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Introduction
Effective normalization is essential for rigorous analysis of high throughput sequenc-
ing data. In sequencing data, normalization identifies a set of features that are expected 
to be invariant between two data sets and leverages these to counteract the effects of 
systematic experimental bias and technical variation. Broadly, there are only two pos-
sibilities for the source of these invariant features: external spike-in controls or an inter-
nal invariant set [1, 2]. Whenever possible, external spike-in controls are preferred [3], 
as they control for more sources of variation by adding a presumably invariant set of 
data across samples. However, not all data sets contain external spike-ins and they can-
not be added post-facto. Consequently, a variety of internal normalization methods have 
been developed [3, 4] which assume some internal feature of the data—typically a set of 
genes—is invariant between data sets. While most of these techniques were developed 
for microarrays or RNA-seq, they have been broadly applied to a variety of sequencing 
assays.
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One set of protocols in particular—nascent RNA sequencing methods—are prone 
to large amounts of technical variation [5]. Nascent RNA sequencing protocols, such 
as global run-on sequencing (GRO-seq) [6], precision run-on sequencing (PRO-seq) 
[7] and their variations [8, 9], isolate small quantities of recently produced RNAs from 
actively engaged RNA polymerases [10]. Nascent RNA sequencing samples have a dis-
tinct profile relative to RNA-seq (Fig.  1A), resulting from the different phases of the 
RNA life cycle that they capture. RNA-seq samples from the pool of stable, messenger 
RNAs (mRNAs) which are predominantly spliced and polyadenylated. These RNAs 
originate from a relatively small fraction of the genome (exons and UTRs). In contrast, 
nascent RNA sequencing protocols capture RNA that is still actively engaged with RNA 
polymerases, meaning the RNAs are pre-splicing and need not be stable. As much of 
the genome is actively transcribed, nascent transcription protocols recover reads from 
much larger proportion of the genome (not only exons and introns, but also numerous 
intergenic regions). Consequently, if both assays are sequenced to the same depth, the 
equivalent nascent transcription data would have a lower per position depth.

External spike-ins in nascent RNA sequencing are also inherently different than in 
RNA-seq, leading to more uncertainty in the normalization process (Fig. 1A). The gold 
standard for spike-ins in RNA-seq is an External RNA Controls Consortium (ERCC) 

Fig. 1  A Bayesian model describing normalization data for nascent RNA sequencing data. A Schematic 
showing typical external control, handling, and resulting data profile differences between RNA-seq (top) and 
run-on nascent RNA sequencing assays (bottom). Note that run-on efficiency is assumed to be equivalent 
between spike-in nuclei and experimental nuclei. B Quantifying a normalization factor is accomplished either 
by a naive ratio of total reads approach (left), linear regression (middle), or by the Bayesian model proposed 
here (right). Linear regression (middle) is more resistant to noise and outliers, but does not provide a reliable 
way to measure the variance of the normalization estimate. The Bayesian model (right) converts the slope 
m =

A

B
 to log space, converting the multiplicative nature of the normalization factor to a linear one, for 

which normalization factors can be readily inferred as a normal distribution with variance. C A plate diagram 
showing the VSI model as implemented in pymc3. Briefly, we estimate our count distributions X and Y (top 
row) with a negative binomial. The ratio of two negative binomial distributions is approximately log-normal, 
so we derive a normal distribution called mean (middle) as the log of the ratio of Y and X with some variance 
(top right), estimated as an inverse gamma distributed random variable. With the estimation of the mean 
established, we then add additional parameters to describe the intercept, and variance of the actual line of 
best fit. This is done so that the parameter mean is estimating an error in log-transformed space, as discussed 
in Panel (B)
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library, which uses a fixed amount of known RNAs which are added to the sample to 
quantify the variation introduced during sample handling, library preparation and 
sequencing. Crucially, this RNA spike-in library is introduced in known quantities prior 
to the experiment. Run-on centric nascent RNA protocols seek to identify the locations 
of actively engaged RNA polymerases by using marked nucleotides and a run-on reac-
tion. Hence the ERCC spike-ins, by virtue of being mature RNAs, are incompatible with 
the run-on reaction. Instead, fixed amounts of nuclei from an external organism are typi-
cally added to the sample nuclei and then the run-on reaction is employed on the combi-
nation of cell types. Thus, the quantity of RNA from the external spike-in is determined 
by not only the efficiency of the protocol and sequencing, but also the efficiency of the 
run-on reaction. A necessary but potentially flawed assumption, then, is that all of the 
run-on reactions have the same efficiency, allowing the reads mapping to the spiked-in 
nuclei to be treated with the same reliability as an ERCC spike-ins. If an external spike-in 
is not used, many off-the-shelf RNA-seq tools are used directly for internal normaliza-
tion [2, 11–13].

Critical to the effectiveness of internal or external normalization are the assump-
tions about what remains invariant. Notably, when run-on reactions are performed in 
the presence of a perturbation, nascent RNA sequencing contains a unique internal set 
of invariant data. RNA Polymerase II loads at the 5 ′  end of a gene and then proceeds 
through the gene with a relatively consistent processivity [10]. Thus, as first described 
by Mahat [14], at short time points after a perturbation, changes in transcription are 
not expected to have reached the 3 ′  end of long genes. Prior work on 3 ′  end normaliza-
tion applied linear regression to the set of 3 ′  invariant ends and showed this approach 
was similar to other, presumably invariant, internal gene sets [14, 15]. However, they did 
not directly compare the approach to external spike-in controls or establish uncertainty 
bounds on their estimates.

In this work, we set out to compare run-on based 3 ′  normalization to external spike-
ins. To this end, we developed a method for quantifying error in the estimation of spike-
in normalization. Using this method we compare external spike-ins to internal invariant 
sets, focusing on the 3′ subset. We uncovered that most external spike-ins in nascent 
RNA assays are under-sequenced and potentially unreliable. Additionally, we find that 
when external spike-ins are of adequate depth and the assumptions of the 3′ normaliza-
tion approach are met, the two methods show high correspondence.

Results
An algorithm to quantify error in spike‑in normalization estimates

When normalizing between samples, there are different approaches to computing 
normalization factors from the invariant set, whether that set is an external spike-ins 
or internal [3] (Fig. 1B). The most naive of these is to take the simple ratio of reads 
mapping to the invariant set between two samples and use that as a normalization 
factor (Fig. 1B, left). However, this reduces the information contained within the set 
to a single summary value. The alternative approach is linear regression, where esti-
mates of counts per invariant entity, typically genes, are used as data points for the 
fitting algorithm and the resulting slope is used as an the normalization factor [3] 
(Fig. 1B, middle). In this way, transcription levels across different orders of magnitude 
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can be leveraged to give a more accurate normalization factor. Thus, prior work in 
nascent transcription has often used naive linear regression to estimate normaliza-
tion factors instead of a simple point estimate [14, 15]. However, to use linear regres-
sion, a sample’s spike-ins must be of sufficient depth that a linear relationship exists 
in the count data. Additionally, naive linear regression does not provide error bounds.

To quantify the error inherent in estimating a normalization factor from data, we 
developed a hierarchical Bayesian version of the linear regression framework (Fig. 1B, 
right). Typically linear regression is formulated as:

which describes the relationship between counts in two samples x and y in terms of two 
variables (m and b) the slope and intercept, respectively. In this framework, the slope 
(m) is interpreted as the best normalization factor between the two samples. In the naive 
context of normalizing to a spike-in (without considering the error of the estimate), this 
typically works well, as counts span multiple orders of magnitude and typically form a 
linear relationship between samples [3]. However, in standard linear regression only a 
single point estimate for the parameters is obtained.

To quantify the error in the estimated normalization factor, we extend the naive 
linear model above to incorporate an estimation of the error in log-space, backed by 
biologically informed count distributions. In the simplest terms, we generate a linear 
model whose mean is a normal distribution defined by the log-transformed ratio of 
our read counts [16, 17], plus an intercept term. By using the log-transformed ratio of 
read counts, we can assume the slope is normally distributed:

Where µslope is the desired mean (normalization factor) and the resulting variance esti-
mate σmean is then used as an estimate on the error of that normalization factor.

Our model is shown formally as a plate diagram in Fig.  1C. To fully specify the 
model, we assume the intercept follows a Normal distribution, Intercept ∼ Normal . 
The input data for this model is formally a counts matrix, M where Mi,j represents the 
number of reads in sample i in region j. For all samples Mi , we select a single refer-
ence sample Mr to normalize against. We first model the count data over regions of 
interest as a Negative Binomial Distribution, as we expect the count distribution to be 
over-dispersed. This yields two variables—X and Y which describe to the count dis-
tribution of each sample input to the model. Priors for σ variables are selected to be 
uninformative using the conjugate InvGamma(1, 1) [18], while priors for X and Y are 
defined as µX = mean(Mi + 1) and µY = mean(Mr + 1) to reflect the log-transformed 
ratio of Laplace smoothed count data.

We call our new method Virtual Spike-In (VSI) and leverage Markov Chain Monte 
Carlo (MCMC) methods to fit the underlying distributions. The input to the model 
is a set of data points between two samples, thus this model can also be applied to 
both external spike-ins and internal invariant sets of regions, such as the unperturbed 
3 ′  end of long genes, or to any other set of invariant regions shared between two 

y ∼ mx + b

µslope ∼ Normal mean = log2
Y

X
, σmean
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samples that behave as count data. A technical discussion of implementation details 
for this model is available in the “Methods” section of this paper.

Confidence in normalization factor estimates depends on adequate spike‑in depth

To assess the correctness of our VSI implementation and approach, we first compare the 
method to the standard linear regression approach. To this end, we processed samples 
of human cells with Drosophila spike-ins from a number of previously published studies 
employing nascent RNA sequencing data [19–32]. After filtering for samples with repli-
cates and a nonzero number of reads mapping to the dm6 Drosophila genome, we were 
left with n = 180 samples (Additional file 1: Table S1, see Methods for complete details 
on data processing).

When running the VSI model on external spike-ins from published data [19–32], 
we find that it reliably recapitulates the results of naive linear regression (Fig. 2A), but 
now provides error bars on these estimates. In the regime of small normalization fac-
tors (values near zero), both linear regression and the VSI model perform essentially 
identically. Importantly, when the absolute value of linear regression estimates are large, 
the VSI approach tends to recover a comparatively lower normalization factor, likely a 
consequence of the model being more resistant to noise and extreme values than linear 

Fig. 2  Spike-ins have unusual behavior at the extremes. To assess where our model diverges in behavior 
from linear regression, we ran the VSI model on data from a number of published experiments [19–32]. 
Within each experiment, samples were grouped by condition and analyzed within those groups. All samples 
had Drosophila spike-ins, so annotated Drosophila genes were selected as the invariant set to count over. A 
Comparison of regression factors inferred by linear regression (x-axis) to those inferred by the Bayesian VSI 
model (y-axis). Estimates are shown along with an error bound of ±σ . Notably, the regression estimate (x-axis) 
and VSI estimate (y-axis) deviate most dramatically when the absolute value of the normalization factor is 
large. B When we plot the depth of coverage of the spike-in (x-axis) against the VSI error estimate (y-axis) 
shows samples with less than 10× spike-in transcriptome coverage are less consistent than those above this 
threshold (dotted red line). Of note, error estimates range between 0.8 and 1.0, but when applied to the data 
they must be converted out of log2 space and multiplied by the normalization factor. Hence the impact of 
the error will scale with the normalization factor size. In a biological context, this is good—samples with large 
normalization factors have less confidence indicating poorer experimental efficiency and reproducibility
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regression alone. However, large normalization factors suggest extreme differences in 
sample efficiencies which should call into question whether the data and spike-in are of 
sufficient depth and quality to be trusted. A detailed examination of the posterior distri-
bution variance shows higher variability at low spike-in sequencing depth (Fig. 2B). The 
posterior variance (the variance of the estimated normalization factor after fitting the 
model) generally improves at depths greater than 10X the dm6 reference transcriptome, 
using a Drosophila transcriptome length of 30Mb [33]. Unfortunately, the majority of 
published samples are below this spike-in depth (Additional file 1: Fig. S1). This suggests 
that most published nascent RNA sequencing experiments using external spike-ins are 
under-sequenced, which may be a consequence of either an ineffective run-on reaction 
or a choice to prioritize sample read depth over spike-in read depth.

Evaluation of error in external and internal normalization

Normalization across invariant regions need not be limited to a spike-in, although 
an external spike-in is typically preferred. In theory, any set of invariant regions in a 
sequencing data set that follow a count distribution can be used to estimate a normaliza-
tion factor between samples. This makes the Virtual Spike-In a versatile and widely use-
ful model for quantifying normalization error across invariant regions.

As an example, our model can leverage reads at the 3′ end of long annotated genes, 
building on prior work [14, 15] (Fig. 3A). Nascent RNA assays survey engaged RNA pol-
ymerases genome-wide, which for any singular time point can be anywhere along the 
gene. However, in the presence of a perturbation, changes in transcription levels must 
originate at the 5 ′  end of genes, either by altering RNA polymerase II’s loading and/or 
release from pausing. Once released, RNA polymerase II then proceeds through the 
gene at a relatively consistent rate [10, 15]. For example, in human cells RNA polymerase 
II has an elongation rate of roughly 2− 3

kb

min
 [34–38], although this rate can be highly 

variable. Therefore, at short time points, there is insufficient time to alter RNA polymer-
ase II profiles at the 3 ′  ends of a long gene (see Fig. 3A).

Under this model, we note that RNA polymerase II profiles at genes past 
Length Threshold = Elongation Rate · Time Point should retain a consistent level of 
baseline transcription unperturbed by the experiment. Using this assumption, the invar-
iant 3 ′  gene regions can be used for normalization between samples. Previous work 
[14, 15, 39], used a simple linear regression model to determine a normalization factor, 
defined by the slope of the best fit line, between the two samples using 3′ regions. How-
ever, these models did not establish uncertainty bounds on the accuracy of their normal-
ization factors and did not compare their methodology to external biological spike-ins to 
quantify its effectiveness.

We leveraged the VSI approach to compare the 3′ normalization to external spike-
in controls (Fig. 3B). For consistency of comparison between different experiments, 
and considering the typical timelines used, we selected a 180kb ( 60min · 3

kb

min
 ) thresh-

old for all samples when looking at the 3′ invariant region. We also exclude the last 
500bps of the annotated gene from our normalization to reduce variance from the 
characteristic 3′ bump associated with termination in nascent RNA sequencing 
experiments. This results in 1198 3′ invariant regions used for normalization by the 
VSI model (roughly 10% of annotated RefSeq genes). Using this set, we found that 
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the correspondence between the 3′ normalization approach and external spike-ins 
(Fig. 3B) showed extensive variation. In fact, the internal and external normalization 
factors were only rarely the same (diagonal line). Thus, we next sought to determine 
which factors influence the 3′ normalization method’s fidelity.

We first consider time points below the 60 min threshold utilized. As the posterior 
estimate of the normalization factor varies dramatically below 10X spike-in cover-
age (Fig. 2B), we first consider only samples with stable estimates (spike-in coverage 
> 10X). For these samples, there is generally good concordance—small differences as 
most points are near the origin—between the 3′ normalization and external spike-in 
approach (Fig. 3C). Notably, two data sets show strikingly lower concordance between 

Fig. 3  3′ Normalization estimates depend on assumed polymerase elongation behavior and sequencing 
depth A A cartoon showing the characteristic shape of nascent RNA sequencing samples after a 
perturbation. RNA polymerase II loads at the 5   end of genes, thus after a perturbation alterations in 
transcription levels can only reach a distance that depends on the processivity of RNA polymerase II. In this 
work we assume 3kb/min and hence for a 60 min experiment the perturbation influences the first 180kb 
( 60min · 3

kb

min
 ). B We compared external spike-ins (y-axis) to 3   internal normalization across a large collection 

of previously published data. Samples are colored by whether they C meet both time point and depth 
assumptions (green), D have low sequencing depth ( < 10 X spike-in transcriptome) (orange), E have time 
points beyond the 3′ assumed 60 min (blue), or F meet neither assumption, being of both low spike-in depth 
and long time point (red). Notably, two samples in (circled in C) meet the coverage and time constraints of 
the 3′ normalization approach but involve depletion of NELF under heat shock conditions, which likely alters 
RNA polymerase elongation
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the two methods. These two data sets were samples where NELF (negative elonga-
tion factor) was depleted and the cells were subjected to heat shock [19]. The lack 
of concordance between the methods suggests that the depletion of NELF may have 
had genome-wide effects on RNA polymerase, a condition that calls into question the 
invariant nature of any internal set.

At low external spike-in depth, inadequate spike-in data may exist for confidence in 
linear regression. Consistent with this notion, low depth spike-in samples have higher 
posterior estimate variance (Fig.  2B). However, despite this increased uncertainty, 
we found good concordance between the spike-in and the 3′ normalization estimates 
(Fig. 3D).

Importantly, the 3′ normalization approach inherently assumes that portions of genes 
are unreachable at the specified time point of the experiment. By using a uniform 60 min 
assumption, we could determine whether the concordance between the 3′ approach 
and external spike-ins breaks down at longer time points, when the assumed invariant 
regions can no longer be assured to be unchanged. As expected, when the internal set 
contains regions that could be varying between the samples (e.g. the time point is longer 
than the 60 min assumption), there was increasing discordance between the two nor-
malization methods (Fig.  3D,E), particularly when long time points co-occurred with 
low coverage (Fig. 3F). Intriguingly, even in the data that fail to meet our assumptions 
(low depth + long time, Fig. 3F) we observe a small cluster of samples close to the origin 
of the plot. In these scenarios, we achieve concordance between internal and external 
spike-ins even when all assumptions are violated, as in these cases the perturbation hap-
pens to not strongly impact the long gene set used by the VSI normalization.

Collectively, these results suggest that the 3′ internal normalization approach gives 
results similar to the linear approximation of external spike-ins when the assumptions 
of the model are met. This is particularly true when the normalization factors are small 
(e.g. near the origin in Fig. 3B–F). When the assumptions of the VSI model are violated, 
either with long time points or disruptions that alter RNA polymerase itself, the two 
models strongly disagree.

To further characterize this pattern, we next turned our attention to the examination 
of a single high quality data set that contains multiple time points and roughly average 
spike-in sequencing depth (GSE96869) [23]. In this study, Dukler et al. treated K562 cells 
with the natural drug Celastrol, which activates mammalian heat shock response [23]. 
Cells were then assayed at several time points including 10 min, 20 min, 40 min, 60 min 
and 160 min. This PRO-seq data set has spike-in sample depth ranging from 0.7 to 1.1X 
Drosophila transcriptome coverage. Importantly, the cells undergo replicative arrest 
around the 40 min time point. As before, we employ a 180kb ( 60min · 3

kb

min
 ) threshold 

for all samples when looking at the 3′ invariant region. For each sample, we compared 
normalization results using the 3′ internal normalization to external spike-ins, using 
both linear regression (VSI) and the ratio based point estimate.

We observe that the VSI model shows good concordance between internal ( 3′ ) and 
external spike-in estimates of the normalization factor, particularly at early time points 
(Fig. 4). After the onset of replicative arrest (t=40 min), the internal and external nor-
malization factors begin to diverge, though only modestly in both the 40 min and one 
of the 60 min time point replicates. As expected, the largest deviations between the 3′ 
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and external spike-in are observed at 160 min, when the time point is well beyond the 
60 min assumed by the internal normalization. At all time points, the single point esti-
mate of the external spike-in deviates substantially from both the linear model estimate 
of external spike-in and the 3′ approach, consistent with prior work on normalization 
approaches [3].

Downstream effects of normalization

Normalization factors are crucially important in downstream analyses of high through-
put sequencing data. To that end, we next compared the results of differential expression 
analysis on the Dukler data set [23]. For differential expression analysis, we used DESeq2 
[2], which uses an internal normalization approach. Specifically, DESeq2 calculates a 

Fig. 4  Comparison of all normalization methods on good quality data. We compare normalization factors 
on a high quality data set [23] (GSE96869) computed by four distinct methods: VSI applied to the internal 3   
invariant gene set (blue), VSI applied to an external Drosophila spike-in (red), the ratio approach applied to 
the 3   invariant gene set (yellow), and the ratio approach applied to the Drosophilia spike-in (green). Error 
bars are shown for the VSI estimates. The 3   invariant set uses a threshold of 180 kb (60 min), regardless of 
the data time point. For orientation, we note the normalization factor of zero (red dotted line), the onset of 
biological replication arrest and the assumed time point for the 3   invariant gene set
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size factor as the median ratio of counts over every gene in the sample divided by the 
geometric mean of counts at that gene over all samples. The result is an effective method 
for normalization that implicitly assumes that most genes are unchanged across the 
comparison.

We sought to compare the default DESeq2 size factor approach to the 3′ internal nor-
malization method. For this comparison, we performed differential expression analysis 
between the 0 min and 60 min time points (Fig. 5A, 40 min comparison shown in Addi-
tional file 1: Fig. S3). We observed that the posterior point estimate for the normaliza-
tion factor recapitulate a strict subset of genes called as differentially expressed by the 
automatically estimated size factors (Fig. 5). In simpler terms, it appears that 3′ internal 
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Fig. 5  Estimated Normalization Factors Provide Strict Cutoffs for DESeq2 A Differential expression analysis 
by DESeq2 (adj. p-val < 0.01) using size factors estimated from DESeq2 (red) and the VSI model (purple) on 
3′ invariant regions. Note that DESeq2 calls normalization factors “size factors”. The more conservative VSI 
identified set (purple) is a strict subset of the DESeq2 identified significant set. B Consistency of differential 
expression calls across a broad range of plausible normalization factors. Genes are colored based on the 
reproducibility of statistically significant differential expression (DESeq2, adj. p val < 0.01 ) across 1000 
iterations where normalization factors were sampled from the posterior distribution estimated by VSI. Points 
that appear as significant most often are also those that are called as significant using both DESeq2 size 
factors and VSI 3   normalization (Panel A, purple)
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estimated normalization factors are more conservative, effectively decreasing the set of 
genes called as significant. Arguably the VSI set is both more conservative and based on 
a biologically principled invariant set of data compared to the DESeq2 method.

In both cases, a single normalization term is calculated and presumed to be correct. 
Our earlier comparison to external spike-ins (Fig. 3) suggests two estimators may reach 
similar but not quite the same normalization factor. Therefore, we next sought to ascer-
tain the extent to which minor, plausible fluctuations in the calculated normalization 
factor might influence differential expression analysis. To this end, we use a sampling 
approach. We ran 1000 simulations sampling normalization factors from the posterior 
distribution estimated by VSI for each of the 4 samples (10 min, 60 min; 2 replicates 
at each time point). We then ask how often a particular gene is called as significant 
across the samples. We observe that many of the genes called by DESeq2 as differen-
tially expressed (red dots in Fig. 5A) have relatively low reproduciblity across the range 
of plausible normalization factors (Fig.  5B) and are therefore potential false positives. 
Notably, the genes with the highest reproducibility are those found by the VSI 3′ point 
estimate (purple dots in Fig. 5A correspond to red dots in Fig. 5B).

Discussion
We present Virtual Spike-In, a novel approach that uses a hierarchical Bayesian regres-
sion model to calculate normalization factors and quantify their uncertainty for nascent 
transcription datasets. We use this method to compare 3 ′  end normalization in run-on 
based nascent RNA sequencing experiments to external spike-in controls. We find that 
while the internal and external normalization rarely perfectly agree, the 3 ′  end normali-
zation shows high concordance to external spike-in controls when assumptions of the 
method are met. Additionally, normalization is known to have strong effects on analysis 
results [3], and our work further supports this conclusion (Additional file 2).

While external spike-ins are typically assumed to be the gold standard for normaliza-
tion of sequencing samples, we find that external spike-ins in published run-on based 
nascent RNA sequencing experiments are typically under sequenced. Importantly, 
external spike-ins in nascent RNA sequencing are not the same as those in RNA-seq. 
This makes the entire normalization process significantly more challenging. Using spike-
in nuclei inherently assumes that for every sample, the efficiency of the run-on in the 
spike-in nuclei closely matches the efficiency of the run-on in the experimental nuclei. 
There is no reliable mechanism to determine if this assumption is correct. This problem 
is exacerbated by the relatively low read depth of most external spike-ins in nascent RNA 
assays. It is critically important that any normalization technique be based on adequate 
data, as even the best normalization model is limited by the available data.

The alternative to external spike-ins is to use an internal invariant set. Run-on based 
nascent transcription coupled to a perturbation has a unique invariant set in the 3′ ends. 
While 3 ′  end normalization is powerful, it has a number of important limitations com-
pared to an external spike-in. First, the elongation rate of RNA polymerase II in the 
organism must also be known. At any given elongation rate and time point, a reasonable 
proportion of genes in the genome must be sufficiently long that invariant regions exist 
at the time point of interest. While this works well in the human genome, it is likely not 
the case for organisms with smaller genes and genomes. Even in the human genome, 
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when the normalization factor is estimated on later time points, it is based on increas-
ingly smaller quantities of data, leading to less certainty. With that said, the use of a 
Bayesian model in this context does make the model robust to a small number of genes 
to be normalized against. Finally, the 3 ′  end approach cannot be used in the absence of a 
perturbation or if the perturbation could alter previously loaded RNA polymerase.

In addition to the assumptions made about the model, it is also important to consider 
the assumptions made about the selected 3′ regions if performing normalization inter-
nally. First and foremost, low expression is a persistent concern across all experiments 
and must be considered here. Undersequencing is, in general, a problem for normaliza-
tion (of external spike-ins or of 3 ′  invariant regions) and downstream analysis. Conse-
quently, if a sample is of low sequencing depth, either generally or particularly at the 3′ 
end of genes, we recommend it be excluded from further analysis for quality concerns. 
Likewise, our 3 ′  assessment depends on the accuracy of gene annotations and the pre-
sumption that long genes are not in some way atypical. Finally, the presence of intronic 
bidirectional signals (e.g. same strand overlapping transcription) could be problematic 
if the bidirectionals both reside within the invariant 3 ′  region and are themselves dif-
ferentially transcribed. Despite these caveats, one benefit of 3 ′  end normalization is that 
it can be applied to many previously published run-on based nascent RNA sequencing 
data sets where an external spike-in is not present.

There are a number of nascent transcription assays that do not use a run-on step, and 
normalization for these assays present distinct challenges. Metabolic labeling approaches 
expose live cells to marked nucleotides over some time frame before the experiment [8, 
40]. As such, both the profile and signal to noise characteristics of the data are influ-
enced by the time and efficiency of the labeling process. In contrast, mammalian native 
elongating transcript sequencing (mNET-seq) [41] uses an antibody to pull down a com-
ponent of the RNA polymerase II complex. As such, normalization of mNET-seq data 
is conceptually similar to ChIP-seq and should account for antibody efficiency. Further 
work is needed to characterize both internal and external normalization strategies for 
metabolic labeling and antibody oriented nascent transcription assays.

The Virtual Spike-In model is versatile. As the input to normalization is counts over 
a collection of regions, the VSI method can be applied to both internal invariant sets, 
such as the 3 ′  end normalization used here, and to external spike-in controls. Another 
notable advantage to the VSI technique is that it establishes error bounds on the calcu-
lated normalization factors, an important but often overlooked aspect of the data analy-
sis. Effectively quantifying error in the point estimations of normalization factors is an 
important addition over the naive linear model. Quantification of error is essential to 
analyzing nascent RNA sequencing data rigorously. Ultimately, nascent RNA sequenc-
ing experiments appear to need a more reliable mechanism for external normalization, 
which is challenging given the limitations of the underlying protocols.

Methods
Our model is implemented in the Python programming language using the pymc3 
MCMC library [42]. Inference is performed using an adaptive sampler, combining the 
No-U-Turn Sampler [43] (NUTS) for continuous variables with a Metropolis-Hastings 
Sampler [44, 45] for discrete variables, using 25,000 iterations after a burn-in period 
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of 2,500 samples. The number of iterations can be increased if a greater assurance of 
convergence is desired. A larger number of iterations are required for convergence of 
the discrete distribution due to the use of a Metropolis sampler instead of NUTS (Addi-
tional file 1: Fig. S5). Source code is available at https://​github.​com/​Dowell-​Lab/​virtu​al_​
spike_​in.

For both the human cell lines and Drosophila spike-in, reads were mapped to the hg38 
and dm6 reference genomes respectively using the Nascent-Flow pipeline [46]. Counts 
were determined for all genes using featureCounts [47], considering only the maximally 
expressed isoform and counting reads per gene including exons and introns.
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