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Background

MicroRNAs (MiRNAs) are small endogenous RNAs that play important gene-regula-
tory roles by interacting with the mRNAs of protein-coding genes to direct their post-
transcriptional regulations [1, 2]. With the development of biological technologies, rapid
accumulating research articles have demonstrated the involvement of miRNAs in vari-
ous biological processes including but not limited to cell proliferation [3], metabolism
[4], embryonic development [5], and diverse diseases like breast cancer [6], diabetic
complications [7, 8] and heart failure [9]. Notably, the roles of miRNAs in diseases can
be stratified into causal and non-causal ones, as they can either directly promote/inhibit
disease progression [10], or serve as molecules that accompany the changes in disease
status [11]. Causal miRNAs can be involved in pathogenic mechanisms and develop-
ments of multiple diseases such as Parkinson’s disease [12] and cardiovascular diseases
[13, 14]. Also, a group of potentially pathogenic miRNAs have been identified in the
human brain and central nervous system [15]. That is to say, the associations between
miRNAs and diseases can be further categorized based on causality rather than simply
considered binary. MiRNAs with causal associations to diseases can actively engage in
diverse biological processes through targeting disease genes and other mechanisms.
Once the regulation of a disease-causative miRNA is disrupted, the normal physiologi-
cal regulation will be shifted to the pathological one, directly contributing to the onset
and progression of the diseases [16]. Hence, causal miRNA-disease associations are of
great prominence in investigating the molecular mechanisms of diseases and identifying
miRNA candidates that can serve as novel targets for disease treatment.

Current experimental methods to determine miRNA-disease associations are often
labor-intensive and time-consuming. Consequently, there is an urgent need to develop
computational models that can more effectively predict the relation on a large scale.
Exploiting various machine learning and graph-based methods, several previous stud-
ies have proposed computational models that can accurately identified general dis-
eases-related miRNAs. For instance, Fu et al. [17] developed DeepMDA that extracted
high-level features from similarity information using stacked autoencoders and then
predicted miRNA-disease associations by adopting a 3-layer neural network. A sophis-
ticated deep ensemble model proposed by Chen et al. [18] revealed potential miRNA-
disease associations based on decision tree. Many other computational models, such as
RWRMDA [19], NetCBI [20], similarly relied on complex graph algorithms to estimate
the similarity links between miRNA and disease networks, thereby constructing mod-
els for miRNA-disease association prediction with the assumption that similar miRNAs
tend to be associated with similar diseases. Liu et al. generated SMALF [21], learning
latent miRNA and disease features through stacked autoencoders and utilizing XGBoost
to predict miRNA-disease associations. Li et al. [22] advanced a new computational
framework GATMDA to discover unknown miRNA-disease associations based on graph
attention network with multi-source information, which effectively fuses linear and non-
linear features. A novel method CFSAEMDA [23] captured the interactive features of
miRNA and disease, applying stacked autoencoder and modified cascade forest model
to complete the final prediction. It is not surprising that predicting disease-related
miRNAs is an ongoing focus of research, but our previous benchmark study [24] has
shown that most of the existing models were not fully capable of distinguishing causal
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miRNA-disease associations from non-causal associations. Causal inference has become
an emerging and important topic in bioinformatics, like casual genetic association infer-
ence [25] and casual gene regulatory network inference [26]. To fill the gap of causal
miRNA-disease association prediction, efforts to design dedicated computational mod-
els aimed at discerning causal miRNA-disease associations remain an urgent priority.

In the latest Human MicroRNA Disease Database (HMDD) v3.2 [27], Gao et al. [28]
systematically annotated the miRNA-disease associations by manual reviewing of the lit-
erature, and finally 4294 causal miRNA-disease associations were labeled, which made
it possible to train a computational model for causal miRNA-disease association pre-
diction. Indeed, Gao et al. proposed the MiRNA-Disease Causal Association Predic-
tor (MDCAP), which exploited class label propagation algorithm to predict potential
miRNA disease causality. MDCAP showed a reliable predictive performance on dis-
tinguishing between miRNA-disease associations and unrelated miRNA-disease pairs
(AUROC>0.9). Nonetheless, the performance of MDCAP decreased significantly on
the challenges in discriminating causal and non-causal miRNA-disease associations
(AUROC=0.695). To this ends, we have previously [29] introduced the Levenshtein-
distance Enhanced MiRNA-Disease Causal Association Predictor (LE-MDCAP) that
was built on Levenshtein distance estimation and matrix decomposition algorithm.
Although this model demonstrated the ability to discriminate potential causal miRNAs-
disease associations from non-causal ones (AUROC =0.820), further improvements are
still needed to improve the predictive performance. Wang et al. also developed DisiMiR
[30], using network influence and miRNA conservation to predict causal miRNA for
four specific diseases (breast cancer, Alzheimer’s disease, gastric cancer, and hepato-
cellular cancer). Nevertheless, additional efforts are necessary to establish a universally
applicable predictive model for causal miRNA-disease associations.

In this study, we devised an improved prediction model for causal miRNA-disease
association prediction, Deep Network Imputation-assisted MiRNA-Disease Causal
Association Predictor (DNI-MDCAP), by the means of integrating multiple miRNA
features and applying the deep graph embedding based-network imputation as well as
graph semi-supervised learning algorithm. To demonstrate the effectiveness of our pro-
posed approach, we conducted thorough evaluations through tenfold cross-validation
and independent test, providing comprehensive measurements of our model’s perfor-
mance. In addition, case studies were conducted to compare the prediction results with
the latest experimental evidence that has not been recorded in the HMDD v3.2 database,
further validating the reliability of our model.

Implementation

Overview of DNI-MDCAP workflow

To improve causal miRNA-disease association prediction, we adopted an integrated
approach that combined various miRNA features and leveraged the network imputation
method based on the deep graph embedding learning model, which finally led to the
development of Deep Network Imputation-assisted MiRNA-Disease Causal Association
Predictor (DNI-MDCAP) for predicting potential associations.
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The overall workflow of DNI-MDCAP is illustrated in Fig. 1. The workflow was con-
sisted of several steps. Firstly, we obtained miRNA-related data from various data-
bases, including sequence, transcription factor (TF), target gene, expression, pathway,
and disease association information. According to the above miRNA-related data, we
measured the similarity between any two miRNAs by Levenshitein distance, Tanimoto
coefficient or Gaussian interaction profile kernel, and then integrated these miRNA
similarity metrics into a final miRNA similarity matrix. The disease semantic simi-
larity matrix and the known causal miRNA-disease association matrix were obtained
from the hierarchical relationships between disease terms recorded in Medical Sub-
ject Headings (MeSH) database [31] and the known causality annotation from HMDD
v3.2 [27, 28], respectively. Next, because current knowledge of causal miRNA-disease
associations is still sparse, we employed the deep graph embedding learning-based
link prediction algorithm to impute the missing links within the miRNA similarity
and the causal miRNA-disease association networks. Lastly, we implemented the
graph semi-supervised learning method to build models for each miRNA similarity
matrix. The prediction scores from these models were then combined via a weighted
sum approach to derive the final prediction results of DNI-MDCAP.

Calculation of miRNA similarity

On accounting of our previous experience in establishing LE-MDCAP [29], Leven-
shtein distance was an informative method to calculate some of miRNA similarity
metrics. Levenshtein distance is a measure of the degree of difference between two
feature strings, also known as the edit distance. The similarity score MS(mj, m3) of
miRNA m; and my based on Levenshtein distance can be calculated as Eq. (1), where
LD/(mjy, my) indicates the minimum edit times to convert m; to my, and len represents
the length of the miRNA feature string.
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MS(my, my) = 1 — LD mumy) O

len(m)+len(my)

The advantage of utilizing the Levenshtein distance as a measure of miRNA similar-
ity, derived from Eq. (2), lies in its ability to effectively compare features in different
scales.

0 < LD (m1, m3) < len(my) + len(imy) )

Notably, MS(m1, m3) should be in the range of 0.5 to 1, as in this study we only con-
sidered the unidirectional editing distance from 11 to m in this study. The higher the
score, the more similar the two miRNAs are.

For sequence-based miRNA similarity, we collected sequence information from the
miRBase v22.1 [32] and employed the Levenshtein distance to measure the similar-
ity between any two miRNAs at three levels: miRNA precursors, mature miRNAs and
miRNA seed sequences. Accordingly, three sequence based-miRNA similarity metrics
were obtained, namely MSgsp, MSsy, and MSss. The resulting sequence-based miRNA
similarity matrix was calculated on the weighted sum of the above three metrics, where
the weight sum was 1 and optimized with a step size of 0.05, with the final selected com-
bination weight MSgs = 0.80 MSsp+ 0.15 MSsp+ 0.05 MSss.

In terms of TF-based and target gene-based miRNA similarity metrics, we fetched
human TF-miRNA regulation data from TransmiR v2.0 [33] database and the experi-
mentally validated microRNA-target interactions data from miRTarBase v8.0 [34] data-
base. For each miRNA-TF/target pair, a score of 1 was used to indicate the existence
of a known regulation between miRNA and a TF/target gene, and 0 otherwise. Again,
Levenshtein distance was used to calculate the similarity between any pair of miRNAs
represented by the binary strings of TF and target gene regulations, which are denoted
as MSys and MSgepe, respectively.

As for expression-based miRNA similarity, we obtained miRNA expression data for
137 cell types by organizing the research results of Lorenzi et.al [35], and normalized
the expressions to eliminate the scaling differences. For pathway-based miRNA similar-
ity, we downloaded the p-values of enrichment for miRNA target genes from the miR-
PathDB v2.0 [36] and retained pathways with at least three miRNAs with p-values of less
than 0.05. Notably, the expression and pathway information are not binary but exhibits
a continuous distribution. Therefore, we used the Tanimoto coefficient to calculate the
similarity between miRNAs, denoted as MSg and MSp. The similarity between miRNA
m; and miRNA m; was calculated as Eq. (3):

Sp= — M
J = TPt g =i, 3)

Unlike many other similarity measurement methods that rely solely on the magnitude
of differences, the Tanimoto coefficient takes into account the distribution and over-
lap of values within the data, making it particularly suitable for capturing similarities
in continuous data with different ranges and distributions. Moreover, we evaluated the
influence of different miRNA similarity measurement methods on the predictive perfor-
mance of the model and chose the similarity metrics mainly based on its performance in
casual-versus-non-causal discrimination (Additional file 1: Table S1).
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Finally, based on previous research [37, 38], we also constructed the commonly used
Gaussian interaction profile kernel similarity matrix GM for miRNAs as a baseline
method for measuring miRNA similarity.

Known causal miRNA-disease associations

The human causal miRNA-disease association dataset was downloaded directly from
HMDD v3.2 database. To facilitate the comparison of performance between DNI-
MDCAP and MDCAP, we used the same dataset, containing 4228 experimentally vali-
dated causal associations between 535 miRNAs and 302 diseases. We constructed a
binary adjacency matrix MD of nm x nd to better represent the causal relationship of
miRNA and diseases, where nm and nd represent the number of miRNAs and diseases,
respectively. Specifically, if miRNA m(i) was confirmed to have a causal association with
disease d (i), the value of MD(i,j) was 1, and 0 otherwise.

Calculation of disease semantic similarity

We introduced the well-known Wang’s diseases semantic similarity [39] to construct
a disease similarity matrix DS, with the help of the semantic topological relationships
between diseases recorded in the MeSH database. In MeSH, the topology of disease can
be described as a directed acyclic graph (DAG), in other words, DAGp = (D, Tp, Ep),
where Tp represents the node including disease D and its ancestral disease, Ep repre-
sents the edges of all relationships of the DAGp. The contribution of disease d to the
semantic value of disease D can be represented by the Eq. (4), where A is the semantic
contribution factor and is usually set to 0.5.

Dp(D) =1 ifd =D
Dp(d) = max{A*DD (d’) |d e children ofd} ifd £ D (4)

The semantic value DC (D) of the disease D can be obtained by summing all the contri-
butions of the ancestral disease and disease D, as Eq. (5).

DC(D) = 3 4erp) Pp(d) (5)

Thus, the semantic similarity of diseases D; and D; was calculated as Eq. (6).

Zder(pi)m([,/.) (DDi(d)+DD/, (d))
DC(Dy)+DC(Dy)

(6)

DSS(D;, D;) =

In the light of the above calculations, diseases that have more largely shared DAG

structures will have higher semantic similarity scores.

Deep network imputation

We applied the Node2Vec algorithm, which is based on deep graph embedding learn-
ing and random walk [40] to predict uncharted associations in the miRNA similarity
network and miRNA-disease association network to enhance and complete the con-
nections between nodes in these two types of networks. Particularly, we transformed
each miRNA similarity matrix into a binary adjacency matrix by truncating at a cer-
tain threshold &. For each network, £ is optimized according to the best AUROC when
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distinguishing causal miRNA-disease associations in cross-validation. The thresholds for
MSs, MSg, GM, MSp, MSgene, MStf were optimized as 0.75, 0.91, 0.3, 0.60, 0.97, 0.95,
respectively.

The objective function of deep network imputation is shown in Eq. (7), where f is the
mapping function of node u mapped to an embedded vector, and N () is the set of near-
est neighbors of nodes u sampled by the sampling strategy S.

g S uev 1ogPr(Ns(u) | f (1)) 7)

Optimization procedure for the specific objective function was described in detail
in the article by Mikolov et al. [41], and is not repeatedly described here. Finally, the
learned deep graph embedding features were used to predict new links, thus recon-
structing the re-linked miRNA similarity networks and known causal miRNA-disease
association network. To effectively showcase the advantages of network imputation, we
compared the model performance of LE-MDCAP and DNI-MDCAP with and without
network imputation (Additional file 1: Table S2). For both model, network imputation
was helpful for performance improvement.

Semi-supervised learning model
As mentioned above, we acquired the re-linked causal miRNA-disease association
matrix MD and six miRNA similarity matrices, namely MSs, MSg, GM, MSp, MS geses
MSs by deep network imputation. By combining each miRNA similarity matrix MS
with the causal miRNA-disease association matrix MD and the disease semantic similar-
ity matrix DS, the semi-supervised learning method proposed by Liang et al. [42] can be
used to separately predict the causal association scores of miRNAs and diseases.
Suppose n and m represent the number of miRNAs and diseases in the dataset, respec-
tively. For the miRNA space, given the causal miRNA-disease association matrix MD
and the miRNA similarity matrix MS, an incidence matrix Qm can be obtained to reflect
the causal association probabilities between certain miRNAs and diseases. Then an
objective function based on the norm and trace (Tr) was defined as Eq. (8), where ¢,
and q]m denote the i-th and j-th columns of Qy,. U, is a diagonal matrix in which the i-
th diagonal element controls the effect of the initial association of MD. Intuitively, the
objective here is to ensure that similar miRNAs have similar causal disease associations
while optimizing the consistency between the predicted causal miRNA-disease associa-
tions with the known ones.

min 3775y MS i = Gnlly + Tr(Qu — MD)" Upn(Qun — MD) ®)

For the disease space, the objective function was defined as Eq. (9). Here Qd is a label
matrix to be solved.

min Sy DSZ gy — gl + Tr(Qa — MDT) " Uy (Qq — MDT) ©)
d

These two parts of the objective function were solved by an iterative algorithm until
convergence, which was described in details in in the original article by Liang et al.
[42] and will not be repeated here. We also compared the matrix factorization with
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semi-supervised learning method to demonstrate their impact on model prediction
powers (Additional file 1: Table S2). Briefly, even with the same miRNA similarity net-
work, semi-supervised learning (adopted by DNI-MDCAP) showed better performance
than matrix factorization (adopted by LE-MDCAP) in distinguishing between causal
and non-causal miRNA-disease associations. Besides, semi-supervised learning seems
more compatible to the network imputation, as a noticeable gap of performance can
be observed for DNI-MDCAP with and without network imputation, while such gap is
much smaller for LE-MDCAP.

The combined DNI-MDCAP prediction score

For each miRNA similarity matrix input MS, the corresponding Q,, and Q, obtained
above were finally integrated to generate a predictive correlation score matrix MDy, as
specified in Eq. (10).

, T
mp =2t ) (10)

Notably, in this process, only one miRNA similarity matrix will be considered at a
time. Since six miRNA similarity matrices MSs, MSg, GM, MSp, MSgene, MStf were
considered, this process was conducted six times with different input MS to obtain six
prediction score matrices, that is, MDrs, MDrg, MD/Gp1, MD/p, MD/gee, MD1yy. Finally,
the combined predictive score matrix MD/ opineq Was obtained based on the weighted
sum of the above six predictive scores. The wights were optimized with a step size of
0.05. The final combined predictive score matrix was calculated as MD/ .y pineqd = 0.15
MDrs + 0.1 MD/g + 0.05 MD/Gpr + 0.25 MD/p + 0.2 MD/gepe + 0.25 MD1yp.

Model evaluation and online server construction

To assess the predictive accuracy of DNI-MDCAP, we conducted both independent test
and ten-fold cross-validation. It is important to clarify that the independent test dataset
was not used in feature selection and score integration weight optimization processes to
avoid overfitting. Additionally, we compared DNI-MDCAP with previously established
prediction models, MDCAP and LE-MDCAP, in discriminating causal and non-causal
miRNA-disease associations. DNI-MDCAP, MDCAP and LE-MDCAP were trained
and tested on the same training and test samples. We also compared DNI-MDCAP with
recent models designed for general (not for causal) miRNA-disease association. In this
performance comparison, all models were re-trained and tested on the filtered training
and testing sets of DNI-MDCAP. More specifically, compared to the original training
and testing sets, in order to ensure to a fair comparison, we removed all miRNAs and
diseases that have not been considered by the previous models (among both positive and
negative samples), and fixed the positive-to-negative ratio to 1:5 in the causal-versus-
non-disease test.

We plotted the receiver operating characteristic (ROC) curve by calculating the true
positive rate (TPR) and false positive rate (FPR) across various thresholds and measured
the performance via area under the ROC curve (AUROC).

For the users’ convenience, DNI-MDCAP is accessible as an online server that was
implemented by HTML + PHP + Apache framework.
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Results

Overall performance evaluation of DNI-MDCAP

We first assessed the ability of DNI-MDCAP to distinguish causal miRNA-disease asso-
ciations (causal) from miRNA-disease pairs with no association (non-disease) using both
ten-fold cross-validation and independent test. The evaluation was based on known
causal miRNA-disease associations in the HMDD v3.2 database. We randomly selected
approximately one-fifth of the known miRNA-disease causal associations as the inde-
pendent test set (before network imputation), while the remaining four-fifths were
used as the training set. Similarly, in each round of ten-fold cross-validation, the known
miRNA-disease causal associations were divided into consistent proportions for the
training and the test sets. To prevent data leakage, the model’s parameter selection was
only based on the training samples. Then, AUROC was introduced as the measure of
the predictive model’s performance. DNI-MDCAP achieved an AUROC value of 0.896
in the ten-fold cross-validation (Fig. 2a) and an AUROC value of 0.889 in the independ-
ent test (Fig. 2b). These results have demonstrated the competitive performance of our
method in predicting potential causal miRNA-disease associations.

DNI-MDCAP accurately distinguishes causal and non-causal miRNA-disease associations

Discriminating causal miRNA-disease associations from non-causal ones is more chal-
lenging compared to distinguishing causal associations from unrelated miRNA-disease
pairs. To validate the DNI-MDCAP model, we categorized all miRNA-disease pairs in
the dataset into three groups: causal miRNA-disease associations (causal), non-causal
miRNA-disease associations (non-causal), and unrelated miRNA-disease pairs (non-dis-
ease). To test the DNI-MDCAP’s ability to discern causal associations from non-causal
ones, in this sub-section, we considered ‘causal’ as positive samples and ‘non-causal’
as negative samples for method evaluation. To ensure the fairness of the performance
comparison, the above DNI-MDCAP prediction scores were directly applied to this
dataset, and no re-training or re-optimization of the model was conducted during this
evaluation. The results indicated that the previously published MDCAP model exhib-
ited limited discriminative power (AUROC=0.695), whereas our previous predictive
model LE-MDCAP showed significant improvement (AUROC =0.820). Notably, DNI-
MDCAP outperformed these two existing models in distinguishing between causal
and non-causal miRNA-disease associations, achieving an AUROC of 0.870. To further
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Fig. 2 ROC curves performed by DNI-MDCAP: a ROC curve of tenfold cross-validation. b ROC curve of
independent test
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verify the usefulness of deep network imputation, we also performed an ablation test
using the raw miRNA similarity network and miRNA-disease network instead of the
computationally imputed ones. The results suggested that the AUROC of DNI-MDCAP
decreased to 0.821 without network imputation (Fig. 3a). Besides, we assessed the statis-
tical significance of the variation in prediction scores between the three miRNA-disease
groups by performing the Wilcoxon rank-sum test. The analysis revealed a statistically
highly significant distinction (p =4.95e-247) between the predicted scores of the causal
and non-causal associations (Fig. 3b). In summary, the above results collectively mani-
fested that DNI-MDCAP was highly effective in distinguishing causal miRNA-disease
associations from non-causal associations, exhibiting excellent predictive performance.
Because our previous benchmarking was performed in 2019 [24], we also compared the
efficacy of DNI-MDCAP with those of recently published miRNA-disease prediction
models, including SMALF [21], GATMDA [22], and CFESMDA [23]. Several previous
models show better AUROC in the casual-versus-non-disease test, but they only show
weak to moderate prediction performance in the casual-versus-non-causal test (Addi-
tional file 1: Fig. S1a, b). We also used violin plots to depict the distribution of the predic-
tion scores of different models between the causal, non-causal and non-disease groups
(Additional file 1: Fig. S1c—f). The results suggest that DNI-MDCAP recognizes causal
miRNA-disease associations with significantly higher prediction scores than non-causal
associations, while the differences in prediction score between causal and non-causal
associations are not so obvious for other previous models. Together, the performance
comparison results suggest that, as an ad hoc model for causal miRNA-disease associa-
tion prediction, DNI-MDCAP indeed showed superior performances in distinguishing
causal miRNA-disease associations from non-causal and non-disease associations.

Case study of DNI-MDCAP prediction results with latest literature

We conducted case studies by examining the top predictions of DNI-MDCAP and
validating these predictions with recent literature records that were not included in
the HMDD v3.2 dataset. These new literature records were not included in the train-
ing or test dataset of DNI-MDCAP to ensure their independence. Therefore, they pro-
vided an additional chance to evaluate DNI-MDCAP’s performance, complementing the

alo b 1.0
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§ & 044
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Fig. 3 Improved predictive performance of DNI-MDCAP: a ROC curves of DNI-MDCAP (with or without
imputation) and previous models in discriminating causal miRNA-disease associations from the non-causal
associations. b Violin plots of DNI-MDCAP showing the distribution of model prediction scores in the causal,

non-causal and non-disease groups
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conventional AUROC evaluation. To start with, we investigated whether the predictions
from DNI-MDCAP are helpful in identifying new causal miRNAs for a specific disease.
Diabetic nephropathy is a common complication in diabetic patients, often leading to
end-stage renal failure and posing severe health risks [43]. Understanding the molec-
ular mechanisms underlying diabetic nephropathy is crucial for the development of
effective therapeutic interventions to alleviate its symptoms. In this study, we utilized
the prediction scores generated by DNI-MDCARP to identify causal miRNAs that may
potentially involve in the pathogenic pathways of diabetic nephropathy. Table 1 indicates
that all of the top five causal miRNA-diabetic nephropathies associations predicted by
DNI-MDCAP were supported by recent literature evidence. Furthermore, seven out of
the top ten prediction results were supported by the literature. Among all potentially
causal miRNAs, hsa-mir-30c had the highest score of 0.3931. Notably, miR-30c-5p
was reported to effectively inhibit epithelial-mesenchymal transition and kidney fibro-
sis, playing a pivotal role in preventing the progression of diabetic nephropathy [44].
Another study suggested that miR-155 promoted hyperglycemia-induced podocyte
inflammation by targeting SIRT1, leading to impaired renal function and exacerbated
renal pathological changes [45]. Similarly, miR-29a has been suggested to contribute to
the pathogenesis of tubulointerstitial fibrosis by modulating the CB1R pathway, thereby
accelerating the progression of diabetic nephropathy [46]. A publication in 2020 demon-
strated that the ablation of miR-214 from renal proximal tubules prevented a decrease in
ULK1 expression and autophagy impairment in diabetic kidneys, resulting in less renal
hypertrophy and albuminuria [8]. Furthermore, miR-20a was indicated to target CXCL6
and modulate JAK/STAT?3 signaling, exerting an inhibitory effect on diabetic nephropa-
thy [47]. All these articles confirmed that the top causal miRNA-diabetic nephropathies
associations predicted by DNI-MDCAP were practical and instructive.

In addition, we conducted another case study to evaluate if DNI-MDCAP could help
identify potential causal associations involving a specific miRNA of interest. Previous
studies have implicated hsa-mir-193a in several disease processes, including the progres-
sion of non-alcoholic fatty liver disease [48] and tumor cell metabolism [49] among oth-
ers. Recognizing its relevance, we delved further into more causal relationships between
hsa-mir-193a and diseases, as revealed by the top predictions from DNI-MDCAP

Table 1 Top 10 causal miRNA-diabetic nephropathies associations predictions by DNI-MDCAP and
their literature verification

Ranking MiRNA Score PMID Published year
1 hsa-mir-30c 0.3931 32096183 2020
2 hsa-mir-155 0.0570 33748285 2021
3 hsa-mir-29a 0.0560 30642005 2020
4 hsa-mir-214 0.0481 32804155 2020
5 hsa-mir-20a 0.0461 32868134 2021
6 hsa-mir-34a 0.0405 36345369 2022
7 hsa-mir-210 0.0404 NA NA
8 hsa-mir-17 0.0393 34014023 2021
9 hsa-mir-15a 0.0392 NA NA
10 hsa-mir-182 0.0368 NA NA

To ensure the independence, causal associations that have already been included in the HMDD v3.2 are not listed here
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(Table 2). Out of the top five predictions, four have been validated by recent literature
evidence. Moreover, among the top ten prediction results, eight have been validation by
the recent literature. The association with hepatocellular carcinoma (HCC) achieved the
highest score of 0.6887 among all potential diseases. In HCC cells, miR-193a was regu-
lated by Mig-6, leading to autophagy inhibition, which presents a potential therapeu-
tic target for HCC treatment [50]. In colorectal cancer, miR-193a functioned through
the miR-193a-5p/PIK3R3/AKT axis, playing a role in the initiation and progression of
the disease [51]. Furthermore, a study in 2020 unveiled the involvement of miR-193a
in a competitive endogenous RNA regulatory pathway in breast cancer, suggesting a
novel strategy for breast cancer treatment [52]. In bladder cancer cells, miR-193a was
identified as an upstream target of ZNFX1-AS1, promoting tumor cell proliferation,
migration, and invasion [53]. These articles collectively verified the involvement of hsa-
mir-193a in the onset and progression of diseases predicted by DNI-MDCAP, and sup-
ported the causality of the predicted associations.

DNI-MDCAP server

We have developed a user-friendly web server interface (Fig. 4) for DNI-MDCAP (avail-
able at http://www.rnanut.net/ DNIMDCAP/) to facilitate easy querying. Users can
access prediction results by entering miRNA names or disease keywords, supporting
both precise and fuzzy search modes. Furthermore, users have the flexibility to choose
the ranking criteria for the prediction results, including miRNA rank (miRNA), disease
rank (Disease), or score rank (Score, default), enabling convenient identification and pri-
oritization of the most likely causal miRNAs associated with specific diseases.

Discussion

In recent years, the field of bioinformatics has witnessed a surge in studies exploring the
connections between miRNAs and diseases. Many of the identified miRNAs are found
to undergo changes in expression or localization as the body transitions from a physi-
ological to a pathological state [54, 55]. These miRNAs are often observed in a passive
role during disease progression, and their association with diseases are referred as non-
causal miRNA-disease associations. Despite not being directly involved in the onset and

Table 2 Top ten causal hsa-mir-193a-diseases predictions by DNI-MDCAP and their literature

verification

Ranking Disease Score PMID Published year
1 Carcinoma, hepatocellular 0.6887 35165519 2022
2 Colorectal neoplasms 0.6609 33317596 2020
3 Breast neoplasms 0.6256 32497022 2020
4 Urinary bladder neoplasms 0.5584 32432735 2020
5 Neuralgia 03704 NA NA
6 Glioma 0.1201 33968717 2021
7 Carcinoma, non-small-cell lung 0.1169 36183046 2022
8 Uterine cervical neoplasms 0.0921 NA NA
9 Glioblastoma 0.0661 30304561 2019
10 Pancreatic neoplasms 0.0610 36476048 2023

To ensure the independence, causal associations that have already been included in the HMDD v3.2 are not listed here
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DNI-MDCAP

You can search the entries by such keywords:

Query by: | miRNA v| Query mode: |exact V| Query keyword: Vhsa-mir-l 28 1 Sort by: |Score v
Click to Search Reset all
Disease name miRNA name Score Rank
Carcinoma, Hepatocellular hsa-mir-128 0.725090093 1
Stomach Neoplasms hsa-mir-128 0.721722364 2
Colorectal Neoplasms hsa-mir-128 0.70828568 3
Carcinoma, Non-Small-Cell Lung hsa-mir-128 0.699046882 4
Glioma hsa-mir-128 0.670296369 5
Glioblastoma hsa-mir-128 0.649412371 6
Osteosarcoma hsa-mir-128 0.587740614 L
Diabetes Mellitus, Type 2 hsa-mir-128 0.488765749 8
Alzheimer Disease hsa-mir-128 0.479566751 9
Myocardial Reperfusion Injury hsa-mir-128 0.324317041 10
Breast Neoplasms hsa-mir-128 0.118126014 11
Lung Neoplasms hsa-mir-128 0.072820774 12
Prostatic Neoplasms hsa-mir-128 0.071871272 13

Fig. 4 The query interface and sample result of DNI-MDCAP server

progression of diseases, these miRNAs are widely used as biomarkers in clinical settings
for purposes such as increasing diagnostic sensitivity, evaluating treatment response,
and predicting prognosis [56]. However, non-causal miRNA-disease associations do
not offer provide insight into the underlying mechanisms of the disease, nor do they
serve as viable therapeutic targets. It is crucial to identify causal miRNAs that directly
contribute to the development of diseases and are actively involved in pathogenesis.
To address the need for the identification of disease causal miRNAs, we here proposed
the prediction method DNI-MDCAP, which enriched existing models for predicting
the causal miRNA-disease associations. Notably, DNI-MDCAP exhibited significant
advantages in distinguishing causal miRNA-disease from non-causal ones, outperform-
ing MDCAP and our previously proposed LE-MDCAP. The results of the case studies
provided supplemental confirmation of the predictive reliability of DNI-MDCAP. Abla-
tion experiment also suggested both the extended miRNA similarity metrics, network
imputation and semi-supervised learning substantially contribute to the performance
of DNI-MDCAP. Another advantage of DNI-MDCAP is that it performs causal-versus-
non-disease and causal-versus-non-causal discrimination using the same model, avoid
complicated model retraining and design. In summary, DNI-MDCAP has displayed
dependable predictive performance in distinguishing causal and non-causal miRNA dis-
ease associations, enabling optimal selection of causal miRNA-disease associations.
Nonetheless, there is still room for improvement in DNI-MDCAP. One practical lim-
itation of DNI-MDCAP is its limited ability to predict diseases, as it relies on known
causal miRNA-disease association datasets. As a result, it may not be applicable to
novel diseases for which there are few even no known causally associated miRNAs.
Nevertheless, as more disease-causal miRNA annotation data become available, it can
be anticipated that the predictive performance and disease coverage of DNI-MDCAP
will be improved in future studies. Secondly, in the ten-fold cross-validation and inde-
pendent test, MDCAP predicted an AUROC of 0.928 and 0.925 for miRNA-disease
association, respectively, which was superior to DNI-MDCAP (AUROC of 0.896 and
0.889, respectively). As a consequence, the algorithm model needs further upgrade in
the future to better balance the predictive performance of causal-versus-non-disease
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and causal-versus-non-causal discrimination. An alternative solution should be applying
distinct computational frameworks for these two tasks to further improve the perfor-
mances in the future, in order to optimize the performance of each task, respectively.
Integrating miRNA and disease feature dimensions through deep learning may also
contribute to more accurate similarity measurements, enhancing the model’s predictive
performance. Finally, causal miRNAs show bidirectional impacts on diseases, i.e., either
promoting or inhibiting disease progression. Therefore, we believe that in future predic-
tions of miRNA-disease causality, it would be beneficial to consider the prediction of
causal association categories (i.e., disease promoting or inhibiting). This addition would
help identify the precise direction for intervening in disease treatment targets, leading to

more accurate and effective therapeutic interventions.

Conclusions

DNI-MDCAP is a computational model based on diverse miRNA similarity metrics,
deep graph embedding assisted-network imputation and semi-supervised learning
algorithm, designed to predict potential causal miRNA-disease associations. It exhib-
ited reliable predictive performance, effectively distinguishing between causal and non-
causal miRNA-disease associations as well as causal and unrelated ones. The accuracy of
its predictions has been validated by recently published literature. This advance is help-
ful to refine our undemanding of causality in miRNA-disease associations and provides
meaningful clues for potential causal associations between miRNAs and diseases. Con-
sequently, it provides useful guidance for exploring novel targets for disease treatment.

Availability and requirements

Project name: DNI-MDCAP

Project home page: http://www.rnanut.net/ DNIMDCAP/
Operating system: Platform independent

Programming language: Python, R

Other requirements: None

License: GNU GPL

Any restrictions to use by non-academics: None.

Abbreviations

miRNA MicroRNA
HMDD Human MiRNA Disease Database
MDCAP MiRNA-Disease Causal Association Predictor

LE-MDCAP Levenshtein-distance Enhanced MiRNA-Disease Causal Association Predictor
DNI-MDCAP  Deep Network Imputation-assisted MiRNA-Disease Causal Association Predictor

TF Transcription factor

DAG Directed acyclic graph

ROC Receiver operating characteristic
TPR True positive rate

FPR False positive rate

AUROC Area under the receiver operating characteristic curve
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Additional file 1: Fig. S1. Comparison of predictive performance between DNI-MDCAP and other previous models:
All models were re-trained and tested on the filtered training and testing sets of DNI-MDCAP. More specifically,
compared to the original training and testing sets, in order to ensure to a fair comparison, we removed all miRNAs
and diseases that have not been considered by the previous models (among both positive and negative samples),
and fixed the positive-to-negative ratio to 1:5 in the causal-versus-non-disease test. It is also noteworthy that the
previous models were designed for general miRNA-disease association prediction without a specification of causal-
ity. a ROC curves of DNI-MDCAP and the previous models in discriminating causal miRNA-disease associations from
the non-causal associations. b ROC curves of DNI-MDCAP and the previous models in discriminating causal miRNA-
disease associations from the non-disease associations. ¢—f Violin plots showing the distribution of prediction scores
of different models, between the causal, non-causal and non-disease groups. Table S1. Performance comparison
using different miRNA similarity metrics. Table S2. Ablation experiments comparing the components in the compu-
tational frameworks of LE-MDCAP and DNI-MDCAP.
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