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Background
The International Classification of Diseases, 10th Revision, Clinical Modification (ICD-
10-CM) [1] is a standardized classification system for categorizing diseases, disor-
ders, and health conditions. ICD-10 was developed by the World Health Organization 
(WHO) and adapted for use in the United States as ICD-10-CM by the National Center 
for Health Statistics (NCHS) [2]. The standard plays a crucial role in the analysis of elec-
tronic medical records (EMRs) or electronic health records (EHRs) for several reasons: 

1.	 Consistency and Standardization: The ICD-10-CM allows for a consistent and stand-
ardized method of coding and documenting medical conditions across healthcare 
providers and facilities. This helps to ensure accurate and uniform data exchange, 
analysis, and comparison.
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2.	 Data Analysis and Research: The ICD-10-CM codes can be used to analyze patient 
data for clinical research, epidemiological studies, and public health surveillance. It 
helps to identify trends and patterns in diseases, monitor the effectiveness of treat-
ments, and develop better prevention and management strategies.

3.	 Quality Measurement and Improvement: ICD-10-CM codes can be used to evaluate 
the quality of care provided by healthcare facilities, monitor patient outcomes and 
identify areas for improvement. This information can be used to enhance the overall 
healthcare delivery system.

4.	 Reimbursement and Billing: ICD-10-CM codes play a vital role in healthcare reim-
bursement by providing a standardized method to classify and report medical condi-
tions. Insurance companies and other payers use these codes to determine appropri-
ate payments for medical services rendered.

5.	 Health Policy and Planning: ICD-10-CM codes help health authorities and policy-
makers to identify population health needs, allocate resources, and develop targeted 
healthcare policies and interventions.

While ICD-10-CM codes do provide a consistent and comprehensive set of categories, 
their incorporation into statistical and machine learning analyses can be challenging for 
several reasons. First, in the 2019 version of the standard, there were 71,932 categories, 
increasing to 72,184 categories in 2020; 72,616 categories in 2021; and 72,750 categories 
in 2022. As a result, analyses using these codes, where the set of codes is not restricted 
to a smaller set, must take into account their high dimensionality or will require a large 
number of training samples in order to fit consistent models. Second, categorical vari-
ables are usually incorporated into analyses with a contrast encoding such as treatment, 
helmert, etc. Contrast numeric representations are orthogonal or, under appropriate 
statistical assumptions, independent with respect to their categories. However, ICD-
10-CM codes represent a hierarchical structure, where codes are organized into chap-
ters, blocks, and categories based on the type and anatomical location of the diseases or 
conditions. Applying traditional contrast encoding methods may not fully capture this 
hierarchical information, potentially resulting in a loss of valuable context and relation-
ships between codes.

Researchers have considered alternative encoding methods or feature extraction 
techniques that can better represent the hierarchical structure of ICD-10-CM codes. 
However, incorporating both hierarchical structure and other contextual informa-
tion in a general way can be difficult. The previous generation of word embeddings, 
which provide vector-encodings of words, were shown effective for these types of 
tasks, with models like med2vec [3] providing improved abilities to predict patient 
mortality; inpatient2vec [4] to predict clinical events; EHR2Vec [5] to help ana-
lyze sequences of patient visits; and cui2vec [6] to learn medical concepts based 
on multimodal clinical data. These models have been foundational in advancing the 
capabilities of machine learning models in understanding and generating human lan-
guage. These models are shallow, two-layer neural networks that are trained to recon-
struct linguistic contexts of words. Word embeddings produced by Word2Vec [7] 
and previously mentioned variants, provide vector representations of words in a con-
tinuous vector space where semantically similar words are mapped to nearby points. 
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Within this class of models there are two main training algorithms: Continuous Bag 
of Words and Skip-Gram models [8]. The former predicts target words (e.g., ’apple’) 
from source context words (’the fruit’). The latter performs the inverse and predicts 
source context words from the target words, and tends to perform better on larger 
datasets and produces higher-quality embeddings for less frequent words.

Despite their advantages, word embeddings also have certain limitations. First, 
word embeddings are typically generated at the word or code level, and while word 
embeddings can capture semantic similarities, they ofen struggle to represent hier-
archical representations like those found in ICD-10-CM codes. Second, traditional 
word embeddings generate a single vector for each word regardless of context. This 
means that the same code can have different meanings depending on where and when 
it is used. This is something these models do not capture. Third, word embeddings 
can have difficulty handling rare codes. Word embeddings typically require a suffi-
cient number of training samples to learn meaningful representations. For rarely used 
ICD-10-CM codes, the learned embedding might not be reliable. Fourth, traditional 
word embeddings provide static representations and do not change over time. How-
ever, in healthcare, the meaning and usages of certain codes can evolve, and these 
models cannot capture dynamic changes. Finally, the quality and representativeness 
of the word embeddings depend on the training data used to generate them. If the 
training data does not adequately cover the entire spectrum of medical conditions or 
encounters, the embeddings may not capture all relevant relationships or information.

The Transformer model [9] is a more recent architecture primarily designed for 
handling sequences, and it has become the foundation for many recent models in nat-
ural language processing, including the Bidirectional Encoder Representation Trans-
former (BERT) [10], the Generative Pre-Trained Transformer (GPT) [11], and the 
Text-to-Text-Transfer-Transformer T5 [12]. The Transformer model’s main innova-
tion is its self-attention mechanism, which weighs input elements dynamically based 
on their content and relationship. This allows the model to focus on different parts of 
the input for different tasks or even different parts of the same task.

These models fall under the category of Large language models (LLMs) and address 
some of the shortcomings of traditional word embeddings through a combination 
of advanced techniques and architectures. Unlike traditional word embeddings that 
generate static representations, LLMs generate contextualized embeddings. These 
embeddings take into account the surrounding words or tokens, allowing for a more 
nuanced representation of words and codes in different contexts. This helps in cap-
turing the semantic relationships between codes more effectively. These models are 
pre-trained on vast amounts of text data, allowing them to learn general language 
representations before being fine-tuned for specific tasks. This pre-training enables 
the models to leverage existing knowledge and adapt more effectively to new tasks, 
even with limited task-specific data. LLMs can be incrementally updated or fine-
tuned with new data, allowing them to adapt to evolving medical knowledge and 
practices more effectively than static word embeddings. And, while not explicitly 
designed for hierarchical data like ICD-10-CM codes, LLMs can implicitly capture 
aspects of structured hierarchical relationships through their deep architectures and 
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the context in which codes appear. This can help capture different levels of granularity 
and relationships between codes more effectively than traditional word embeddings.

Vector embeddings attempt to optimize the conditional probability of observing 
the actual output word given an input word (or vice versa, depending on the variant 
used). For instance, in the skip-gram variant, given a word wi and a context word wj , 
the model is trained to maximize the following

where vw and v′w represent the “input” and “output” vector representations of a word w, 
and the summation in the denominator is over all words in the vocabulary. The vectors 
vw and v′w are the word embeddings learned by a similarity model.

LLM models also start by converting each word into an initial word embedding 
using an embedding matrix. However, these initial embeddings are then updated 
based on the context of the word. This is done by passing the embeddings through 
several layers of a transformer model, which uses self-attention mechanisms. The out-
put of the transformer is a contextual embedding for each word. Mathematically, the 
self-attention mechanism can be represented as

where Q, K, and V represent the query, key, and value matrices, which are derived from 
the input embeddings. The softmax function ensures that the weights of different words 
sum to 1, and the 

√
d in the denominator is a scaling factor that improves the stability 

of the gradients during training. The resulting matrix product is a weighted sum of the 
value vectors, where the weights depend on the similarity between the query and key 
vectors.

To generate an embedding for a sentence or description, one common approach is 
to take the average of the contextual embeddings of the words in the sentence:

Here, E(D) is the embedding for the description, E(wi) is the contextual embedding for 
word wi , and the sum is over all words in the description.

The key difference between the two methods is that vector embeddings generate 
a single, static embedding for each word, while LLMs generate a dynamic, context-
dependent embedding. This allows an LLM to capture nuances in meaning that can-
not be represented with static embeddings.

There are several BERT or similar transformer-based biomedical models that can 
been used to generate embeddings for medical corpuses including ClinicalBERT [13, 
14], BioBERT [15], and Med-BERT [16], but to our knowledge none of the current 
literature includes the applications of these models specifically for the purpose of 
generating embeddings for ICD-10-CM code that can be consumed as readily avail-
able data sets. These data sets represent a valuable resource for practioners who are 
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interested in an information-rich representation of those codes, without needing to 
acquire models, embed data, and process them.

This paper describes data sets provided as .csv files, which are available online in 
the form of a crosswalk from ICD-10-CM codes to embeddings (a numeric vector of 
values), based on their descriptions. A sample of five descriptions and their embeddings 
are provided in Additional file  1. The embeddings were generated using the BioGPT 
LLM [17],which was trained on the biomedical literature including PubMed [18], Pub-
Med Central [19], and clinical notes from MIMIC-III [20]. This model was shown to be 
superior at encoding context and relational information than competitors in the medi-
cal domain. Since the dimension of the embedding LLM is relatively high (42384), we 
provide dimension-reduced versions in 1000, 100, 50, and 10 dimensions. The model 
generating the data was validated in two ways. The first way validates the dimension 
reduction. The embedding data were compressed using an auto-encoder. The out-of-
sample accuracy of a validation set is examined as well as the performance of the model 
for other versions (by year) of the ICD-10-CM specification. Our results show that we 
can reduce the dimension of the data down to as few as 10 dimensions while maintain-
ing the ability to reproduce the original embeddings, with the fidelity decreasing as the 
reduced-dimension representation decreases. The second way validates the conceptual 
representation by creating a supervised model to estimate the ICD-10-CM hierarchical 
categories. Again, we see as the dimension of the compressed representation decreases, 
the model accuracy decreases. Since multiple compression levels are provided, users 
are free to choose whichever suits their needs, allowing them to trade off accuracy for 
dimensionality.

The paper proceeds as follows. The next section provides a high-level description of 
the BioGPT and the embedding along with the construction of the autoencoder used to 
reduce the dimension of the embedding representation. That section then provides vali-
dation for both the dimension reduction as well as the representation. The third section 
provides an example of how to use the dataset to cluster ICD-10-CM codes using the R 
programming environment [21]. The final section provides a broader look at the incor-
poration of LLM approaches to these types of data.

The data sets and code to generate them are available in a public repository on Github.1 
The data are licensed under the Creative Commons Attribution NonCommercial Share-
Alike 4.0 International License.2 The code is licensed under GPL-v2.3

Construction and content
The provided data are generated by embedding ICD-10-CM descriptions using the 
BioGPT-Large model, which comprises 1.5 billion parameters and is accessible via the 
Hugging Face model repository,4 and then performing a dimension reduction using an 
autoencoder. The embedding process involves tokenizing textual phrases into tokens 
(words, subwords, or characters) and mapping them to unique vocabulary IDs. Token 

1  https://​github.​com/​kanep​luspl​us/​icd-​10-​cm-​embed​ding.
2  https://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​sa/4.​0/​legal​code.
3  https://​www.​gnu.​org/​licen​ses/​old-​licen​ses/​gpl-2.​0.​en.​html.
4  https://​huggi​nface.​co.

https://github.com/kaneplusplus/icd-10-cm-embedding
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://hugginface.co


Page 6 of 13Kane et al. BMC Bioinformatics          (2023) 24:482 

IDs are passed through an embedding layer, resulting in a sequence of continuous 
embedding vectors. Positional encodings are added elementwise to these vectors, ena-
bling the model to capture token order and relative positions. The embeddings are then 
contextualized by passing them through the model’s layers. An attention mask selec-
tively controls information flow in the attention mechanism, allowing the model to 
weigh the importance of input tokens when generating contextualized embeddings in a 
42384-dimension space.

The embedding is then compressed using an autoencoder. The autoencoder used here 
is a series of fully connected layers where the number of hidden nodes is approximately 
one order of magnitude smaller than the previous layer and then an order of magnitude 
larger until the output layer. For example, the autoencoder compressing to 10 dimen-
sions has layers of size 42384, 1000, 100, 50, 10, 50, 100, 1000, 42384. Models whose 
dimension is large use the same structure while retaining only the appropriate layers. 
A practioner who would like to make use of these embeddings for their own modeling 
task, can download these data, substituting the embedding values for the ICD 10 repre-
sentation. The values are information-rich and will be useful in a variety of supervised 
and unsupervised tasks involving medical research.

Validating the dimension reduction

The autoencoder compressing the LLM embedding was fit on the 2019 ICD-10-CM 
descriptions for 20 epochs, with batch sizes 64, 128, and 256. The mean-square error loss 
between the embedding and autoencoder estimate, and a validation data set comprised 
of random subset of 10% of the samples. The model performance is shown in Table 1. 
Based on these results the models with the best validation loss for each of the com-
pressed embedding dimensions selected for further validation and eventual distribution. 
In addition, benchmarking the validation loss serves two purposes. First, it establishes 
a relative measure of performance quantifying the compression loss and allowing us to 
pick the best set of model parameters to generate the embedding data. Second, the vali-
dation loss in particular quantifies how much loss is incurred by new ICD-10-CM codes 
showing that the loss is comparable to, and often less than, the error in the training data.

Table 1  The autoencoder parameters and performance ordered by increasing validation loss

Embedding dimension Batch size Training loss Validation loss

100 64 0.534 0.339

100 128 0.487 0.381

50 256 0.403 0.392

1000 64 0.542 0.402

100 256 0.556 0.444

1000 128 1.073 0.486

10 256 0.599 0.594

10 128 0.628 0.609

10 64 0.679 0.641

50 64 1.134 0.699

1000 256 30.435 0.803

50 128 1.053 0.894
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In addition to the 2019 validation, the models selected for distribution were tested 
on the 2020-2022 data sets to ensure their performance is comparable over years. The 
results are shown in Table 2. It should be noted that the ICD-10-CM codes do not vary 
much from one year to the next, so we should not expect large differences. As expected, 
the mean square error and coefficients of determination are similar to the 2019 data. 
For a given embedding dimension it can be seen that neither the coefficient of deter-
mination nor the mean square error change significantly over years indicating that the 
same autoencoder could likely be used in subsequent years, while incurring similar loss. 
This also implies that an incremental approach could be taken in subsequent years when 
regenerating the embeddings where only new codes would need to be processed.

Validating the embedding representation

As a final step in the validation process, we use the fact that in addition to the descrip-
tion, the ICD-10-CM codes themselves carry hierarchical information, which can be 
used to ensure that conceptual relationships are preserved in the compressed embed-
dings. In particular, the leading letter and two numeric values categorize codes For 
example, codes A00-B99 correspond to infectious and parasitic diseases, C00-D49 
correspond to neoplasms, etc. There are a total of 22 codes. The full table of catego-
ries is provided in the Additional file 1. We can therefore ensure that at least some of 
the relevant relationships are preserved in the compressed embedding representation 
by confirming that the categories can be estimated at a rate higher than chance using a 
supervised model. Furthermore, we can quantify how much relevant predictive informa-
tion is lost in lower-dimensional representations.

The training data consists of a one-hot encoding of the ICD-10-CM categories as 
the dependent variable and the compressed embedding values as the values. The 
model consists of two hidden layers with 100 nodes each. The loss function selected 

Table 2  The autoencoder validation performance ordered by year

Year of Published ICD-10-CM 
Code

Embedding dimension Mean square error Coef. of 
determination

2019 10 0.593 0.086

2019 50 0.388 0.056

2019 100 0.336 0.049

2019 1000 0.400 0.058

2020 10 0.593 0.086

2020 50 0.388 0.056

2020 100 0.336 0.049

2020 1000 0.400 0.058

2021 10 0.594 0.086

2021 50 0.389 0.056

2021 100 0.337 0.049

2021 1000 0.401 0.058

2022 10 0.595 0.086

2022 50 0.390 0.056

2022 100 0.338 0.049

2022 1000 0.402 0.058
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was categorical cross-entropy. The model was trained using 30 epochs and a valida-
tion data set comprised of 10% of samples, chosen at random.

To contextualize the results, we fit the same model to four BERT embeddings that 
have also been trained on biomedical corpuses. The first, MedBERT [22] was trained 
with 57.46M tokens collected from biomedical-related data sources and biomedical-
related articles from Wikipedia. The second, PubMedBERT-MS-MARCO [23] was 
first trained on Pubmed abstracts and full texts and then fine-tuned using the MS-
MARCO data set [24] to be optimized for information retrieval task in the medical/
health text domain. The third, SapBERT-PubMedBERT, was first trained on Pubmed 
abstracts and text, and then fine-tuned semantic relationships between relevant med-
ical entities using UMLS [25] biomedical ontologies. The fourth, ClinBERT [13] was 
initialized from BERT. Then the training followed the principle of masked language 
model, in which given a piece of text, we randomly replace some tokens by MASKs, 
special tokens for masking, and then require the model to predict the original tokens 
via contextual text.

The performance in terms of both the out-of-sample accuracy and the out-of-sam-
ple balanced accuracy [26] is shown in Table 3. The goal in presenting these results 
is not to necessarily to maximize the prediction accuracy. Rather, it is to show that 
the embedding retains the hierarchical information in the ICD-10-CM codes. Some 
of the codes correspond to conditions that could be classified in several ways, and as 
a result coding for at least some of the conditions might be considered non-system-
atic. Based on this criterion, we can conclude the embedding does retain much of the 
structural and conceptual information denoted in the descriptions, at least in terms 
of mapping to key categories of diseases and conditions.

The table provides two main results. First, the models using the BioGPT com-
pressed representation significantly outperform models based on BERT models with 
the the former outperforming the latter, even after compressing the BioGPT embed-
ding to 10 dimensions. Second, for the BioGPT compressed embeddings, great com-
pression of the data correpsonds to a decrease in the predictive information in the 
data, as measured by the accuracy.

Since the ICD-CM-10 codes are themselves heirarchical with the category codes 
being the broadest category it is worth pointing out that these results imply that some 
aspect of the code hierarchy is preserved in the embedding. However, the extent to 

Table 3  The supervised models’ performance ordered by decreasing balanced accuracy

Model Embedding dimension Accuracy Balanced 
accuracy

BioGPT Compressed 1000 0.960 0.927

BioGPT Compressed 100 0.935 0.891

BioGPT Compressed 50 0.925 0.873

BioGPT Compressed 10 0.815 0.698

ClinicalBERT 768 0.200 0.634

PubMedBERT-MS-MARCO 768 0.158 0.629

SapBERT-PubMedBERT 768 0.159 0.616

MedBERT 768 0.171 0.613
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which this hierarchy can be fully recovered remains an area of limited understanding. 
A potential avenue for future work could entail exploring the feasibility of mapping 
the embedding space to established ontologies, such as the UMLS.

Conclusions
This paper presents novel datasets offering numerical representations of ICD-10-CM 
codes by generating description embeddings using a large language model and apply-
ing autoencoders for dimensionality reduction. The approach is versatile, capable of 
handling categorical variables with numerous categories across various domains. By 
capturing relationships among categories and preserving inherent information, the 
embeddings serve as informative input features for machine learning models. The read-
ily available datasets are anticipated to be highly valuable for researchers incorporating 
ICD-10-CM codes into their analyses, retaining contextual information. This approach 
has the potential to significantly improve the utility of ICD-10-CM codes in biomedi-
cal informatics and enable more advanced analyses in the field. Data analysts can eas-
ily incorporate them into their own analyses by substituting the embedding values for 
other, lower-information representations including the categorical ones described above 
to derive the benefits of the conceptual information encoded in their embedding. Future 
work will address some of the challenges of capturing hierarchical structure in ICD-
10-CM coding systems, experimenting with Ontology-based methods, hierarchical clus-
tering, hierarchial autoencoding, graph neural networks and incorporating hierarchical 
information in training.

While this approach is effective, there are some challenges of which we should be 
aware. While not insurmountable, they are as follows: 

1.	 Interpretability: A significant challenge in machine learning, particularly with com-
plex models like large language models and autoencoders, is interpretability. In 
healthcare, the ability to understand and explain why a model makes a particular 
prediction is crucial. This could impact patient trust, clinician adoption, and even 
legal and regulatory compliance. Techniques like LIME (Local Interpretable Model-
Agnostic Explanations) or SHAP (SHapley Additive exPlanations) can be used to 
improve interpretability, but they do not provide perfect solutions and can be com-
putationally expensive.

2.	 Overfitting: Overfitting is a common issue in machine learning where a model learns 
the training data too well and performs poorly on unseen data. This can be particu-
larly problematic in healthcare, where the stakes are high. Techniques such as cross-
validation, regularization, or dropout layers can be used to prevent overfitting.

3.	 Data Privacy: Patient data is highly sensitive, and its usage is strictly regulated (e.g., 
by laws like HIPAA in the US). Even if the data used to generate the embeddings is 
anonymized, the model must be carefully designed and used to avoid potential pri-
vacy leaks.

4.	 Generalizability: A model trained on one dataset may not perform well on another 
due to differences in population characteristics, data collection methods, etc. Ensur-
ing that models generalize well across different settings is a significant challenge.
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5.	 Quality of Input Data: The quality of the embeddings depends heavily on the quality 
of the input data. If the descriptions associated with the ICD-10-CM codes are inac-
curate or not comprehensive, the resulting embeddings may also be flawed. This is a 
fundamental issue in any data-driven approach: “garbage in, garbage out.”

6.	 Capturing Hierarchical Structure: The ICD-10-CM coding system has a hierarchical 
structure where certain codes are nested within broader categories. While embed-
dings generated from code descriptions may capture semantic meaning, they might 
not adhere to an explicit hierarchical imposed by an ontology like UMLS.

Example use of the ICD‑10‑CM embedding data
To illustrate the utility of the data, we present a simple example of how one might use 
the embedding information in the R programming environment and making use of the 
dplyr [27], ggplot2 [28], readr [29], Rtsne [30], and stringr [31] packages. 
Suppose we would like to visualize the ICD-10-CM codes beginning with G (diseases of 
the nervous system), I (diseases of the circulatory system), J (diseases of the respiratory 
system), and K (diseases of the digestive system) to better understand the contextual 
relationships between these categories or specific conditions in the the 50-dimensional 
embedding. For convenience, the projects page includes an .rds file containing the 
available embeddings along with their URLs, which can be retrieved from the R console. 
The code categories can then be visualized by performing another dimension reduction 
(in this case we will use the Rtsne package), to 2 dimensions that can be presented as a 
scatter plot.
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The output visualization is presented in Fig. 1 and shows that a subset of the circu-
latory diseases (I) and nervous system diseases (G) are well-differentiated from other 
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conditions. It also shows overlap between other conditions related to K (digestive dis-
eases), J (respiratory diseases), and I (circulatory).

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05597-2.

Additional file 1. Example embedded documents visualized using T-SNE.
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