did not provide a very good
model of the data. This leads the neural network to output low values of the score
ϕθ
n,K (X) overall. Therefore, we instead adopted a modified CML training strategy, where

we maximized a weighted linear combination of log p(K|X) and log p(X) to regularize
the model to provide a balance between posterior decisions and modeling of the data. In
particular, we explicitly used

with regularization factor � = 1
2 as the overall cost function. We also trained the network

with a cost function where p(X) was replaced by p(KBS,X) , i.e, with

again with � = 1
2 , but where KBS is the output sequence of k-mers from the GMBS

decoder presented in Sect. 3.3 and discussed in detail in [25]. The intuition behind
Eq. (2) is to make the training focus more on segments of the data where KBS differ from
the (correct) reference sequence K . The model trained with this approach showed higher
final basecalling accuracy. Therefore, it was used to benchmark Lokatt with the other
basecallers.

Training with the regularized CML loss from Eq. (2) requires two graphs representing
p(K,X) and p(KBS,X) to compute the gradients with respect to the output of the DNN,
i.e., ϕθ

n,K (X) , for n = 1, . . . ,N  . Note here that while p(X) is usually computed using the
free running mode, we use the clamped model for both p(K,X) and p(KBS,X) . In our
implementation, the size of the two graphs are D̄ ×M × 4096 and D̄ ×MBS × 4096 ,
where the lengths of K and KBS , i.e., M and MBS , are on the order of a few hundred bases
of overlapping k-mers. To manage the complexity of the inference on these graphs,
we rely on custom GPU implementations that can efficiently utilize the sparsity of the
graphs. In particular, we implemented the gradient calculation for the EDHMM as
custom CUDA kernels [32] and registered them as customized operations in Tensor-
flow2 [33]. The gradients were then back-propagated to the DNN to calculate weight
updates using a standard batch-based Adam optimizer [34] from Tensorflow. We trained
the whole DNN on the NSC Berzelius compute cluster using 8 Nvidia A100 GPUs,1 for
which training on one epoch of data took 576 GPU hours. The CUDA kernel code is
available in the Lokatt repository: https://​github.​com/​chunx​xc/​lokatt.

Prior to conducting end-to-end training, we first trained the DNN structure to pre-
dict k-mer probabilities per sample using the cross-entropy loss with the pre-training
data set, which contains sample-to-k-mer alignment. The pre-training step was used to
initialise the DNN to expedite the subsequent computationally intensive modified CML
training. One epoch of the pre-training data took 1.5 GPU hour.

Decoding with the GMBS

In the final stage of basecalling, often referred to as decoding, the objective is to find
the sequence of k-mer with the highest posterior probability, i.e. K = arg maxK p(K|X) .
The optimal solution to this problem is intractable due to the exponential growth of the

log p(K|X)+ � log p(X) = log p(K,X)− (1− �) log p(X)

(2)log p(K,X)− (1− �) log p(KBS,X) ,

1  Berzelius: https://​www.​nsc.​liu.​se/​suppo​rt/​syste​ms/​berze​lius-​getti​ng-​start​ed/

https://github.com/chunxxc/lokatt
https://www.nsc.liu.se/support/systems/berzelius-getting-started/

Page 10 of 20Xu et al. BMC Bioinformatics (2023) 24:461

search space as read length increases. This necessitates an exhaustive search across all
possible k-mer sequences with lengths M that not exceeds N. An alternative involves
utilizing the Viterbi algorithm, noted for its computational efficiency, to approximate
the optimal solution by identifying the jointly optimal sequence (K,D) that maximizes
p(K,D|X) . Nonetheless, this approach lacks a solid theoretical guarantee regarding esti-
mation quality. Moreover, the accurate decoding of the optimal k-mer sequence requires
the marginalization of duration states on the EDHMM graph, a challenge for which the
Viterbi algorithm lacks a dedicated strategy.

We instead rely on our newly proposed GMBS algorithm, which approximates the
maximum a posteriori solution by recursively searching and maintaining a fixed-size list
of k-mer sub-sequences Km � (K1, . . . ,Km) , i.e., beams, with high posterior probability
p(Km|Xn) for Xn � (X1, . . . ,Xn) and m ≤ n . Each beam also keeps track of the probabil-
ity of p(Km,Dm|Xn) from which it can compute the probability of new beams and mar-
ginalize over Dm as needed. The empirical experience in [25] has shown that the GMBS
algorithm performs better than the Viterbi algorithm on decoding the EDHMM graph
when we use 512 beams, with a significantly lower memory footprint. The GMBS perfor-
mances can be improved by increasing the number of beams at the cost of slower prun-
ing operations due to the sorting complexity increase. Specifically, the parallel sorting
algorithms implemented in the GMBS scale, for a beam list size of B, as O(log2B) [35].

In implementing the GMBS algorithm, we use a tree structure to store Km in mem-
ory, where common ancestry represents common initial sub-strings of Km . Since this
tree has at most N × B nodes, it can be efficiently implemented on the GPUs without
needing dynamic memory allocation. Finally, to extract the final approximate maximum
a posteriori k-mer sequence K = KM , we can read this tree backwards from the highest-
scoring leaf node to the root in a fashion similar to the backtracking step of the Viterbi
algorithm. A detailed explanation of the LFBS algorithm is provided in [25].

When basecalling with Lokatt, we divide each raw read into segments of length 4096
with an overlap of 296 measurements, and these segments were individually basecalled.
The uniform length of input sequences facilitates efficient parallel implementations of
Lokatt without harming the basecalling performance. The resulting output sequences
were subsequently assembled by aligning the beginning and ending portions of consecu-
tive pairs.

Results
Benchmarking

We benchmark the Lokatt model with the Bonito model over all three data batches.
Bonito [36] is an open-source research tool released by ONT that harnesses the state-of-
the-art CTC-RNN model. To investigate the impact of the model architecture, we inde-
pendently trained a Bonito model, referred to as Bonito Local, from scratch with the
same training data used in training the Lokatt basecaller. Additionally, we included the
performance from the fine-tuned Bonito basecaller dna_r9.4.1_e8_sup@v3.3 , denoted as
‘Bonito Sup’, which yields to give ‘super accuracy’ and is presumably trained on a more
extensive data set. For data batches 2.A and 2.B, we also incorporated results obtained
from ONT’s Guppy 5.0, which is ONT’s commercial basecaller. The data batches 1.A
and 1.B were sequenced with earlier version of Guppy 3.2.2, whose performance is

Page 11 of 20Xu et al. BMC Bioinformatics (2023) 24:461 	

2%− 5% lower than Guppy 5.0 and therefore excluded in the benchmark as it no longer
represents state-of-the-art. In the following sections, we will discuss the basecalling
quality in terms of raw read accuracy and assembly accuracy. In particular, we will also
report basecalling performances on homopolymer regions. The homopolymers denote
sequences of consecutive identical bases, presenting a substantial challenge in the base-
calling process due to their similar current modulation and variable duration for each
identical base.

Raw read accuracy

To access the raw read accuracy, we measured the shortest Levenshtein distance between
the basecalled sequences from Lokatt, Bonito Local and Bonito Sup and the reference
genome and generated their pair-wise alignments. This entails determining the mini-
mal number of single-state edits, such as insertions, deletions or substitutions, needed
to convert the basecalled sequence into the Illumina-generated reference genome [37],
which can be obtained using Minimap2 v.2.17-r941 with the default parameters. The
alignments are then quantified and reported as the sequence accuracy metrics, including
the identity, mismatch, insertion and substitution scores. Specifically, the identity score
is formulated as the ratio of matched bases to the total alignment columns as follows:

Similarly, the error scores, including mismatch, insertion and substitution, are calculated
as the ratios of their individual count to the overall alignment columns. In addition, we
also presented measurements of matched base length per read (read length), counts of
matched read entries (entry counts) and the cumulative number of matched bases. It is
important to note that both mean and median values were reported for accuracy met-
rics and read length. However, for our analysis, the focus was directed towards median
values. This choice is attributed to the significant data variance, wherein reads with low
accuracy are too noisy for Minimap2 to recognize [7, 18].

The outcomes of the benchmarking experiments are presented in Tables 1 to 5, each
highlighting the basecaller performances across different data batches.

Table 1 displays the training performance on data batch 1.A. Lokatt achieves a
median identity score of 0.926, surpassing Bonito Local by 0.012 but falling 0.028
behind Bonito Sup, with corresponding lower error rates than Bonito Local and
higher error rates than Bonito Sup. Regarding median read length, Lokatt records the
longest matched length of 2807, compared to both Bonito models’ 2731. However, for
recognizable read entries based on Minimap2, Lokatt processes 565393 entries. This

identity =
matches

matches+mismatches+ insertions+ deletions
.

Table 1  Training performances on data batch 1.A

*First five entries are listed as ‘mean/median’

Basecaller Identity Insertion Deletions Substitution Base per
read

Entry
counts

Bases
( 109)

Lokatt 0.912/0.926 0.018/0.016 0.045/0.034 0.025/0.020 4803/2937 565393 2.600

Bonito Local 0.900/0.914 0.019/0.017 0.051/0.038 0.030/0.026 4724/2885 562838 2.524

Bonito Sup 0.936/0.954 0.013/0.010 0.030/0.018 0.021/0.015 4757/2829 583471 2.686

Page 12 of 20Xu et al. BMC Bioinformatics (2023) 24:461

number is greater than Bonito Local’s 562838, yet less than Bonito Sup’s 583471. Con-
sequently, Lokatt demonstrates 3% fewer total matched bases than Bonito Sup, but 3%
more than Bonito Local.

Table 2 provides the test performance of data batch 1.B, which corresponds to reads
aligned with the second half of the E.coli genome. The results indicate the median
identity scores are within ±0.001 difference from the training scores shown in Table 1,
with error rates exhibiting a similar ±0.002 difference. This minimal variation between
batch 1.A and 1.B suggests that overfitting of the models is unlikely. Notably, Lokatt
continues to exhibit the longest read length, while Bonito Sup maintains the highest
entry count. This also contributes to Lokatt reporting 3% fewer matched bases than
Bonito Sup, but 3% more than Bonito Local.

Tables 3 and 4 display the testing result from data batch 2.A and 2.B, which were
generated from the same E.coli samples used in data 1 but more recently. Compared
to results from data batch 1.A and 1.B, all basecaller exhibit identity score 0.007–0.014
higher and, at most, error score 0.008 lower. Regarding the read length, Bonito Local
shows an increase of 5% , while both Lokatt and Bonito Sup demonstrate an increase
of 14% and 13% , respectively. The substantial increase in entry counts and total
matched bases is because data batch 2 sequenced 3–4 times more samples, which
makes the comparison trivial. Nonetheless, when comparing among basecallers on

Table 2  Testing performances on data batch 1.B

*First five entries are listed as ‘mean/median’

Basecaller Identity Insertion Deletions Substitution Read length Entry counts Bases
( 109)

Lokatt 0.912/0.926 0.018/0.016 0.046/0.035 0.024/0.020 4852/2961 523191 2.432

Bonito Local 0.899/0.913 0.020/0.018 0.052/0.040 0.030/0.026 4770/2917 521186 2.362

Bonito Sup 0.937/0.955 0.012/0.009 0.031/0.018 0.020/0.015 4799/2916 540834 2.513

Table 3  Testing performances on data batch 2.A

*First five entries are listed as ‘mean/median’

Basecaller Identity Insertion Deletions Substitution Read length Entry counts Bases
( 109)

Lokatt 0.903/0.933 0.016/0.013 0.051/0.033 0.029/0.020 5600/3398 1519444 8.132

Bonito Local 0.903/0.927 0.016/0.014 0.050/0.033 0.030/0.024 5392/3063 1467918 7.556

Bonito Sup 0.929/0.966 0.013/0.008 0.033/0.013 0.024/0.013 5588/3304 1579899 8.522

Guppy 5.0 0.907/0.936 0.019/0.015 0.042/0.027 0.031/0.021 5637/3391 1522808 8.153

Table 4  Testing performances on data batch 2.B

*First five entries are listed as ‘mean/median’

Basecaller Identity Insertion Deletions Substitution Read length Entry counts Bases
( 109)

Lokatt 0.904/0.933 0.016/0.013 0.052/0.034 0.028/0.020 5685/3494 1400186 7.612

Bonito Local 0.902/0.926 0.016/0.014 0.052/0.034 0.030/0.024 5473/3124 1353165 7.073

Bonito Sup 0.930/0.966 0.013/0.007 0.034/0.013 0.023/0.013 5660/3371 1459829 7.980

Guppy 5.0 0.907/0.935 0.020/0.015 0.043/0.027 0.030/0.021 5720/3480 1403826 7.631

Page 13 of 20Xu et al. BMC Bioinformatics (2023) 24:461 	

data batch 2, Lokatt demonstrates identity scores 0.006 and 0.007 higher than Bonito
Local data 2.A and 2.B respectively and 0.033 lower than Bonito Sup, while output 5%
fewer matched bases than Bonito Sup with 7% more than Bonito Local in total.

Additional results from Guppy 5.0, ONT’s commercial software at the experiment’s
time, are also reported in Tables 3 and 4. Guppy’s overall performance closely aligns with
Lokatt’s; Guppy exhibits a 0.003 higher identity score and basecalled only 0.25% more
total bases.

Table 5 presents the testing performance on data batch 3 with diverse species
sequenced at an earlier period. Table 5 only contains identity score and total base counts
due to space limit; however, a comprehensive performance table is available in Addi-
tional file 1: Table S1. Notably, all basecaller exhibit reduced identity scores for all spe-
cies except Staphylococcus aureus, most recently sequenced among data 3 and utilizing
the updated chemistry R9.4.1. Overall, Lokatt demonstrates an average identity score of
0.904, which declined by 0.029 on average and 0.049 on maximum, compared with data
2; Bonito Local shows an average identity score of 0.880, with a decline of 0.046 and
maximum decline of 0.079; Bonito Sup has an average 0.947 with a decline of 0.019 on
average and 0.031 in maximum. For total matched bases, Lokatt holds 6% more than
Bonito Local but 7% fewer than Bonito Sup and 0.3% fewer than Guppy.

In addition to the read accuracy, we also assessed the performance of basecallers
in handling homopolymer regions on data batch 2 and data batch 3 with respect to
each species, as presented in Table 6. The performance evaluation on the homopoly-
mer regions involved measuring the number of correctly basecalled homopolymers,
the total count of homopolymers within the basecalled area, and their ratio repre-
sented as accuracy. The number of homopolymers varies vastly across different data-
sets due to variations in genomes and data coverage rates. Specifically, the E. coli
dataset (data batch 2) stands out with nearly five times more homopolymers than the
other datasets because of its higher coverage. Aggregating the homopolymer num-
bers across all species, Bonito Sup demonstrated the highest accuracy at 0.859, sur-
passing both Bonito Local with an accuracy of 0.768 and Lokatt with 0.748. However,
Lokatt’s output sequences covered 0.4% more homopolymers than Bonito Sup and

Table 5  Testing performances on data batch 3

*Identity scores are listed as ‘mean/median’

Lokatt Bonito Local Bonito Sup

 Species Identity Bases ( 106) Identity Bases ( 106) Identity Bases
( 106)

A. pittii 0.897/0.914 105 0.873/0.899 101 0.936/0.957 109

H. haemolyticus 0.854/0.884 41 0.842/0.871 39 0.932/0.957 53

K. pneumonia(INF032) 0.887/0.900 506 0.845/0.873 480 0.925/0.938 526

K. pneumonia(INF042) 0.874/0.897 487 0.814/0.847 448 0.916/0.937 515

K. pneumonia(KSB2_1B) 0.874/0.895 356 0.827/0.860 324 0.912/0.935 378

K. pneumoniae(NUH29) 0.879/0.901 217 0.846/0.883 201 0.914/0.939 225

Ser. marcescens 0.894/0.910 118 0.877/0.898 113 0.933/0.952 123

Shi. sonnei 0.887/0.907 434 0.841/0.876 397 0.923/0.944 453

Sta. aureus 0.924/0.935 228 0.900/0.921 221 0.961/0.973 236

Ste. maltophilia 0.882/0.899 450 0.836/0.870 419 0.919/0.938 466

Page 14 of 20Xu et al. BMC Bioinformatics (2023) 24:461

8.7% more than Bonito Local. Yet, Lokatt exhibited 14.3% less correctly basecalled
homopolymers than Bonito Sup but 6.3% more than Bonito Local. It’s noteworthy
that as the length of homopolymers increased, Lokatt’s output consistently covered
more homopolymers than Bonito Local and was comparable to Bonito Sup. However,
Lokatt’s accuracy experienced a noticeable decline in such instances. Detailed perfor-
mance metrics for homopolymers of varying lengths in data batch 2 are provided in
Additional file 1: Table S2.

Basecaller complexity

Incorporating a DNN structure, both Lokatt and Bonito introduce computational
demands that can potentially restrict their applicability. Bonito 0.5.0 utilizes the CTC-
Conditional Random Field [38] top layer, integrated with convolution layers followed
by LSTM layers in alternating forward and reverse directions, totaling 26.9 million
parameters. In contrast, Lokatt adopts residual blocks comprising convolution layers,
followed by bi-directional LSTM layers and an EDHMM layer, collectively having 15.3
million parameters. It is noteworthy that Bonito’s employment of a stride of 5 in its con-
volution layer has effectively reduced the computationally expensive recurrent calcula-
tions within the LSTM layer by a factor of 5. Consequently, despite being nearly twice
as large as Lokatt, Bonito (50k base pair per second) achieves approximately a 5-fold
speed enhancement compared to Lokatt (8k base pair per second) when executed on the
Nvidia V100 GPU.

The inference speed of Lokatt can be enhanced by improving either the efficiency of
the DNN or the GMBS algorithm, as these two components collectively account for 98%
of the current inference runtime. Optimizing the DNN can involve further reducing the
model size, while the GMBS algorithm can benefit from code optimizations, such as

Table 6  Testing performances on homopolymers

Lokatt Bonito Local Bonito Sup

 Species Correct/total(106) Accuracy Correct/total(106) Accuracy Correct/
total(106)

Accuracy

Ecoli 621.7/824.8 0.754 598.5/768.3 0.779 729.8/844.1 0.865

A. pittii 6.0/7.8 0.768 5.3/6.9 0.766 6.2/7.1 0.871

H. haemolyti-
cus

2.4/3.3 0.734 2.2/3.0 0.748 3.2/3.6 0.882

K. pneumonia
(INF032)

21.9/30.9 0.711 17.3/24.9 0.694 21.0/25.6 0.823

K. pneumonia
(INF042)

22.3/32.0 0.698 16.2/23.7 0.685 20.4/25.2 0.810

K. pneumonia
(KSB2_1B)

13.2/19.0 0.691 11.7/17.1 0.683 14.9/18.6 0.803

K. pneumoniae
(NUH29)

9.4/13.3 0.710 7.4/10.4 0.710 8.9/11.0 0.804

Ser. marcescens 4.0/5.5 0.732 3.8/5.1 0.738 4.4/5.3 0.832

Shi. sonnei 19.0/26.5 0.718 15.0/21.8 0.690 19.2/23.2 0.829

Sta. aureus 15.7/19.4 0.812 12.2/15.1 0.803 14.1/15.3 0.921

Ste. maltophilia 11.0/15.6 0.705 10.3/15.0 0.683 12.5/15.6 0.796

summarize 746.8/998.0 0.748 699.8/911.4 0.768 854.5/994.4 0.859

Page 15 of 20Xu et al. BMC Bioinformatics (2023) 24:461 	

improved memory management. Inference time can also be achieved by reducing the
number of beams. However, it is important to note such optimizations may lead to a
trade-off with overall performance.

In the current implementation, the DNN consumes 40% of the runtime, and the GMBS
consumes 58% of the time. According to Amdahl’s law, optimizing either of these steps
in isolation can not lead to an improvement beyond a factor of 2 in inference speed.
That being said, it is worth considering that the complexity of the DNN and the GMBS
scales linearly with the length of the input. Emulating Bonito’s approach of introduc-
ing a stride of 5 in the early convolutional layers would, therfore, also increase Lokatt’s
inference speed by a factor of 5. However, this approach might compromise the model’s
interpretability regarding the dwell-time distribution, which is why we have yet to pur-
sue this further.

Consensus evaluation

The basecalled read sequences on data batch 2 from Lokatt, Bonito Local, Bonito Sup
and Guppy 5.0 were assembled, respectively. De novo genome assemblies were gen-
erated using Flye [39], resulting in four distinct draft genome assemblies. The evalua-
tion of these assemblies against the reference Illumina E.coli genome was executed
with Quast [40]. The assessment, as depicted in Fig. 3a, reveals a genome coverage of
99.750% for Lokatt, while the remaining three basecallers exhibit a slightly higher cover-
age of 99.757% . The proportions of GC content remain comparably consistent among
the four basecallers: Lokatt at 50.88% , Bonito Local at 50.84% , Bonito Sup at 50.82% ,
and Guppy 5.0 at 50.83% , in contrast to the reference genome’s 50.77% , as illustrated in
Fig. 3b. The same contig length distribution and contig connectivity are shared among
all basecaller’s assemblies, reflected in the NGAx plot in Fig. 3c. The NGA50 values,
specified in Fig. 3d, exhibit marginal disparities: 106101 for Lokatt, 106277 for Bonito
Local, 106360 for Bonito Sup, and 106293 for Guppy 5.0. Notably, Lokatt shows the least

Fig. 3  Assembly performances for basecallers: A The genome coverage ratios, computed as the ratio
between the total number of aligned bases in the contigs and the reference length. B The GC content
plot, showing the distribution of GC content in the contigs. C Cumulative length plot reflecting the length
growth of the aligned contigs against the reference genome. D The shortest aligned contig for which longer
and equal length contigs cover at least 50% of the assembly, i.e., NGA50 plot. E The misassemblies where
the contig has a stretched aligned position on the reference genome longer than 1k bases. F The average
number of mismatches per 100k aligned bases. (The detailed description of the terminologies used in the
plots can be found in the QUAST manual [40])

Page 16 of 20Xu et al. BMC Bioinformatics (2023) 24:461

number of misassemblies at 202, compared to 204 for both Bonito basecallers and 203
from Guppy, as depicted in Fig. 3e. Furthermore, the assessment of mismatches per 100k
base pairs, illustrated in Fig. 3f, highlights Lokatt’s score of 8.22k, which is notably lower
than Bonito Local’s 9.9 and Bonito Sup’s 9.69, and approaches the minimum value of
8.14 attained by Guppy. The complete assemblies report is available in Additional file 1:
Table S3.

Discussion
The evaluation of basecallers, Lokatt, Bonito Local, Bonito Sup, and Guppy 5.0, on vari-
ous datasets yielded insights into their performances and limitations. Analyzing raw
read accuracy in E.coli data batch 1 and 2, Lokatt’s performance emerged as competitive
with the Bonito basecallers. Lokatt achieved a slightly higher median identity score than
Bonito Local by 0.01, while falling slightly behind Bonito Sup by 0.033. The assessment of
generalization capabilities on the extra data batch 3 showed a decrease in performance
for both Lokatt and Bonito Local, with the latter experiencing a more notable decline.
This phenomenon aligns with reported observations in cross-species benchmarks [41],
where basecalling accuracy tends to decrease as the genomic distance between species
increases. For genomes with substantial divergence, such as those of Homo sapiens and
Lambda phage, this accuracy reduction can be significant. We attribute the observed
decline on data batch 3 in Lokatt and Bonito Local performance to this cross-species
effect, as they were exclusively trained on the first half of the E.coli genome. Bonito Sup
exhibited superior accuracy, although limited information was available regarding its
training data and methodology. Furthermore, the sequencing of data batch 3 using older
chemistry compared to the training data of Lokatt and Bonito basecallers also contrib-
uted to the decrease in performance. On handling the homopolymers, Lokatt’s output
covered a larger number of homopolymer regions compared with both Bonito basecall-
ers. However, this was associated with lower accuracy, especially for homopolymers of
lengths exceeding 5. Notably, the study underscored the Lokatt model’s capability to
effectively handle small-genome species sequencing data at a level comparable to the
Bonito model.

The assembly analysis introduced a noteworthy observation: the correlation between
genome coverage and raw read accuracy across basecallers isn’t always straightforward.
Specifically, Lokatt, despite having cumulatively 7% more matched bases than Bonito
Local and a close number to Guppy, exhibited marginally 0.007% lower genome coverage
on the E.coli genome. However, Lokatt maintained the least misassemblies and relatively
low mismatches per 100kbp. Bonito Local on the other hand, having the lowest identity
score and fewest base counts, achieves the same genome coverage as Bonito Sup, which
shares an identical model architecture with Bonito Local but with different weights. This
discrepancy might arise from differences in error-handling strategies among basecall-
ers, potentially indicating that Lokatt excels in specific genomic regions but faces chal-
lenges in others. Alternatively, this could be attributed to Lokatt’s current lack of quality
scores associated with basecalled nucleotides, which play a crucial role in the assembly
process and subsequent analyses. Furthermore, it’s important to note that the evaluation

Page 17 of 20Xu et al. BMC Bioinformatics (2023) 24:461 	

primarily focused on E.coli data, which may not fully capture the challenges posed by
diverse species and complex genomic regions.

The study also highlighted the distinct design and training strategies of Lokatt. Bonito
utilizes the CTC loss, where a blank state is manually inserted between every nucleotide.
The CTC loss typically leads to a dominance of blank predictions in the output of the
CTC-trained RNN [12], prompts presumably a less complicated task where the RNN
has learned to detect the transition moment of the nucleotides and treat everything else
as blank. However, it also potentially limits model flexibility. In contrast, Lokatt inte-
grates an EDHMM modelling the dynamic of the ratcheting enzyme, and is tasked to
learn the complete characteristics of the ion current measurements. We have separated
the complicated task into the pre-trained stage and the subsequent end-to-end training.
We observed that the pre-trained neural network could achieve a median basecalling
accuracy of around 0.905 on data batches 1 and 2. The subsequent CML training further
refined Lokatt’s accuracy by around 0.02–0.03. In light of this, although HMMs are capa-
ble and comparable in various respects, achieving fully interpretable parametric models
remains a challenge, leading to limitations in Lokatt’s performance.

Conclusion
This research project has culminated in the development, training, and evaluation of
Lokatt, a novel hybrid basecaller. The raw read performance of the Lokatt model was
better than the CTC-CRF structured Bonito model if trained on the same dataset, and
was comparable to ONT-trained Bonito and Guppy basecallers. Lokatt’s evaluation met-
rics for consensus sequencing resembled those of the other basecallers. Notably, Lokatt
demonstrated fewer misassemblies and mismatches per 100kbp, despite having a lower
overall genome coverage ratio. This scenario highlights the complex trade-offs that
basecallers need to make between accuracy, coverage, and the nature of the underlying
genomic sequences. Different basecallers may excel in different contexts, and the choice
of which to use depends on the specific goals of an analysis, such as accurate assembly of
specific regions versus comprehensive genome coverage.

Both Lokatt’s and Bonito’s architectures leverage DNN structures enhanced with
dynamic models to bridge the gap between input current measurements and output
bases and enable end-to-end training. However, Lokatt’s unique integration of an HMM
layer introduces a novel dimension of comprehension into the sequencing dynam-
ics, thereby creating opportunities for future refinements. Future versions of Lokatt
could potentially exploit a more sophisticated dynamic structure, informed by a deeper
understanding of the sequencing device and chemistry process. This study contributes
to the field by introducing an innovative basecaller model and insights into basecaller
performance.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05580-x.

Additional file 1: Table S1. Testing performances on data batch 3, including full sequence accuracy metrics of
the benchmarking basecallers; Table S2. Testing performances on homopolymers in data batch 2 and 3; Table S3.
Assemblies report on data batch 2, the comprehensive Quast genome assemblies report of all benchmark
basecallers.

https://doi.org/10.1186/s12859-023-05580-x

Page 18 of 20Xu et al. BMC Bioinformatics (2023) 24:461

Acknowledgements
The authors acknowledge support from the National Genomics Infrastructure (NGI) in Stockholm funded by Science for
Life Laboratory and the Knut and Alice Wallenberg Foundation for assistance with massively parallel sequencing. The
model training of Lokatt and basecalling were enabled by the supercomputing resource Berzelius provided by National
Supercomputer Centre at Linköping University and the Knut and Alice Wallenberg foundation. The assemblies of the
basecaller datasets were enabled by resources provided by the National Academic Infrastructure for Supercomputing in
Sweden (NAISS) and the Swedish National Infrastructure for Computing (SNIC) partially funded by the Swedish Research
Council through grant agreement no. 2022-06725 and no. 2018-05973. Finally, the authors wish to thank Josephine
Sullivan for helpful discussions regarding the dimensioning and training of the neural networks used in Lokatt. We would
also like to thank Carl Rubin and Remi-André Olsen for their input on nanopore sequencing and processing of data.

Author contributions
XX and JJ are the main contributors to the design of the work, analysis and interpretation of data, coding and writing
and revising the paper. NB and PS generated the E.coli data library, contributed to the assembly experiment and analysis,
and revised the paper. All authors read and approved the final manuscript.

Funding
Open access funding provided by Royal Institute of Technology. This work has been supported by the Swedish Research
Council Research Environment Grant QuantumSense [VR 2018-06169]; and the Swedish Foundation for Strategic
Research (SSF) grant ASSEMBLE [RIT15-0012].

Availability of data and materials
The datasets generated during and/or analysed during the current study, including fast5, fasta, fastq and the reference
genome files, are held on Zenodo, DOI 10.5281/zenodo.7970715 available on https://​zenodo.​org/​record/​79958​06.

Code availability
The code of Lokatt is available at this GitHub repository: https://​github.​com/​chunx​xc/​lokatt.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 12 September 2023 Accepted: 23 November 2023

References
	1.	 Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing. Nat Biotechnol. 2016;34:518–24. https://​

doi.​org/​10.​1038/​nbt.​3423.
	2.	 Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the

genomics community. Genome Biol. 2016. https://​doi.​org/​10.​1186/​s13059-​016-​1103-0.
	3.	 Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Ventra MD, Garaj S, Hibbs A, Huang X, Jovanovich

SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-
Cossa V, Wanunu M, Wiggin M, Schloss JA. The potential and challenges of nanopore sequencing. Nat Biotechnol.
2008;26:1146–53. https://​doi.​org/​10.​1038/​nbt.​1495.

	4.	 Sheka D, Alabi N, Gordon PMK. Oxford Nanopore sequencing in clinical microbiology and infection diagnostics.
Briefings Bioinf. 2021. https://​doi.​org/​10.​1093/​bib/​bbaa4​03.

	5.	 Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat
Biotechnol. 2021;39:1348–65. https://​doi.​org/​10.​1038/​s41587-​021-​01108-x.

	6.	 Sanderson N, Kapel N, Rodger G, Webster H, Lipworth S, Street T, Peto T, Crook D, Stoesser N. Comparison of R9.4.1/
Kit10 and R10/Kit12 Oxford Nanopore flowcells and chemistries in bacterial genome reconstruction. Microb
Genom. 2023. https://​doi.​org/​10.​1099/​mgen.0.​000910.

	7.	 Rang F, Kloosterman W, De Ridder J. From squiggle to basepair: computational approaches for improving nanopore
sequencing read accuracy. Genome Biol. 2018. https://​doi.​org/​10.​1186/​s13059-​018-​1462-9.

	8.	 Goyal P, Krasteva PV, Gerven NV, Gubellini F, Broeck IVD, Troupiotis-Tsaïlaki A, Jonckheere W, Péhau-Arnaudet G,
Pinkner JS, Chapman MR, Hultgren SJ, Howorka S, Fronzes R, Remaut H. Structural and mechanistic insights into the
bacterial amyloid secretion channel CsgG. Nature. 2014;516:250–3. https://​doi.​org/​10.​1038/​natur​e13768.

	9.	 Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing
data. Nat Methods. 2015;12:733–5. https://​doi.​org/​10.​1038/​nmeth.​3444.

	10.	 Ip CLC, Loose M, Tyson JR, Cesare MD, Brown BL, Jain M, Leggett RM, Eccles DA, Zalunin V, Urban JM, Piazza P,
Bowden RJ, Paten B, Mwaigwisya S, Batty EM, Simpson JT, Snutch TP, Birney E, Buck D, Goodwin S, Jansen HJ, O’grady
J, Olsen HE. MinION analysis and reference consortium: Phase 1 data release and analysis. F1000Res. (2015) https://​
doi.​org/​10.​12688/​f1000​resea​rch.​7201.1

https://zenodo.org/record/7995806
https://github.com/chunxxc/lokatt
https://doi.org/10.1038/nbt.3423
https://doi.org/10.1038/nbt.3423
https://doi.org/10.1186/s13059-016-1103-0
https://doi.org/10.1038/nbt.1495
https://doi.org/10.1093/bib/bbaa403
https://doi.org/10.1038/s41587-021-01108-x
https://doi.org/10.1099/mgen.0.000910
https://doi.org/10.1186/s13059-018-1462-9
https://doi.org/10.1038/nature13768
https://doi.org/10.1038/nmeth.3444
https://doi.org/10.12688/f1000research.7201.1
https://doi.org/10.12688/f1000research.7201.1

Page 19 of 20Xu et al. BMC Bioinformatics (2023) 24:461 	

	11.	 Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B. Mapping DNA methylation with
high-throughput nanopore sequencing. Nat Methods. 2017;14:411–3. https://​doi.​org/​10.​1038/​nmeth.​4189.

	12.	 Teng H, Cao MD, Hall MB, Duarte T, Wang S, Coin LJM. Chiron: translating nanopore raw signal directly into nucleo-
tide sequence using deep learning. GigaScience. 2018. https://​doi.​org/​10.​1093/​gigas​cience/​giy037.

	13.	 Zeng J, Cai H, Peng H, Wang H, Zhang Y, Akutsu T. Causalcall: nanopore basecalling using a temporal convolutional
network. Front Genet. 2020. https://​doi.​org/​10.​3389/​fgene.​2019.​01332.

	14.	 Lv X, Chen Z, Lu Y, Yang Y. An end-to-end Oxford Nanopore basecaller using convolution-augmented transformer.
In: 2020 IEEE international conference on bioinformatics and biomedicine, BIBM 2020:337–42. https://​doi.​org/​10.​
1109/​BIBM4​9941.​2020.​93132​90.

	15.	 Huang N, Nie F, Ni P, Luo F, Wang J. SACall: a neural network basecaller for Oxford Nanopore sequencing data based
on self-attention mechanism. IEEE/ACM Trans Comput Biol Bioinf. 2020. https://​doi.​org/​10.​1109/​TCBB.​2020.​30392​44.

	16.	 Konishi H, Yamaguchi R, Yamaguchi K, Furukawa Y, Imoto S. Halcyon: an accurate basecaller exploiting an encoder-
decoder model with monotonic attention. Oxford Bioinf. 2020;37(9):1211–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btaa9​53.

	17.	 Craig JM, Laszlo AH, Brinkerhoff H, Derrington IM, Noakes MT, Nova IC, Tickman BI, Doering K, Leeuw NFD, Gundlach
JH. Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers.
PNAS. 2017;114:11932–7. https://​doi.​org/​10.​6084/​m9.​figsh​are.​54542​89.

	18.	 Wick RR, Judd LM, Holt KE. Evaluate performance of neural network basecalling tools for Oxford Nanopore sequenc-
ing. Genome Biol. 2019. https://​doi.​org/​10.​1186/​s13059-​019-​1727-y.

	19.	 Sarkozy P, Jobbágy AP. Calling homopolymer stretches from raw nanopore reads by analyzing k-mer dwell times.
IFMBE Proc. 2017;65:241–4. https://​doi.​org/​10.​1007/​978-​981-​10-​5122-7_​61.

	20.	 Fornili A, Kapanidis AN, Meli M, Sustarsic M, Craggs TD, Colombo G. DNA polymerase conformational dynamics and
the role of fidelity-conferring residues: insights from computational simulations. Front Mol Biosci. 2016. https://​doi.​
org/​10.​3389/​fmolb.​2016.​00020.

	21.	 Yu S, Kobayashi H. Practical implementation of an efficient forward-backward algorithm for an explicit-duration
hmm. Environ Prot Eng. 2007. https://​doi.​org/​10.​1109/​TSP.​2006.​872540.

	22.	 Wainwright MJ, Jordan MI, et al. Graphical models, exponential families, and variational inference. Found Trends
Mach Learn. 2008;1(1–2):1–305.

	23.	 Krogh A. Hidden Markov models for labeled sequences. In: Proceedings of the 12th IAPR International Conference
on Pattern Recognition, Vol. 3-Conference C: Signal Processing (Cat. No. 94CH3440-5), vol. 2, pp. 140–144 (1994).
IEEE.

	24.	 Riis S. Hidden Markov models and neural networks for speech recognition. Ph.D. thesis, Technical University of
Denmark (1999)

	25.	 Xu X, Jaldén J. Marginalized beam search algorithms for hierarchical HMMs. arXiv e-prints, 2305–11752 (2023)
https://​doi.​org/​10.​48550/​arXiv.​2305.​11752arXiv:​2305.​11752 [cs.LG]

	26.	 He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9908 LNCS, 630–645
(2016) https://​doi.​org/​10.​1007/​978-3-​319-​46493-0_​38arXiv:​1603.​05027

	27.	 Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans Signal Process. 1997;45:2673–81. https://​
doi.​org/​10.​1109/​78.​650093.

	28.	 Ramachandran P, Zoph B, Brain QVLG. Searching for activation functions. 6th International Conference on Learning
Representations, ICLR 2018 - Workshop Track Proceedings (2017) https://​doi.​org/​10.​48550/​arxiv.​1710.​05941.

	29.	 Elfwing S, Uchibe E, Doya K. Sigmoid-weighted linear units for neural network function approximation in reinforce-
ment learning. Neural Netw. 2017;107:3–11. https://​doi.​org/​10.​48550/​arxiv.​1702.​03118.

	30.	 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD,
Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. Spades: a new genome assembly algorithm
and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://​doi.​org/​10.​1089/​cmb.​2012.​
0021.

	31.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100. https://​doi.​org/​10.​
1093/​bioin​forma​tics/​bty191.

	32.	 NVIDIA, Vingelmann P, Fitzek FHP. CUDA, release: 10.2.89 (2020). https://​devel​oper.​nvidia.​com/​cuda-​toolk​it
	33.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S,

Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore
S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas
F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org (2015). https://​www.​tenso​rflow.​org/.

	34.	 Diederik K, Jimmy B. Adam: A method for stochastic optimization. International Conference on Learning Represen-
tations (2014).

	35.	 Batcher KE. Sorting networks and their applications. In: Proceedings of the April 30–May 2, 1968, Spring Joint Com-
puter Conference. AFIPS ’68 (Spring), pp. 307–314. Association for Computing Machinery, New York, NY, USA (1968).
https://​doi.​org/​10.​1145/​14680​75.​14681​21 .

	36.	 plc ONT. Nanoporetech/bonito: A Pytorch basecaller for Oxford Nanopore reads. https://​github.​com/​nanop​orete​ch/​
bonito (2020).

	37.	 Navarro G. A guided tour to approximate string matching. ACM Computing Surveys 33 (2000) https://​doi.​org/​10.​
1145/​375360.​375365.

	38.	 John L, Andrew M, CN, P.F. Conditional random fields: Probabilistic models for segmenting and labeling sequence
(2001).

	39.	 Mikhail Kolmogorov YL. PAP. Jeffrey Yuan: Assembly of long, error-prone reads using repeat graphs. Nature Biotech-
nology, 540–546 (2019) https://​doi.​org/​10.​1038/​s41587-​019-​0072-8.

	40.	 Gurevich A, Saveliev V, Vyahhi N, Tesler G. Quast: quality assessment tool for genome assemblies. Bioinformatics.
2013;29:1072–5. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btt086.

https://doi.org/10.1038/nmeth.4189
https://doi.org/10.1093/gigascience/giy037
https://doi.org/10.3389/fgene.2019.01332
https://doi.org/10.1109/BIBM49941.2020.9313290
https://doi.org/10.1109/BIBM49941.2020.9313290
https://doi.org/10.1109/TCBB.2020.3039244
https://doi.org/10.1093/bioinformatics/btaa953
https://doi.org/10.1093/bioinformatics/btaa953
https://doi.org/10.6084/m9.figshare.5454289
https://doi.org/10.1186/s13059-019-1727-y
https://doi.org/10.1007/978-981-10-5122-7_61
https://doi.org/10.3389/fmolb.2016.00020
https://doi.org/10.3389/fmolb.2016.00020
https://doi.org/10.1109/TSP.2006.872540
https://doi.org/10.48550/arXiv.2305.11752
http://arxiv.org/abs/2305.11752
https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/1603.05027
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.48550/arxiv.1710.05941
https://doi.org/10.48550/arxiv.1702.03118
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://developer.nvidia.com/cuda-toolkit
https://www.tensorflow.org/
https://doi.org/10.1145/1468075.1468121
https://github.com/nanoporetech/bonito
https://github.com/nanoporetech/bonito
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1093/bioinformatics/btt086

Page 20 of 20Xu et al. BMC Bioinformatics (2023) 24:461

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	41.	 Marc P-G, Ridder J. Comprehensive benchmark and architectural analysis of deep learning models for nanopore
sequencing basecalling. Genome Biol (2023) https://​doi.​org/​10.​1186/​s13059-​023-​02903-2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/s13059-023-02903-2

	Lokatt: a hybrid DNA nanopore basecaller with an explicit duration hidden Markov model and a residual LSTM network
	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	The Lokatt model
	The EDHMM structure
	The DNN structure

	Methods
	Data generation
	End-to-end training
	Decoding with the GMBS

	Results
	Benchmarking
	Raw read accuracy
	Basecaller complexity
	Consensus evaluation

	Discussion
	Conclusion
	Anchor 21
	Acknowledgements
	References

