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Abstract 

Background:  Flux Balance Analysis (FBA) is a key metabolic modeling method used 
to simulate cellular metabolism under steady-state conditions. Its simplicity and ver-
satility have led to various strategies incorporating transcriptomic and proteomic data 
into FBA, successfully predicting flux distribution and phenotypic results. However, 
despite these advances, the untapped potential lies in leveraging gene-related con-
nections like co-expression patterns for valuable insights.

Results:  To fill this gap, we introduce ICON-GEMs, an innovative constraint-based 
model to incorporate gene co-expression network into the FBA model, facilitating 
more precise determination of flux distributions and functional pathways. In this study, 
transcriptomic data from both Escherichia coli and Saccharomyces cerevisiae were 
integrated into their respective genome-scale metabolic models. A comprehensive 
gene co-expression network was constructed as a global view of metabolic mecha-
nism of the cell. By leveraging quadratic programming, we maximized the alignment 
between pairs of reaction fluxes and the correlation of their corresponding genes 
in the co-expression network. The outcomes notably demonstrated that ICON-
GEMs outperformed existing methodologies in predictive accuracy. Flux variabilities 
over subsystems and functional modules also demonstrate promising results. Further-
more, a comparison involving different types of biological networks, including pro-
tein–protein interactions and random networks, reveals insights into the utilization 
of the co-expression network in genome-scale metabolic engineering.

Conclusion:  ICON-GEMs introduce an innovative constrained model capable of simul-
taneous integration of gene co-expression networks, ready for board application 
across diverse transcriptomic data sets and multiple organisms. It is freely available 
as open-source at https://​github.​com/​Thumm​aratP​aklao/​ICOM-​GEMs.​git.
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Background
Exploring an organism’s phenotypes involves various aspects like growth rates, reaction 
rates, and production rates [1], with broad applications in fields like metabolic engi-
neering, agriculture, and biotechnology [2–6]. Phenotypes stem from genotypes, where 
gene expression, a complex process, shapes an organism’s traits and associations among 
genes, impacting reaction rates and fluxes. Predicting flux distribution at a state-specific 
level enhances the understanding of cellular metabolism’s functional states [7]. While 
experimental and computational methods are used to deduce reaction fluxes, they each 
come with limitations – experimental methods like 13C metabolic flux analysis require 
specialized expertise and instrumentation, while computational methods face challenges 
in data comprehensiveness and algorithm design [8–10]. Genome-scale metabolic mod-
els (GEMs) are vital in silico tools for understanding cellular behavior and predicting 
reactions, genes, and responses to the environment [11, 12]. GEMs represent the rela-
tionships among metabolites, reactions, and genes in organisms, finding diverse applica-
tions from metabolic engineering to disease insights [13].

Various mathematical tools estimate metabolic flow and reaction fluxes in organisms 
via genome-scale metabolic networks using optimization, differential equations, and 
stochastic simulations. Among these, flux balance analysis (FBA) [14–16] stands out, 
optimizing growth rates and production under steady-state constraints. While FBA is 
effective, predicting flux distribution isn’t infallible due to multiple potential solutions, 
prompting the need to refine solutions by introducing context-specific constraints and 
optimizing objective functions [17, 18].

Utilizing precious transcriptomic data, GEMs coupled with FBA have evolved to 
enhance flux distribution predictions. This enhancement is achieved as assimilat-
ing transcriptomic data into metabolic models through gene-protein-reaction (GPR) 
associations [18–22]. Transcriptomic data provides a powerful constraint on potential 
solutions in genome-scale metabolic models (GEMs). There are two main categories 
for integrating transcriptomic data into GEMs. The first category involves binary gene 
expression states, requiring threshold, as seen in methods like Gene Inactivity Moder-
ated by Metabolism and Expression (GIMME) [23] and ensures a functional model while 
quantifying consistency with expression data. Jensen and Papin introduced an approach 
named Metabolic Adjustment by Differential Expression (MADE), which does not rely 
on arbitrary thresholding [24]. MADE quantifies the meaningful variations in gene 
expression data. The second category directly integrates expression data, such as the 
E-flux method [25], which assigns reaction flux bounds based on measured gene expres-
sion, leading to more precise predictions. Kim et al. [21] introduced E-flux2 and SPOT 
in a dual-method approach to handle scenarios with unknown biological objectives. 
Importantly, these techniques exclusively use gene expression values.

Various methods, such as LBFBA [26], ETFL [27], REMI [28], and DeltaFBA [29], lev-
erage diverse data types to enhance Flux Balance Analysis. TRFBA [30], which focuses 
on gene interactions within transcriptional regulatory networks, has limitations due to 
the availability of complete networks, mainly applicable to select organisms.

Furthermore, cooperation among genes can be unveiled through analysis of gene 
expressions using co-expression networks. In general, gene co-expression networks form 
gene–gene association networks by calculating pairwise gene similarity scores from gene 



Page 3 of 25Paklao et al. BMC Bioinformatics          (2023) 24:492 	

expression levels [31]. These networks are typically represented as undirected graphs 
with a designated threshold indicating gene relationships. Strong connection exists 
between genes with high correlations. Gene co-expression network analysis serves vari-
ous purposes, including identifying functionally related genes and co-regulated genes by 
common transcriptional factors. Additionally, gene co-expression networks reveal coop-
erative relationships, offering insights into functional modules within cells. Integrating 
these networks into GEMs holds promise for further advancements.

In this study, we propose a quadratic programming model to integrate the gene co-
expression network instead of using solely the expression values to GEMs. The objective 
is to enhance the quantitative and qualitative simulation and predicting of condition-
specific metabolic networks based on gene expression patterns. This approach facilitates 
a more precise identification of functional modules involved in metabolic processes 
under specific circumstances. We applied our proposed model to the GEMs of Escheri-
chia coli (E. coli) and Saccharomyces cerevisiae (S. cerevisiae), followed by a comprehen-
sive comparative analysis of the outcomes and findings against existing methodologies 
employing diverse strategies.

Materials and methods
Workflow of integrating gene co‑expression network and metabolic model

Our workflow of integrating co-expression network and metabolic model is illustrated 
in Fig. 1. The workflow began with the preparation of gene expression profiles, involv-
ing the handling of missing values and outliers. Subsequently, these prepared profiles 
were utilized to construct the co-expression network, where Pearson correlations were 
employed to calculate correlation coefficients. These coefficients were then trans-
formed into a binary adjacency matrix. Similarly, the genome-scale metabolic model was 

Fig. 1  Workflow diagram representing the process of ICON-GEMs to integrate a gene co-expression 
network into a genome-scale metabolic model. It starts with gene expression profiles and genome-scale 
metabolic models. Data cleaning and processing are applied to the gene expression data to construct a gene 
co-expression network. The template model is constructed, and gene-protein-reaction (GPR) rule is used to 
quantify the associated reactions. Finally, a gene co-expression network and a metabolic network are merged 
for calculating flux rates in ICON-GEMs formulation
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prepared through the creation of a template metabolic model, with reaction flux bounds 
set without uptake rate information. The originally reversible reaction fluxes within the 
model were transformed into irreversible reaction fluxes. To integrate gene expression 
data for each condition into the metabolic model, additional constraints to limit reaction 
fluxes in the same manner as the E-flux method and the gene co-expression network 
were combined into a quadratic programming model, named as ICON-GEMs. Note that 
ICON-GEMs requires four inputs: (1) a gene expression profile, (2) a genome-scale met-
abolic model, (3) specific conditions for flux distribution calculations, and (4) a thresh-
old to differentiate high and low correlation for creating a gene co-expression network.

The formulation of ICON‑GEMs

ICON-GEMs utilize quadratic programming to integrate a gene co-expression network 
into a metabolic network based on flux balance analysis (FBA). This integration relies on 
the principle that when a pair of genes exhibits high correlation, the corresponding reac-
tions are also correlated. The objective of this quadratic programming is to optimize the 
amalgamation of correlation between flux-carrying pairs reactions. In essence, ICON-
GEMs seek to maximize the sum of products of transformed flux values for reaction 
pairs corresponding to any two genes connected in the co-expression network. In the 
ICON-GEMs context, the E-flux technique [25] is applied to establish the upper bounds 
for flux values in FBA, contingent on measured gene expression levels, using gene-pro-
tein-reaction (GPR) association [22]. In irreversible models, it’s common to establish 
lower flux bounds at zero. The quadratic programming model within ICON-GEMs can 
be formulated as follows:

where qi and qj represent transformed reaction flux values of reaction i and j, respec-
tively, while R is the set of reaction pairs whose genes are linked in the co-expression 
network. It is worth noting that the objective function in Eq.  (1) is a summation of 

(1)
Maximize

∑

(i,j)∈R

qiqj

(2)Subject to

n+p

j=1

Sijvj = 0

(3)0 ≤ vj ≤ f
(

gj
)

for all j = 1, 2, 3, . . . , n+ p

(4)
n+p
∑

j=1

cjvj ≥ αz∗

(5)
∑

(i,j)∈Rev

vivj = 0

(6)
vj

Mj
− qj = −1 for all j = 1, 2, 3, . . . , n+ p



Page 5 of 25Paklao et al. BMC Bioinformatics          (2023) 24:492 	

the product qiqj , specifically for reactions i and j that correspond to genes connected 
in the co-expression network.  S =

[

Sirr Srev Srev
]T comprises submatrices Sirr and 

Srev , which pertain to columns of S corresponding irreversible and reversible reaction 
fluxes, respectively. v =

[

virr vrev −vrev
]T is a vector comprising irreversibly oriented 

and reversibly oriented flux components, with  vrev signifying the reversible component. 
f
(

gj
)

 is a function to transform a gene expression value gj to a related flux bound value. 
In our study, we define f

(

gj
)

= gj . c =
[

cirr crev crev
]T is a vector encompassing irre-

versible and reversible reaction flux components, where cirr and crev correspond to irre-
versible and reversible fluxes, respectively. The c is a vector of zeros with a one at the 
position of the reaction of interest (biomass flux). z∗ denotes the potential maximum 
biomass, predicted through the E-flux method [25]. α ∈ (0, 1] is used to determine the 
proportion of biomass required to ascertain the vitality of organisms. In our study the 
value of α is set to 1. Rev represents a set of reaction pairs derived from the same revers-
ible reaction flux. Mj signifies the maximum gene expression value for reaction flux j.

Constraints (2)-(3) mirror those of the E-flux model [25]. Constraint (4) establishes the 
biomass value as the maximum attainable value, denoted by z∗ , in E-flux. Constraint (5) 
involves the summation of products of irreversible reaction flux pairs derived from the 
same reversible reaction flux, where Rev comprises these pairs. Additionally, Constraint 
(6) represents a modified equation. More comprehensive and detailed explanations of 
our ICON-GEMs formulation can be found in Additional file 1.

Construction of a template metabolic model

We have developed an integrated model using gene expression data and the genome 
scale-metabolic model. However, there is inconsistency between the units used to 
measure metabolic reaction flux and the those used for gene expression. Therefore, we 
construct a template metabolic model to avoid this problem, following the approach 
outlined in [21]. The template metabolic model retains the stoichiometric and reversibil-
ity information while discarding the specific flux rate constraints present in the original 
genome-scale metabolic model. A way to construct the template model is to set the flux 
bounds of each reaction to either zero or to the largest absolute value, denoted by T  . 
Noted that T is a variable standing for the largest number or maximum values for the 
model calculation. It is not a threshold for setting the uptake rate of any carbon sources.

Suppose that there are m metabolites and n reactions in a metabolic network. Let 
L̂ and Û be the new lower and upper bound of flux of reaction in template metabolic 
model, respectively: 

In some situations, the used carbon sources in the cell are unknown. Thus, this tem-
plate metabolic model is constructed in two different cases depending on the infor-
mation of carbon source. The first template metabolic model, known as the DC 
(Determined Carbon Source) model, sets the lower bound of known carbon source 
reactions to a negative value of the largest number. The known carbon source for the 
DC model is glucose, as the experimental data used to demonstrate it in this study were 
measured by feeding glucose into the system. The second model is known as the AC 

(7)L̂j =

{

0 if Lj ≥ 0

−T if Lj < 0
and Ûj =

{

T if Uj > 0

0 if Uj ≤ 0
for all j = 1, 2, 3, ..., n
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(All Possible Carbon Source) model, which sets a negative value representing the largest 
number as the lower bound for the fluxes of all carbon source reactions in the metabolic 
model.

Flexibility of flux reactions and subsystems

Given that alternative optimal solutions may exist within various constraint-based meth-
ods, the flexibility of flux is employed to explore alternative solutions or the range of 
potential reaction fluxes within a metabolic system. We employ a two-stage program-
ming approach known as Flux Variability Analysis (FVA) [32] to assess the flexibility of 
flux reactions. In the first stage programming, a relevant objective function, denoted 
as Z∗ , is computed by applying ICON-GEM. Subsequently, the second stage employs a 
constraint-based modeling technique to evaluate the minimum and maximum range of 
each reaction flux in the metabolic model while still yielding a well-defined value of the 
objective function from the first-stage programming. In the second stage, the objective 
function is designed to find the maximum and minimum flux values of each reaction. 
Furthermore, the objective function employed in the first stage serves as an additional 
constraint to fulfill the requirements of Z∗ . Assume that, for reaction i, we have obtained 
the maximum flux value ( vimax ) and the minimum flux value (vimin ) through FVA. We 
determine the flexibility of reaction i ( Fi ) using the following formula:

The flexibility of each reaction in the model has been computed across all subsystems 
defined in the genome-scale metabolic models of both E. coli and S. cerevisiae. Within 
each subsystem, flexibility values for individual reactions, ( Fi ) as defined in Eq. (8), are 
determined. These individual flexibility values for reactions within the same subsystem 
are then averaged to assess the overall flexibility of that subsystem.

This method provides valuable insights into the behavior of individual reactions within 
each subsystem. It facilitates the identification of reactions that display high flexibility, 
enabling them to adapt to varying conditions, as well as reactions that exhibit greater 
rigidity in their flux. This analysis contributes to a better understanding of how differ-
ent components within the subsystem interact and contribute to the overall metabolic 
function.

Gene co‑expression network

A gene co-expression network serves as an illustrative framework to depict gene coop-
eration, relying on the correlation coefficient [31]. This network takes the form of an 
undirected graph, with nodes symbolizing genes translated from transcriptomic data 
to genome-scale metabolic model. Connections between nodes signify correlations 
between pairs of genes. Let A be an adjacency, a symmetric array. The entries within 
this matrix quantify the strength of connections between gene pairs. The process of con-
structing a co-expression network comprises two steps. Firstly, the identification and 
removal of missing values and outliers are undertaken. Subsequently, the Pearson corre-
lation calculates gene correlations, followed by the application of a thresholding method 
to transform the correlation matrix into a binary matrix. The determination of a suitable 

(8)Fi =
∣

∣

∣
vimax − vimin

∣

∣

∣
.
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threshold involves the consideration of various factors, including scale-free topology, 
mean connectivity, and cluster count, as elucidated in [33]. This process of selection 
entails choosing the threshold that maximizes cluster count while maintaining compli-
ance with the scale-free topology criteria (with an R2 value of at least 0.5). Correlation 
coefficients falling below a defined threshold are set to zero, while those surpassing the 
threshold are set to one. This process ensures the generation of a coherent co-expression 
network.

Predictive accuracy measurement

The predictive accuracy of our algorithm was evaluated using the uncentered Pearson 
product-moment correlation between the predicted fluxes and the measured fluxes 
obtained through 13C-metabolic flux analysis. Utilizing uncentered Pearson product 
moment correlation to compare measured and predicted fluxes serves two primary rea-
sons: overcoming the issue of differing units between predicted and measured fluxes and 
focusing on capturing the linear relationships between the patterns or trends in the flux 
data. It is important to note that the correspondence between measured and predicted 
fluxes is not straightforward due to the intricate interplay of genes, proteins, reactions, 
and metabolites within a metabolic model. Consequently, a direct one-to-one mapping 
of predicted to measured fluxes is not applicable.

To address this complexity, we employed both "OR" and "AND" relationships for the 
reaction fluxes related to the substances and the products of the measured reaction 
fluxes. There are two possible scenarios for mapping the predicted fluxes to the experi-
mental measurements, as follows:

Case 1: When multiple reaction steps are required to produce the same desired prod-
ucts as the measured reaction flux. This means that to go from the substrates of the 
actual measured reaction to the products, several intermediate reactions and metabo-
lites need to be involved through various modeled reactions. For instance, if the experi-
ment measures the flux of a true reaction from A to D, but in the metabolic model, going 
from substrate A to product D involves multiple sequential reactions (A → B, B → C, 
and then C → D), we used an "AND" relationship to calculate a predicted flux for this 
measured flux. This calculation involved determining the minimum flux value found in 
the chain of reactions from A to D within the metabolic model.

Case 2: In  situations where multiple reactions involve the same sets of metabolites 
as those associated with the measured flux, we utilized the total sum of the predicted 
fluxes in the metabolic model for comparison with the measured fluxes. This established 
an "OR" relationship among modeled reactions sharing identical substrates and prod-
ucts. For instance, if the experiment measures the flux of reaction A → D, and within the 
model, there exist three possible reactions that both consume A and produce D, such as 
A + B → C + D, A → D + E, and A + F → D, to represent the predicted flux for the reac-
tion A → D, we calculated the cumulative sum of the predicted fluxes for these three 
modeled reactions, which was then compared with the measured flux.

After the conversion and mapping between measured fluxes and predicted fluxes, 
we measure the predictive accuracy as the similarity between those fluxes is calculated 
based on the uncentered Pearson product moment correlation, denoted as R, which can 
be computed as follows:
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where vp and vm represent the vectors of predicted and measured fluxes, respectively. 
The value of this correlation coefficient near + 1 or -1 indicates a strong positive or nega-
tive linear relationship between vp and vm . Conversely, a correlation coefficient close to 
0 implies the absence of a linear relationship between the two vectors. For more detailed 
on the mapping and the calculation can be found in Additional file 1.

Software availability

The proposed method of ICON-GEMs was implemented using MATLAB version 2018a 
and is available on GitHub at https://​github.​com/​Thumm​aratP​aklao/​ICOM-​GEMs.​git 
[34]. This program necessitates the use of the COBRA toolbox [35, 36] as well as a quad-
ratic solver provided by Gurobi Optimizer (version 9.0) [37].

Expression datasets and genome‑scale metabolic models

We validate and test our ICON-GEMs with the transcriptomic data and genome-scale 
metabolic models of E. coli and S. cerevisiae.

For E. coli, we utilized the transcriptomic data from the study of Ishii et al. [38],which 
provided both gene expression and 13C metabolic flux data under the same condi-
tions. This dataset consisted of 8 conditions: wild type E. coli cells cultured at a different 
growth rate of 0.2, 0.5, and 0.7 per hour, and single gene knockout mutants (pgm, pgi, 
gapC, zwf and rpe), denoted as DataE1. To assess our method, we employed the latest 
updated metabolic models of E. coli, namely iML1515 [39]. In our comparative analysis, 
we also tested the previous models, iAF1260 [40] and iJO1366 [41], to showcase the ben-
efits of using the newest metabolic model in our study.

The datasets of S. cerevisiae were retrieved from the study of Celton et al. [42], denoted 
as DataS1: four different concentrations of acetoin (0, 100, 200, and 300 mM), provid-
ing both the gene expression levels and 13C metabolic flux data under the same four 
conditions. The latest genome-scale metabolic model of S. cerevisiae, namely Yeast 8.70 
[43], was utilized to evaluate our ICON-GEMs while the other S. cerevisiae models, 
namely iND750 [44] and iMM904 [45], were then used to assess the applicability of our 
methods.

Furthermore, to illustrate the benefits of applying co-expression networks into a 
genome-scale metabolic model, we also tried to create other co-expression networks 
from other expressions, a protein–protein interaction network, a random co-expres-
sion network, to incorporate in our ICON-GEMs. The other expression data for E. coli 
are from the studies of Zhou et al. [34] and Lacroix et al. [35], denoted as DataE2 and 
DataE3, respectively. For S. cerevisiae, we obtained the data from the studies of Rintala 
et al. [36] and Anders et al. [37], denoted as DataS2 and DataS3, respectively. More infor-
mation about these expression datasets can be found in Additional file 2.

The random co-expression network was created by reshuffling edges to maintain the 
same number of edges and nodes as the original co-expression network. Protein–protein 
interaction networks were extracted from the String database [46] by selecting only the 
high confidence interactions having the confidence scores more than 900.

(9)R =
vTp vm

vpvm

https://github.com/ThummaratPaklao/ICOM-GEMs.git


Page 9 of 25Paklao et al. BMC Bioinformatics          (2023) 24:492 	

Results
This section presents the results of constructing gene co-expression networks for 
both E. coli and S. cerevisiae, the predictive accuracy of ICON-GEMs compared to 
other approaches, applying various network types, subsystem flux flexibilities, and 
co-founding functional modules.

Analysis of gene co‑expression networks of E. coli and S. cerevisiae

The gene co-expression networks for E. coli and S. cerevisiae are established through the 
mapping of genes from transcriptomic data onto the genes in the genome-scale meta-
bolic model. Measured gene expression data (DataE1 for E. coli and DataS1 for S. cer-
evisiae) is used to calculate Pearson correlation across various conditions. Subsequently, 
this Pearson correlation matrix is transformed into a binary matrix using a thresholding 
method. The selection of an appropriate threshold is determined by considering factors 
such as scale-free topology, mean connectivity, and the number of clusters.

As depicted in Fig. 2, the gene co-expression network adheres to the principles of 
scale-free topology at higher threshold values, contrary to the mean connectivity 
trend. However, constructing a network with a high threshold value results in the 
removal of substantial network information. Hence, a balance between achieving 
scale-free topology and maintaining mean connectivity is sought.

Fig. 2  The impact of varying thresholds on the construction of gene co-expression networks for E. coli and 
S. cerevisiae. A The plot of R-squared for scale-free topology with varying thresholds. B The plot of mean 
connectivity across different thresholds. C The number of clusters within the gene co-expression networks 
constructed using various thresholds. D The degree distributions of the gene co-expression networks for E. 
coli with a threshold of 0.91 and for S. cerevisiae with a threshold of 0.94
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Furthermore, the determination of the number of clusters, achieved through spectrum 
clustering [33], plays a role in selecting the optimal threshold value. This selection pro-
cess involves choosing the threshold that yields the maximum number of clusters while 
still adhering to the criteria of scale-free topology (with an R2 value not less than 0.5). 
As mentioned in [33], weaker relationships are likely to connect functionally dissimilar 
segments of the network. Therefore, increasing the threshold, these segments become 
less interconnected, leading to an increase in the number of "nearly-disconnected" com-
ponents. We choose the threshold value that maximizes the count of these components, 
effectively minimizing the number of edges connecting them. The chosen threshold 
value and the specifics of generated gene co-expression network are outlined in Table 1. 
Additionally, the degree distribution of each gene co-expression network is illustrated in 
Fig. 2(D). The degree distribution of the constructed network conforms to the principles 
of scale-free topology. The network exhibits a pattern where numerous nodes possess 
lower degrees, while a smaller number of nodes possess higher degrees.

Due to the elevated thresholds, connections conveying information about gene rela-
tionships are eliminated from the networks. The network’s structure is tailored to 
accommodate the information quantity and network complexity. Furthermore, the bal-
ance of connectivity alongside the data’s reduced complexity is linked to computational 
efficiency. The bold numbers present the selected thresholds for constructing gene co-
expression networks.

Predictive performance

ICON-GEMs’ predictive accuracy is verified by computing the uncentered Pearson 
product-moment correlation between in silico fluxes and corresponding 13C metabolic 
flux analysis for both the DC Model and AC model. We benchmark our predictive accu-
racy against competing methods using the same transcriptomic and fluxomic datasets. 
Specifically, we compare our results with E-flux [25] and E-flux2 [21], given their utiliza-
tion of transcriptomic data without thresholds. Additionally, it’s worth noting that the 
E-flux method has previously been compared with other techniques, such as GIMME 
[23] and iMAT [47], demonstrating superior performance in predicting exometabolomic 
fluxes [48] or robustness analysis [49]. The predictive accuracy assessment is carried out 
using transcriptomic and fluxomic data from 8 conditions within the E. coli model for 
both the DC and AC models as shown in Table 2.

Notably, our method consistently achieves predictive accuracy exceeding 0.87 in all 
conditions for the DC model. The average performance for our method in this model is 
0.9206, indicating high accuracy. In the AC model, the average performance is 0.6079. 

Table 1  Network properties of the constructed gene co-expression networks of E. coli and S. 
cerevisiae 

Properties E. coli S. cerevisiae

Selected threshold 0.91 0.94
The number of nodes 1,495 1,138

The number of edges 16,540 71,454

Average degree 22.1271 125.5782
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While this value may not be exceptionally high, an accuracy around 0.6 denotes a mod-
erate positive correlation between the predicted fluxes and measured fluxes.

The performance of ICON-GEMs in predicting fluxes for four conditions within Yeast 
8.70, a multi-compartment genome-scale metabolic model of S. cerevisiae, is shown in 
Table 3 for both the DC and AC models. The average performance is 0.9689 (standard 
deviation: 0.0357) for the DC model and 0.6272 (standard deviation: 0.2715) for AC 
model.

Comparatively, the performance of our method in DC models surpass those of E-flux 
and E-flux2 across all conditions. For AC models, our method consistently outperforms 
E-flux and, in some conditions, E-flux2. On average, our method performs better than 
both E-flux and E-flux2 in both model types. From the results, we deduce that our 
method excels in the DC models compared to E-flux and E-flux2 methods. In the AC 

Table 2  Predictive accuracy through the comparison of predicted fluxes and measured fluxes in 
eight conditions (DataE1) for both the DC and AC models

The bold numbers indicate the highest predictive accuracy values for each condition

Eight distinct conditions encompass wild-type E. coli growth rates at 0.2 (as reference (RF)), 0.5 (WT0.5), and 0.7 (WT0.7) per 
hour as well as specific gene deletions (of genes pgm, pgi, gapc, zwf, and rpe)

Conditions Predictive accuracy

DC model AC model

E-flux E-flux2 ICON-GEMs E-flux E-flux2 ICON-GEMs

WT 0.2 per hour 0.8221 0.8852 0.9443 0.3893 0.6293 0.5619

pgm 0.8486 0.8672 0.9639 0.6676 0.6389 0.6804
pgi 0.8674 0.8237 0.9107 0.4990 0.6129 0.3971

gapC 0.6564 0.8546 0.8828 0.5019 0.7012 0.4649

zwf 0.8110 0.8538 0.8731 0.3290 0.6499 0.5373

rpe 0.8947 0.8885 0.8733 0.3683 0.6221 0.7078
WT 0.5 per hour 0.8094 0.9031 0.9656 0.5629 0.6615 0.7715
WT 0.7 per hour 0.8687 0.8699 0.8962 0.6711 0.6870 0.7424
Mean 0.8223 0.8682 0.9206 0.1225 0.6504 0.6079

Standard Deviation 0.0688 0.0231 0.0333 0.1555 0.0292 0.1284

Table 3  Predictive accuracy through the comparison of predicted fluxes and measured fluxes in 
four conditions (DataS1) for both the DC and AC model

The bold numbers indicate the highest predictive accuracy values for each condition

These conditions correspond to different concentrations of acetoin in S. cerevisiae; specifically, at 0 mM (as reference (RF)), 
100 mM, 200 mM, and 300 mM

Conditions Predictive accuracy

DC model AC model

E-flux E-flux2 ICON-GEMs E-flux E-flux2 ICON-GEMs

0 mM 0.9266 0.9643 0.9074 0.4093 0.4509 0.5666
100 mM 0.9508 0.9825 0.9850 0.4219 0.6141 0.5857

200 mM 0.5979 0.8807 0.9872 0.4123 0.4554 0.9417
300 mM 0.9763 0.9763 0.9959 0.4231 0.4244 0.4149

Mean 0.8629 0.9522 0.9689 0.4167 0.4862 0.6272
Standard Deviation 0.1539 0.0421 0.0357 0.0059 0.0748 0.2715
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models, our method outperforms E-flux but lags behind E-flux2. Our approach is most 
suitable for modeling scenarios with known carbon sources.

Furthermore, we visualize the distribution comparison between predicted and meas-
ured fluxes in E. coli and S. cerevisiae. Given the absence of units for predicted fluxes, we 
normalize their magnitudes to enable direct comparison with measured fluxes. The visu-
alization focuses on wildtype at a growth rate of 0.5 per hour for E. coli and an acetoin 
concentration of 200 mM for S. cerevisiae, which yielded the highest performance.

Figure  3 visually depicts the distribution comparison between predicted and meas-
ured fluxes for E. coli and S. cerevisiae. Given the absence of units for predicted fluxes, 
their magnitudes are normalized for direct comparison with measured fluxes. The com-
parison is particularly emphasized in the DC models, yielding consistency between pre-
dicted and measured fluxes, as evidenced by Fig. 3(A) and (B) for the DC models in E. 
coli and S. cerevisiae, respectively. However, AC models display inconsistencies between 

Fig. 3  The comparison entails a visual examination of predicted fluxes against measured fluxes. This 
comparison is conducted within the context of wildtype conditions at a growth rate of 0.5 per hour for E. coli 
A, and in presence of acetoin at concentration of acetoin 300 mM for S. cerevisiae B in the DC models
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predicted and measured fluxes. The corresponding visualizations for the AC models are 
available in Fig. 4 (A) and (B), for E. coli and S. cerevisiae, respectively. The x-axis repre-
sents measured fluxes while the y-axis represents predicted flux values.

Capability of flux predictions by ICON‑GEMs on previously established models

Before applying our method to a wide range of living organisms, it is important to make 
sure that our technique works well even with models that are not fully complete. Right 
now, there are still ongoing efforts to create comprehensive models of the metabolic pro-
cesses in various organisms. To thoroughly test our method, we use the same kind of 
data on gene activity and the flow of substances through the cells for organisms whose 
metabolic models are already established. Specifically, we use our method on the meta-
bolic models of E. coli (iAF1260 [40] and iJO1366 [41]) and S. cerevisiae (iND750 [44] 
and iMM904 [45]).

Fig. 4  The comparison entails a visual examination of predicted fluxes against measured fluxes. This 
comparison is conducted within the context of wildtype conditions at a growth rate of 0.5 per hour for E. coli 
A, and in presence of acetoin at concentration of acetoin 300 mM for S. cerevisiae B in the AC models
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The results of this testing on the existing models are shown in Fig. 5(A) and (B). The 
horizontal axis represents two types of metabolic models: DC and AC models. Fig-
ure  5(A) pertains to E. coli, while Fig.  5(B) focuses on S. cerevisiae. The models are 
grouped into two categories based on whether they are DC or AC models. With in each 
group, three bars are depicted, corresponding to the oldest, middle, and newest models, 
which are represented by orange, yellow, and green bars, respectively. On the vertical 
axis, we display the average similarity between predicted and actual substance flow rates. 
The lines on top of the bars show how much the values vary.

Regarding E. coli, as shown in Fig. 5A, all DC models produced average performance 
exceeding 0.8, indicating high levels of accuracy. Similarly, all AC models yielded average 
performance surpassing 0.5. Notably, the newest model (iML1515) demonstrated the 
highest performance in both the DC and AC models. Turning to S. cerevisiae, illustrated 
in Fig. 5B, the earliest model iND750 exhibited the highest average performance in both 
DC and AC models. The newest model also displayed a notably high average perfor-
mance. In contrast, the performance for using iMM904 was inferior to that of iND750 
and Yeast 8.70 in both the DC and AC models.

Considering our method’s capacity to predict flux in incomplete models, it demon-
strates effective performance in predicting metabolic fluxes within such contexts. While 
there may be instances of less accurate results, a predictive performance greater than 0.5 
indicates a moderate level of correlation between predicted fluxes and measure fluxes. 
As shown in the results above, the DC model consistently outperforms the AC model. 
Therefore, in the subsequent sections, we refine our study by narrowing our focus to the 
DC model exclusively, and no longer consider both the DC and AC models.

Flexibility of reaction fluxes in subsystems

The integration of condition-specific experimental data into the metabolic system’s con-
straints leads to a reduction in the solution space and range of reaction fluxes. The flex-
ibility of a reaction is the difference between maximum flux and minimum flux of that 
reaction as mentioned in the method section. The outcomes of detailing the flexibility of 
reaction fluxes within each subsystem of E. coli and S. cerevisiae can be found in Figs. 6 
and 7. These figures depict heatmaps showcasing the average difference between poten-
tial maximum and minimum reaction fluxes for each reaction within a subsystem, nor-
malized to a range of [0,1]. Higher values indicate significant variability in flux through 

Fig. 5  Comparison of average performances in ICON-GEMs for previous and recent models of E. coli (A) 
model S. cerevisiae (B)
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a subsystem while still maintaining a defined value of the objective function in the first 
stage programming. The findings reveal that the flux flexibility remains consistent with 
the model that does not consider a gene co-expression network. This suggests that our 
model can adapt to various scenarios of flux availability and uphold the flux overflows 
seen in the original model. In essence, incorporating co-expression information, our 
model offers more precise relative flux values compared to using a single condition.

Our method establishes flexible fluxes guided by gene expression values. Despite 
multiple solutions yielding the same optimal objective value, the flux range remains 
constrained by gene expression data, ensuring quality solutions. The flexibility level is 
particularly pronounced in wildtype conditions at a growth rate of 0.7 per hour for E. 
coli and at an acetoin concentration of 300 mM for S. cerevisiae.

Effect of various biological networks incorporating with genome‑scale metabolic models

Since the formulated quadratic programming primarily revolves around an objective 
function linked to the presence of gene co-occurrence or co-expression within a net-
work, it serves to highlight the advantages of employing a co-expression network over 

Fig. 6  The heatmap shows average of flexibility of reaction fluxes within various subsystems under eight 
distinct conditions. These conditions encompass wild-type E. coli growth rates at 0.2 (as reference (RF)), 0.5 
(WT0.5), and 0.7 (WT0.7) per hour as well as specific gene deletions (of genes pgm, pgi, gapc, zwf, and rpe)
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alternative biological networks, such as protein–protein interactions (PPIs). In order 
to ascertain the efficacy of integrating a gene co-expression network into a metabolic 
model for more accurate flux distribution outcomes, we accomplish this by substitut-
ing a gene co-expression network with various biological networks, including gene 
co-expression networks from other datasets (DataE1, DataE2, and DataE3) and PPI 
networks while the conditions of interest remained the same. Additionally, we explore 
the adaptability of the gene co-expression network by subjecting it to random modi-
fications of edge connections at varying percentages (random networks). The results 
of integrating different biological networks with the genome-scale metabolic model 
is presented in Table 4 for E. coli and Table 5 for S. cerevisiae. The random network 

Fig. 7  The heatmap shows average of flexibility of reaction within various subsystems under four distinct 
conditions. These conditions correspond to different concentrations of acetoin in S. cerevisiae; specifically, at 
0 mM (as reference (RF)), 100 mM, 200 mM, and 300 mM
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results were derived from 10 repetitions. The predictions made when utilizing PPI 
were based on the expression data DataE1 for E. coli and DataS1 for S. cerevisiae.

The results showcasing the integration of gene co-expression networks from alterna-
tive datasets (DataE2 and DataE3 for E. coli, DataS2 and DataS3 for S. cerevisiae), in 
Tables 4 and 5, provide some interesting biological insights. In the case of E. coli, when 
integrating gene co-expression networks based on DataE2, DataE3, DataS2, DataS3 and 
PPI networks, the predictive accuracy is weaker compared to the integration of the origi-
nal gene co-expression network. It is worth mentioning that while DataE2, DataS2 are 
from microarray data, DataE3 and DataS3 stem from RNA-seq technology.

Furthermore, we subject the gene co-expression network to random edge perturba-
tions at levels of 25%, 50%, 75%, and 100% (random networks) to assess the resilience of 
ICON-GEMs. The outcomes reveal that at 25%, 50%, and 75%, the flux correlation expe-
riences slight reductions compared to the gene co-expression network due to the relative 
stability of hub genes. However, at 100%, the altered hub genes lead to a drop in flux cor-
relation compared to the baseline network integration for both E. coli and yeast models.

Table 4  Predictive accuracy when applying various biological networks incorporating with the 
genome-scale metabolic model in E. coli 

Eight distinct conditions encompass wild-type E. coli growth rates at 0.2 (as reference (RF)), 0.5 (WT0.5), and 0.7 (WT0.7) per 
hour as well as specific gene deletions (of genes pgm, pgi, gapc, zwf, and rpe)

Conditions DataE1 
(Own)

DataE2 
(Microarray)

DataE3 
(RNAseq)

PPI Random (% of edges) Random 
network

25 50 75

WT 0.2/h 0.9443 0.9011 0.8852 0.8881 0.9401 0.9438 0.8869 0.8895

pgm 0.9639 0.9313 0.8064 0.7516 0.9556 0.9115 0.9215 0.9193

pgi 0.9107 0.8979 0.8888 0.8894 0.9106 0.9007 0.9105 0.9133

gapC 0.9287 0.8901 0.8741 0.8741 0.9215 0.8753 0.8753 0.8796

zwf 0.8828 0.8412 0.8252 0.8139 0.8722 0.8275 0.8319 0.8311

rpe 0.8731 0.8243 0.7918 0.8286 0.8631 0.8071 0.8071 0.8189

WT 0.5/h 0.9656 0.8660 0.9001 0.8660 0.9588 0.9005 0.9007 0.9025

WT 0.7/h 0.8962 0.8357 0.8643 0.8357 0.9088 0.8410 0.8684 0.8662

Mean 0.9206 0.8434 0.8545 0.8434 0.9164 0.8759 0.8753 0.8775

Standard 
deviation

0.0333 0.0354 0.0383 0.0435 0.0332 0.0439 0.0366 0.0345

Table 5  Predictive accuracy when applying various biological networks incorporating with the 
genome-scale metabolic model in S. cerevisiae 

These conditions correspond to different concentrations of acetoin in S. cerevisiae; specifically, at 0 mM (as reference (RF)), 
100 mM, 200 mM, and 300 mM

Acetoin DataS1 
(Own)

DataS2 
(Microarray)

DataS3 
(RNAseq)

PPI Random (% of edges) Random 
network

25 50 75

0 mM 0.9074 0.8919 0.8922 0.9936 0.8909 0.8944 0.8248 0.8570

100 mM 0.9850 0.8961 0.9006 0.8948 0.8311 0.8115 0.8133 0.8047

200 mM 0.9872 0.8966 0.9079 0.8999 0.9010 0.8959 0.8842 0.8245

300 mM 0.9959 0.9019 0.9022 0.8998 0.8381 0.7941 0.8016 0.7945

Mean 0.9688 0.8966 0.9007 0.9221 0.8653 0.8490 0.8310 0.8201

Standard 
deviation

0.0357 0.0035 0.0055 0.0413 0.0310 0.0466 0.0318 0.0309
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Impact of various conditions of datasets for gene co‑expression network construction

Constructing a gene co-expression matrix is crucial for the method’s performance. To 
extract gene co-expression relationships, a substantial number of transcriptome datasets 
from various conditions is necessary. In contrast to tools like GIMME or E-flux, which 
only require a single-condition transcriptome, ICON-GEM necessitates data from mul-
tiple conditions. Performance may vary when the combination or quantity of datasets 
changes, even if the specific condition of interest remains constant. We assessed the 
robustness of ICON-GEM by creating gene co-expression networks with various data-
set combinations, as shown in Fig. 8 and elaborated in Additional file 3. We conducted 
this evaluation by integrating each obtained network into the metabolic network under 
wildtype growth conditions at a rate of 0.5 per hour. The gene co-expression networks 
were constructed via various numbers of conditions, denoted as N. We observed that 
when N = 2, all genes in the co-expression network were highly correlated or connected 
because there were only two data points for calculating Pearson correlation. The num-
ber of conditions significantly influences gene relationships. Thus, with N = 2, extracting 
meaningful information from only two conditions becomes challenging.

Based on Fig. 8, when N is greater than 2, the performance consistently exceeded 0.88. 
This suggests a strong relationship between the gene co-expression network and meta-
bolic network integration. Furthermore, as the number of conditions increases, the aver-
age performance, measured by the uncentered Pearson product-moment correlation 
coefficient between predicted and measured fluxes, also increases. These results high-
light the robustness and reliability of the integrated gene co-expression network; espe-
cially, when utilizing a greater number of conditions.

Concordance between gene co‑expression modules and reaction fluxes

Understanding the intricate interplay between gene expression patterns and metabolic 
activity is crucial for unraveling the regulatory mechanisms within biological systems. 
In this study, we delve into the relationship between gene co-expression modules and 

Fig. 8  The predictive performance for WT at 0.5 per hour varies with the number of conditions (N) used in 
the gene co-expression construction model
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reaction fluxes in the context of the E. coli and Yeast organisms. The initial step involved 
the application of TOM (Topological Overlap Measure) similarity [50, 51] and hierar-
chical clustering techniques to the gene co-expression network. By employing TOM 
similarity, we assessed the topological overlap of gene expression profiles, allowing us to 
identify genes with similar expression patterns. Hierarchical clustering then facilitated 
the grouping of these genes into distinct modules, each characterized by a specific set of 
co-expressed genes.

This clustering process yielded nine discrete modules for E. coli data and six modules 
for the Yeast data. The list of all modules and their gene members of E. coli and S. cerevi-
siae can be found in Additional file 4. In each module, we utilized the DAVID tool (Data-
base for Annotation, Visualization, and Integrated Discovery) to identify pertinent terms 
from Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. This approach allowed us to pinpoint the most statistically significant GO and 
KEGG terms within each module. Detailed GO and KEGG enrichment results can be 
found in Additional file 5. These tables furnish insights into the annotated pathways and 
biological functions linked to the respective gene modules in each organism.

Subsequently, we sought to examine the concordance between these gene co-expres-
sion modules and the reaction fluxes occurring within the metabolic network via the 
predictions from ICON-GEMs and E-flux method. Reaction fluxes represent the flow 
of metabolites through metabolic pathways, reflecting the actual functional activity 
of the network. By analyzing the correspondence between gene modules and reaction 
fluxes, we gained insights into the alignment of transcriptional patterns with metabolic 
behavior.

To better understand how the ICON-GEMs incorporate the gene co-expression 
network onto the metabolic pathway, we illustrate the histidine metabolism and their 
gene co-expression network, which is found to be enriched in module ME7 for E. coli, 
as shown in Fig. 9. The red and pink nodes in the figure represent genes within mod-
ule ME7. The pink nodes correspond to genes associated with enzymes in the histidine 
metabolism pathway. The others are genes that co-related with the pink nodes in the 
co-expression network. Totally, there are ten enzymes involved in this pathway and six 
genes (b2020, b2022, b2023, b2024, b2025, and b2026) found to control the process of 
this pathway. According to the defined quadratic programming model in ICON-GEMs, 
the boundaries of these reaction fluxes were not only controlled by the direct transcrip-
tomic expression levels but also by the collaborative gene partners found in co-expres-
sion network analysis. Therefore, the regulation for this histidine pathway as shown in 
Fig.  9 involved with the other genes (red nodes in the figure) in cooperating its own 
process and some other involved processes based on the co-expression network as well. 
Our findings reveal intriguing relationships between gene co-expression modules and 
reaction fluxes, highlighting instances of coordinated regulation where groups of co-
expressed genes correspond to specific metabolic pathways. This concordance under-
scores the significance of transcriptional regulation in influencing metabolic outcomes 
and suggests potential nodes of regulatory control within the metabolic system.

Furthermore, we executed a comparative examination of gene expression data and 
reaction flux within each module, as illustrated in Fig. 10 for E. coli and Fig. 11 for S. cer-
evisiae. This visual representation displays a heatmap depicting the normalized averages 
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of gene expression levels and reaction fluxes from our ICON-GEMs and E-flux tech-
nique, across the diverse modules. As demonstrated by Figs.  10 and 11, a noticeable 
alignment emerges between the average metabolic flux and gene expression data within 
each module. For E. coli and S. cerevisiae model, the heat map of clustering-derived aver-
age flux and gene expression values exhibit consistent concordance to our ICON-GEMs 

Fig. 9  Histidine metabolism in module ME7 of E. coli to represent the control of the gene co-expression 
network onto a metabolic process. The pink nodes are genes associated with enzymes in this pathway. The 
other nodes are genes connected with the pink nodes in the co-expression network

Fig. 10  The heatmap shows the average of A gene expression and reaction fluxes calculated by B 
ICON-GEMs and C E-flux method of E. coli in each module. Eight distinct conditions encompass wild-type 
E. coli growth rates at 0.2 (as reference (RF)), 0.5 (WT0.5), and 0.7 (WT0.7) per hour as well as specific gene 
deletions (of genes pgm, pgi, gapc, zwf, and rpe)
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results rather than the outcomes of the E-flux method. The incorporation of the gene co-
expression network into the metabolic framework significantly bolsters the coherence of 
average metabolic flux with the corresponding gene expression data within each module. 
In summary, our investigation sheds light on the interconnectedness of gene expression 
and metabolic function by examining the congruence between gene co-expression mod-
ules and reaction fluxes. This integrative approach not only advances our understanding 
of the regulatory landscape in E. coli and S. cerevisiae but also provides a framework for 
dissecting similar relationships in other biological contexts.

Discussion
The ICON-GEMs present an inclusive strategy to merge co-expression networks with 
metabolic models, offering a means to uncover functional associations between genes 
and metabolic pathways. This approach employs quadratic programming with an objec-
tive function involving the summation of products of reaction flux pairs correspond-
ing to gene pairs exhibiting high correlations, as indicated by the gene co-expression 
network.

We evaluated our method using gene expression data and GEMs of E. coli and S. cere-
visiae. The results showed that the flux distributions obtained through the quadratic pro-
gramming approach closely align with the experimental outcomes from 13C metabolic 
flux analysis under both the DC and AC models. Additionally, our approach exhibited 
a significant ability to predict flux within earlier GEM models, demonstrating remark-
able accuracy in most cases and moderate performance for models with less comple-
tion. Moreover, the reaction flexibility for each subsystem in our approach, calculated 
through flux variability analysis, is consistent with the original results of the model with-
out the gene co-expression network. Finally, our method of adding the gene co-expres-
sion clearly demonstrates the natural consistence between gene module clusters and 

Fig. 11  The heatmap shows the average of A gene expression and reaction fluxes calculated by B 
ICON-GEMs and C E-flux method of S. cerevisiae in each module. These conditions correspond to different 
concentrations of acetoin in S. cerevisiae; specifically, at 0 mM (as reference (RF)), 100 mM, 200 mM, and 
300 mM
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reaction fluxes better than the method of using a single value of gene expression level to 
regulate fluxes. This directly highlights the benefits of employing a gene co-expression 
network to regulate metabolic processes.

The main factor in constructing an accurate gene co-expression network involves 
preparing gene expression profiles and calculating correlation coefficient between gene 
pairs. The collection of data on gene expression should be driven by the conditions that 
are of particular interest for study, and these conditions should be selected to effec-
tively reveal the relationships between the genes under investigation. We applied our 
approach to E. coli and S. cerevisiae, well-studied organisms with relatively accurate 
models due to their extensive research history. Challenges still persist when applying 
ICON-GEMs to other organisms, especially those that have not been extensively studied 
in the context of metabolism. In such cases, there may indeed be a need for additional 
research to enhance our understanding of their metabolic processes. To calculate the 
correlation coefficients, we applied Pearson for capturing linear relationships between 
any two genes. This calculation cannot capture non-linear or more complex relation-
ships. In principle to calculate linear or non-linear correlations, we require more than 
two data points. Thus, the application of this coefficient for constructing a gene co-
expression network requires more than two conditions. Therefore, it is important to 
note that, unlike methods such as E-flux and GIMME, which rely on a single condition 
to regulate metabolic flows, our approach, ICON-GEMs, leverages multiple conditions 
to extract gene relationships. Consequently, to construct a gene co-expression network 
that better predicts fluxes, ICON-GEMs requires the utilization of more than two condi-
tions. Moreover, with an increase in the number of conditions, there is a corresponding 
improvement in the average performance.

The transformation of correlation coefficients into a binary adjacency matrix serves 
to establish the co-expression network. This binary representation simplifies the net-
work structure by focusing on the presence or absence of a relationship between genes. 
The approach of employing a threshold to determine network edges introduces a criti-
cal decision point. The balance between achieving scale-free topology and maintaining 
mean connectivity determines the network’s complexity and information content. This 
trade-off highlights the intricate nature of biological networks, where both connectivity 
patterns and global network properties play roles in understanding cellular processes.

ICON-GEMs typically involve sets of gene pairs within a gene network. Therefore, any 
network type can be used to relate gene relationships to a metabolic network, as dem-
onstrated in the results. It turns out that the gene co-expression network utilizing linear 
correlation in this study exhibits better performance than the other networks. It remains 
open to explore the use of non-linear correlations for gene co-expression networks with 
gene expression data in the future. We also show that the superiority of gene co-expres-
sion network over alternative networks like gene co-expression networks with the other 
data sources, protein–protein interactions (PPIs) in capturing gene relationships, and 
random networks with the same number of genes and connections, on metabolic flux 
predictions. Interestingly, ICON-GEMs detected an important result when using the co-
expression network generated from related experiments slightly better than the original 
expression data set. It might be because using the original expression data to build up 
the co-expression network would provide an overfitting problem to lose some crucial 
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complex relationships among genes. Using co-expression from similar or related experi-
ments would provide more flexibility to detect broader co-partners in metabolic pro-
cesses. It is a hint for the importance of the era of integrating multi-data set from diverse 
experimental techniques.

Finally, it is important to acknowledge that our ICON-GEMs involves nonconvex 
quadratic programming, presenting challenges in terms of processing speed due to its 
NP-hard nature. However, with advancements in computational technology and storage 
capacity, it is still feasible to calculate flux solutions for a genome-scale metabolic model 
with a gene co-expression network in a reasonable timeframe. Nonetheless, ICON-
GEMs provide a novel perspective on the interdependencies of reaction fluxes, shedding 
light on unexplored aspects of cellular metabolism.

Conclusion
 Analyzing flux distribution at the condition level holds significant importance across 
various applications. Conventional enhanced Flux Balance Analysis (FBA) methods typi-
cally rely solely on gene expression values, overlooking the intricate gene correlations. 
In contrast, ICON-GEMs introduces a pioneering computational approach that enables 
the quantification of flux distribution while concurrently integrating gene co-expression 
networks. The flux distribution generated by ICON-GEMs closely aligns with experi-
mental findings. Remarkably, ICON-GEMs outperform existing prediction methods, 
yielding results of heightened accuracy. Notably, this approach unveils insightful meta-
bolic pathways linked to the provided transcriptomic data. Furthermore, ICON-GEMs 
boasts versatility, as it can be effectively applied to diverse transcriptomic data and vari-
ous organisms.
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