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Abstract 

Background:  Epi-transcriptome regulation through post-transcriptional RNA modifi-
cations is essential for all RNA types. Precise recognition of RNA modifications is criti-
cal for understanding their functions and regulatory mechanisms. However, wet 
experimental methods are often costly and time-consuming, limiting their wide range 
of applications. Therefore, recent research has focused on developing computational 
methods, particularly deep learning (DL). Bidirectional long short-term memory (BiL-
STM), convolutional neural network (CNN), and the transformer have demonstrated 
achievements in modification site prediction. However, BiLSTM cannot achieve parallel 
computation, leading to a long training time, CNN cannot learn the dependencies 
of the long distance of the sequence, and the Transformer lacks information interaction 
with sequences at different scales. This insight underscores the necessity for continued 
research and development in natural language processing (NLP) and DL to devise 
an enhanced prediction framework that can effectively address the challenges 
presented.

Results:  This study presents a multi-scale self- and cross-attention network (MSCAN) 
to identify the RNA methylation site using an NLP and DL way. Experiment results 
on twelve RNA modification sites (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, Am, Cm, Gm, 
and Um) reveal that the area under the receiver operating characteristic of MSCAN 
obtains respectively 98.34%, 85.41%, 97.29%, 96.74%, 99.04%, 79.94%, 76.22%, 65.69%, 
92.92%, 92.03%, 95.77%, 89.66%, which is better than the state-of-the-art prediction 
model. This indicates that the model has strong generalization capabilities. Further-
more, MSCAN reveals a strong association among different types of RNA modifications 
from an experimental perspective. A user-friendly web server for predicting twelve 
widely occurring human RNA modification sites (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, 
Am, Cm, Gm, and Um) is available at http://​47.​242.​23.​141/​MSCAN/​index.​php.

Conclusions:  A predictor framework has been developed through binary classifica-
tion to predict RNA methylation sites.
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Background
RNA modification plays a fundamental role in regulating RNA function [1] and has 
become a hotspot in epigenetics research [2]. Nearly 200 RNA modifications have been 
discovered, most of which are methylation modifications [3]. Common RNA methyla-
tion types include N1-methyladenosine (m1A), N2-methylguanosine (m2G), 5-methylcy-
tosine (m5C), 5-methyluridine (m5U), 2′-O-methyladensine (Am), 2′-O-methylcytidine 
(Cm), 2′-O-methylguanosine (Gm), 2′-O-methyluridine (Um), Pseudouridine (Ψ), 
N6-methyladenosine(m6A), N7-methylguanine (m7G), inosine (I), and N6,2′-O-
dimethyladenosine(m6Am), etc. Among them, m6A refers to methylation modification 
occurring at the nitrogen atom in position 6 of the RNA molecule adenine, which is the 
most abundant mRNA methylation, and is known to affect mRNA stability, splicing, 
and translation. In addition to m6A, m1A RNA methylation is a recently discovered one, 
which is evolutionarily conserved and ubiquitous in humans, rodents, and yeast. It can 
significantly enhance the protein translation of transcripts [4], block the Watson–Crick 
interface, and is essential for tRNA stability [5].

In the last decade, dozens of experimental methods have been developed to iden-
tify the precise location of methylation sites on RNA, such as miCLIP [6], m1A-seq 
[7], PA-m6A-seq [8], m1A-ID-seq [9], m5C-RIP [10], m1A-MAP [11], and m1A-IP-seq 
[12]. Despite their effectiveness, these experimental techniques are usually both time-
consuming and costly, limiting their use in different biological contexts [4], and mak-
ing them inadequate for large-scale genomic data [13]. Consequently, there is strong 
motivation to explore computational methods that can accurately and efficiently identify 
methylation sites based on sequence information alone.

As there are more vailable base-resolution datasets, researchers have designed some 
computational methods for RNA modification site prediction. These approaches for-
mulate RNA methylation identification as a binary prediction task, and some machine 
learning models are trained to distinguish between truly methylated and non-methyl-
ated sites. These computational methods have been powerful additions for RNA meth-
ylation site prediction.

Traditional methods designed for sequence-based prediction usually first extract 
features based on human-understandable feature methods and then use a classifier to 
identify if the site is methylated based on the preceding extracted features. Specifically, 
RAMPred [14] adopts the support vector machine(SVM) to predict the m1A modi-
fication site, extracting features based on nucleotide composition(NC) and nucleotide 
chemical properties(NCP). iRNA-3typeA [15] adopts SVM to predict m1A, A-to-I, 
and m6A modification sites, which extracts features based on accumulated nucleotide 
frequency(ANF) and NCP. iMRM [16] extracts features based on NCP, NC, Nucleotide 
Density(ND), Dinucleotide physicochemical properties(DPCP), and Dinucleotide Binary 
Encoding(DBE) and employs XGboost to predict m1A, m6A, m5C, ψ, and A-to-I modifi-
cation sites. The above sequence features are artificially extracted, and inevitably impor-
tant features of the sequences are missed due to human cognitive limitations.

Analyzing biological sequences and interpreting biological information are the 
key challenges in achieving biological discovery. The application of natural language 
processing(NLP) to sequence analysis has attracted considerable attention in process-
ing biological sequences [17]. As biological sequences can be considered sentences, 
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and k-mer subsequences are regarded as words [18, 19], NLP can be used to under-
stand the structure and function encoded in these sequences [17]. Unlike traditional 
machine learning, deep learning (DL) methods follow an end-to-end design. Features 
are extracted directly based on the input sequence and the final labeling/prediction task. 
For example, EDLm6Apred [20] employs bidirectional long short-term memory (BiL-
STM) to predict m6A sites, extracting features based on Word2vec, RNA word embed-
ding [21], and one-hot encoding [22, 23]. However, LSTM, BiLSTM, and RNN cannot 
achieve parallel computation, leading to a long training time.

CNN can achieve parallel computation and learn local dependencies. For instance, 
m6A-word2vec [24] adopts CNN to identify m6A sites, extracting features based on 
Word2vec. Deeppromise [25] employs CNN to identify m1A and m6A sites, extracting 
features based on integrated enhanced nucleic acid composition (ENAC) [26], one-hot 
encoding, and RNA word embedding. However, These CNN structures only consider 
the contextual relationships of neighboring bases without considering the dependen-
cies over long distances in the sequence. DeepM6ASeq [27] combines the advantages of 
CNN and BiLSTM by using two layers of CNN and one layer of BiLSTM to predict m6A 
sites. This approach may extract redundant features that interfere with prediction perfor-
mance [28]. The attention mechanism can quantify the degree of code-to-code depend-
ency [29]. Therefore, the application of the attention mechanism can capture the focused 
codes that affect the classification results. Plant6mA [30] utilizes a Transformer encoder 
to determine whether the input sequence contains an m6A site. However, due to the 
unique feature representation of transformers, these networks are primarily employed 
at a single scale. Although a single-scale self-attentive mechanism can focus on essential 
features of sequence context, it lacks information interaction with sequences at different 
scales. It isn’t easy to learn complex word context relationships.

At present, most prediction model studies focus only on a single methylation modi-
fication, and few share the same binary classification model framework to achieve dif-
ferent methylation modification predictions. Even fewer cross-modification validation 
studies have been performed with different methylation test sets and trained models. 
Accounting for potential interactions between various RNA modifications, it would 
be interesting to use the same model to conduct cross-modification validation studies 
across different methylation test sets.

We present the Multi-scale Self- and Cross-attention Network (MSCAN), a novel 
approach designed to identify RNA methylation sites, addressing the challenges associ-
ated with current methods. Our model supports identifying twelve RNA modification 
types, including m6A, Ψ, m1A, m6Am, Am, Cm, m7G, Gm, Um, I, m5U, and m5C.

The MSCAN employs a unique multi-scale approach for analyzing RNA sequences. 
Specifically, we extracted the input 41-nucleotides (nt) sample sequence into multiple 
smaller subsequences centered around the sequence midpoint. To ensure accurate iden-
tification of methylation sites, the MSCAN analyzes these smaller subsequences at two 
distinct scales: 21-nt and 31-nt. This multi-scale analysis allows for a more comprehen-
sive understanding of the RNA sequence context, ultimately leading to improved predic-
tion performance. Secondly, word2vec was used to encode the three sets of sequences. 
Third, the three sets of sequences add positional information due to the correlation 
between nucleotide positions in the sequence. Four, the three sets of sequences were 
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fed into the encoding module, which was constructed with a multi-scale self- and cross-
attention network and a feed-forward network(FFN) to extract potential contributing 
features for methylation site prediction. Finally, methylation predicted probabilities were 
obtained through a linear layer and the sigmoid function. The findings demonstrated 
that the MSCAN model surpassed the performance of state-of-the-art methods, includ-
ing m6A-word2vec, DeepM6ASeq, and Plant6mA in independent tests. A user-friendly 
web server for MSCAN is available at http://​47.​242.​23.​141/​MSCAN/​index.​php.

Result
Evaluation metrics

In this study, we used eight common classification indicators to evaluate the prediction 
of the model, including Accuracy (Acc), Sensitivity (Sen), Precision (Pre), Matthews cor-
relation coefficient (MCC), Specificity (Sp), and F1 score (F1). The formulas of these 
metrics are as follows:

Here, the true positive, true negative, false positive, and false negative are represented 
as TP, TN, FP, and FN, respectively. Moreover, the area under the receiver operating 
characteristic (AUROC) and the area under the precision-recall curve (AUPRC) are 
used to visually evaluate the model’s overall performance.

Results analysis

MSCAN completed model training and experimental parameter optimization based on 
the dataset of Chen et al. [25]. Subsequently, MSCAN completed the model’s generaliza-
tion ability evaluation based on the dataset of Song et al. [5]. Specifically, based on the 
dataset of Chen et al., this paper first compared the performance of MSCAN with dif-
ferent combinations of input sequences on the training data. Second, the performance 
of MSCAN with different feature encoding was compared. Third, we compared the per-
formance of different MSCAN model variants. Fourth, the MSCAN was compared with 

(1)Sensitivity, Recall =
TP

TP + FN

(2)Specificity =
TN

TN + FP

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Precision =
TP

TP + FP

(5)F1 score = 2×
Precision× Recall

Precision+ Recall

(6)MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )

http://47.242.23.141/MSCAN/index.php
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state-of-the-art models based on the training data and the independent dataset of Chen 
et al. Fifth, the statistical significance of AUPRC values between the four models is com-
pared. Sixth, MSCAN completed a generalization ability evaluation based on the data-
set of Song et al., and MSCAN outperformed the state-of-the-art predictors for twelve 
modification sites. Finally, We designed a cross-modification validation experiment in 
which twelve models with different methylation types were compared for prediction 
performance based on twelve test sets, respectively. Our experiments were conducted 
with two Intel(R) 5218 CPUs, two RTX2080Ti GPUs, and Pytorch version 1.4.0+cu92.

Based on the training data of Chen et al., we first tried optimizing the input sequences’ 
length according to AUPRC on the training data. Using the Word2vec embedding, we 
evaluated the Transformer model with 11-nt, 21-nt, 31-nt, 41-nt,51-nt,61-nt,71-nt,81-
nt,91-nt,and 101-nt RNA sequences as the input on the five-fold cross-validation [5, 25]. 
As shown in Table 1, the input of the 11-nt sequence obtained the worst performance. 
The reason may be that too few bases in the 11-nt sequence affect feature extraction. The 
input of the 41-bp sequence obtained the best average performance of all the modifica-
tions, It may be worth mentioning that the 41-nt of the input sequence is also optimal 
for the XGboost and SVM method [14, 16], so we choose 21-nt, 31-nt, and 41-nt RNA 
sequences as input sequences to achieve different combinations of input sequences.

Table 1  Evaluation results of five-fold cross-validation of transformer based on the training data of 
Chen et al.

Bold indicates the best performance

Length(nt) AUROC ACC​ Sen Precision MCC Spe F-1 AUPRC

11 0.8955 93.55 44.26 77.14 55.44 98.65 56.25 0.6389

21 0.9213 95.01 59.81 74.42 64.11 98.16 66.32 0.7189

31 0.9361 93.55 64.80 66.94 62.31 96.61 65.85 0.7390

41 0.9484 93.48 74.36 61.27 63.97 95.37 67.18 0.7469
51 0.9401 94.63 61.54 74.23 64.73 97.89 67.29 0.7401

61 0.9430 94.56 67.27 67.89 64.61 97.07 67.58 0.7078

71 0.9249 93.64 67.21 65.60 62.89 96.36 66.40 0.7272

81 0.9440 94.94 70.00 66.04 65.25 97.01 67.96 0.7170

91 0.9327 94.93 60.19 73.86 64.01 98.08 66.33 0.7119

101 0.9230 93.33 70.94 61.03 62.16 95.53 65.61 0.7449

Table 2  Evaluation results of MSCAN on five-fold cross-validation with different input sequences 
based on the training data of Chen et al.

Bold indicates the best performance

combinations of 
sequences(nt)

AUROC ACC​ Sen Precision MCC Spe F-1 AUPRC

21 + 31 + 41 0.9491 95.24 58.59 73.42 63.11 98.26 65.17 0.7695

21 + 41 + 31 0.9618 94.86 59.69 83.70 68.11 98.72 69.68 0.7949
31 + 21 + 41 0.9257 94.63 55.93 78.57 63.59 98.48 65.34 0.7419

31 + 41 + 21 0.9463 95.09 68.47 72.38 67.73 97.57 70.37 0.7632

41 + 21 + 31 0.9318 94.55 63.87 73.08 65.38 97.64 68.17 0.7617

41 + 31 + 21 0.9427 93.86 65.41 71.90 65.20 97.10 68.50 0.7642
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The combination of input sequences with different scale order is an important param-
eter that affects the performance of the training model. The performance of the MSCAN 
model with the different combinations of input sequences on the training data is shown 
in Table  2. MSCAN shows the best prediction performance when the combination is 
“21-nt + 41-nt + 31-nt”. According to the MSCAN model design, “21-nt + 41-nt + 31-nt” 
input sequences are entered into the model to implement three attention mechanisms, 
including the self-attention calculation mechanism for the 21-nt sequence, and the 
cross-attention calculation mechanisms for both “21-nt + 41-nt” and “21-nt + 31-nt” 
combinatorial sequences.

Comparison analysis of different feature encoding methods

In this section, we evaluate the performance of three distinct feature encoding meth-
ods—Word2vec, One-hot, and ENAC—utilizing the same MSCAN model for predicting 
m1A sites on the test data of Chen et al. The outcomes of this comparison are presented 
in Fig. 1 and Table 3, demonstrating that Word2vec consistently surpasses the other two 
encoding methods across all performance indices.

The superior performance of Word2vec can be attributed to the limitations of the 
One-hot and ENAC encoding methods. While One-hot encoding focuses on the local 
information of individual bases, and ENAC encoding considers both nucleic acid com-
position and position information, both methods neglect the semantic information 
inherent in the sequence context. In contrast, Word2vec prioritizes the contextual rela-
tionships between bases, resulting in a more effective representation of the sequence.

Fig. 1  Performance of the MSCAN model based on the different feature encoding

Table 3  MSCAN model evaluation results with different feature encodings based on the test data of 
Chen et al.

Bold Indicates the best performance

Encoding AUROC ACC​ Sen Precision MCC Spe F-1 AUPRC

One-hot 0.9089 95.13 55.26 86.30 66.77 99.12 67.38 0.7294

ENAC 0.9212 94.81 55.26 81.82 64.71 98.77 65.97 0.7322

Word2vec 0.9374 95.69 58.77 90.54 70.95 99.39 71.28 0.7890
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Our findings highlight the importance of selecting appropriate feature encoding meth-
ods for improved prediction accuracy, with Word2vec emerging as a particularly advan-
tageous choice for the MSCAN model in the context of RNA methylation site prediction.

Comparison with different variants of the MSCAN model

We conducted ablation experiments to assess the contribution of key components 
within our proposed MSCAN model based on the test data of Chen et  al. Utilizing 
Word2vec for RNA sequence encoding, we constructed four sub-networks: self- and 
cross-attention network (SCAN), self-attention network (SAN), multi-scale cross-
attention network (MCAN), and cross-attention network (CAN). SCAN represents 
MSCAN with one cross-attention module removed, SAN is SCAN devoid of cross-
attention, MCAN is MSCAN without self-attention, and CAN is MCAN with one 
cross-attention module removed. The outcomes of these experiments are depicted in 
Fig. 2 and summarized in Table 4.

SAN serves as the baseline model in this comparison. Upon the integration of cross-
attention modules, the area under the precision-recall curve (AUPRC) for SCAN and 
MSCAN models increased by 0.09% and 2.86%, respectively. These results highlight 
the importance of incorporating cross-attention mechanisms within the MSCAN 
model for improved performance in predicting RNA methylation sites. Consequently, 

Fig. 2  Performance of MSCAN and variant model on the test data

Table 4  Comparing MSCAN and variant model evaluation results based on test data of Chen et al.

Bold Indicates the best performance

SAN contains only self-attention; SCAN, and MSCAN are combinations of self- and cross-attention; CAN and MCAN are 
combinations of only cross-attention

Classifiers AUROC ACC​ Sen Precision MCC Spe F-1 AUPRC

SAN 0.9321 95.05 55.26 85.14 66.24 99.04 67.02 0.7604

SCAN 0.9277 95.29 53.51 91.04 67.73 99.47 67.40 0.7613

MSCAN 0.9374 95.69 58.77 90.54 70.95 99.39 71.28 0.7890
CAN 0.9299 94.89 52.63 85.71 64.81 99.12 65.21 0.7688

MCAN 0.9270 94.81 55.26 81.82 64.71 98.77 65.97 0.7586
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our findings emphasize the value of the multi-scale self- and cross-attention approach 
employed by MSCAN in advancing the understanding of RNA modifications and 
their functional implications.

Comparison with state‑of‑the‑art approaches

We compared MSCAN with several state-of-the-art models, including m6A-word2vec, 
DeepM6ASeq, and Plant6mA. To ensure robust evaluation, we employed a fivefold 
cross-validation on the training data of Chen et al. As shown in Fig. 3 and Table 5, Our 
results demonstrate that MSCAN outperforms the other models, substantially improv-
ing prediction accuracy.

In particular, MSCAN achieves a 4.84% enhancement in the AUPRC metric compared 
to the second-best performing model, Plant6mA. This superior performance can be 
attributed to utilizing the multi-scale self- and cross-attention mechanisms in MSCAN, 
as opposed to the self-attention mechanism employed by Plant6mA. The results under-
score the effectiveness of MSCAN in identifying RNA methylation sites.

Next, we compare the performance of MSCAN with other state-of-the-art models 
using the test data of Chen et al. The results, as illustrated in Fig. 4 and summarized in 
Table 6, demonstrate the superior performance of MSCAN in predicting RNA methyla-
tion sites.

Fig. 3  Performance of the different models on the training data

Table 5  Evaluation results of MSCAN and other state-of-the-art models based on five-fold cross-
validation using the training data of Chen et al.

Bold indicates the best performance

Classifiers AUROC ACC​ Sen Precision MCC Spe F-1 AUPRC

m6A-word2vec 0.9001 93.30 53.79 66.18 56.10 97.25 59.35 0.6505

DeepM6ASeq 0.8735 93.38 46.49 70.67 54.02 98.07 56.08 0.6279

Plant6mA 0.9482 93.48 74.36 61.27 63.97 95.37 67.18 0.7465

MSCAN 0.9618 94.86 59.69 83.70 68.11 98.72 69.68 0.7949
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MSCAN outperforms DeepM6ASeq and m6A-word2vec by 1.47% and 2.4% in terms 
of AUPRC, respectively. This enhanced performance can be attributed to the multi-scale 
self- and cross-attention network’s ability to capture meaningful sequence encodings 
for more accurate classification. Furthermore, MSCAN surpasses Plant6mA by 2.14% 
in AUPRC, which may further verify the limitations of the single-scale self-attention 
mechanism in learning complex contextual relationships between sequence elements. 
The integration of the cross-attention mechanism enables the model to discern deeper 
sequence meanings, thus improving its performance.

Assessing model reliability

To evaluate the reliability of our proposed model, we performed one hundred replica-
tions of experiments using the test data from Chen et  al., evaluating the m6A-word-
2vec, DeepM6ASeq, Plant6mA, and MSCAN models. In each replication, we used the 
same test data and ran each model under identical conditions to ensure experimental 
consistency.

To evaluate the statistical significance of AUPRC values between different methods, 
we employed Student’s t-test [31]. This statistical method helps determine whether per-
formance differences between different methods are significant. Table 7 below shows the 
p values for the difference in the performance of the four classifiers.

Fig. 4  The ROC and PRC of MSCAN and other state-of-the-art models on the test data

Table 6  Evaluation results of MSCAN and other state-of-the-art models based on the test data of 
Chen et al.

Bold indicates the best performance

Classifiers AUROC ACC​ Sen Precision MCC Spe F-1 AUPRC

m6A-word2vec 0.9327 93.62 67.54 64.17 62.32 90.43 65.81 0.7650

DeepM6ASeq 0.9257 95.37 65.79 79.79 70.00 98.33 72.12 0.7743

Plant6mA 0.9298 95.13 56.14 85.33 66.89 99.04 67.72 0.7676

MSCAN 0.9374 95.69 58.77 90.54 70.95 99.39 71.28 0.7890



Page 10 of 25Wang et al. BMC Bioinformatics           (2024) 25:32 

Assessing model generalization ability

Based on the data set of Song et al., the generalization ability of MSCAN was evaluated 
by training the model individually for each methylation type. As presented in Table 8, 
the MSCAN model consistently outperforms state-of-the-art models, including m6A-
word2vec, DeepM6ASeq, and Plant6mA. This result provides empirical evidence of the 
model’s generalizability across diverse methylation site prediction tasks.

Theoretically, the self- and cross-attention mechanism employed by the MSCAN 
model enables it to capture long-range dependencies and complex interactions between 
input features more effectively than other models, such as Recurrent Neural Networks 
(RNNs) and Convolutional Neural Networks (CNNs). This characteristic is particularly 
advantageous in discerning biologically relevant patterns in methylation site prediction, 
which may contribute to the model’s enhanced generalizability.

Comparison with cross‑modification validation approaches

Thus far, our results have demonstrated the model’s robust classification performance. 
Notably, a significant advantage of the proposed MSCAN model is its ability to learn 
the underlying associations among different RNA modifications. Previous studies 
have revealed clear evolutionary and functional cross-talk among various post-trans-
lational modifications of proteins [32] and histone and chromatin modifications [33]. 
Such associations might also exist at the epi-transcriptome level among different RNA 
modifications.

To better understand the inherent shared structures among different RNA modifica-
tions, we performed cross-modification validation on the second dataset. The resulting 
AUROC values are displayed in Fig. 5. As the figure shows, cross-modification validation 
yielded poorer prediction results than those obtained using modification-consistent data 
and models, indicating the specificity of our method for a particular modification.

Interestingly, in experiments where the test dataset and model were inconsistent, some 
groups achieved high AUROC values greater than 0.85, suggesting strong and significant 
positive associations among certain RNA modifications, even those originating from dif-
ferent nucleotides. This observation implies the existence of regions intensively modi-
fied by multiple RNA modifications, which likely serve as key regulatory components for 
the epi-transcriptome layer of gene regulation. Notably, the sequence signatures of these 
key regulatory regions are largely shared among different RNA modifications (including 
those that modify different nucleotides) and were successfully captured by our model. 

Table 7  A statistically significant correlation matrix for the difference in the performance of the four 
classifiers

Classifiers Classifiers

m6A-word2vec DeepM6ASeq Plant6mA MSCAN

m6A-word2vec

DeepM6ASeq 0.001243

Plant6mA 2.905E−44 8.01217E−35

MSCAN 4.71415E−64 1.25245E−58 0
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As presented in Table 9, the most strongly associated modifications originated from the 
same type of base, with A and G belonging to purine-like bases, and C and U belonging 
to pyrimidine bases.

To further verify this finding, we compared Am, Gm, Cm, and Um correlations 
through local BLAST [34] software. First, the Am, Gm, and Cm comparison libraries 
are established based on the Am data set, Gm data set, and Cm data set respectively. 
Secondly, the Am, Gm, Cm, and Um data sets are used to compare the compari-
son libraries with different methylation in pairs. Then, the BLAST output table is 
obtained. Finally, compare the average value of the comparison result "bit-score". 
As shown in Table 10, the average bit-score value of the Gm sequence compared to 
the Am comparison library is high, indicating that the Am sequence and the Gm 

Fig. 5  Heat map of different AUROC values in cross-methylation validation. The horizontal axis is the model 
type, and the vertical axis is the test data type

Table 9  Association of RNA modifications revealed by MSCAN

Dataset Model AUROC AUPRC ACC​ Dataset Model AUROC AUPRC ACC​

Am Am 0.9292 0.9231 86.36 Gm Gm 0.9577 0.9637 88.33

Gm Am 0.9082 0.9233 81.11 Am Gm 0.8695 0.8809 80.16

Cm Am 0.8724 0.8906 73.51 Cm Gm 0.8083 0.8280 72.18

Um Am 0.7884 0.7839 60.00 Um Gm 0.7387 0.7659 66.34

Cm Cm 0.9203 0.9273 83.44 Um Um 0.8966 0.8756 82.92

Um Cm 0.8647 0.8514 79.75 Cm Um 0.8859 0.8739 81.78

Am Cm 0.8830 0.8862 72.31 Am Um 0.8458 0.8282 78.51

Gm Cm 0.8865 0.9070 69.44 Gm Um 0.8480 0.8589 76.66

Table 10  Compare the average bit-score of various methylated sequences

Query subject Am Gm Cm Um

Am 9.679614 5.866832 3.30773

Gm 3.357072 1.639136

Cm 8.793488

Um
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sequence are highly similar. Similarly, the average bit-score value of the Um sequence 
compared to the Cm comparison library is high, indicating that the Um sequence 
and Cm sequence similarity is high, which may validate the idea that the most closely 
related modifications originate from the same type of bases.

Our model provides experimental verification of the existence of an inherent shared 
structure between different RNA modifications. These findings underscore the poten-
tial of the MSCAN model in advancing our understanding of the complex interplay 
between various RNA modifications and their functional implications.

Web server

We have developed a user-friendly web server for predicting twelve widely occurring 
human RNA modification sites (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, Am, Cm, Gm, 
and Um), accessible at http://​47.​242.​23.​141/​MSCAN/​index.​php, to facilitate the use of 
the MSCAN model for RNA methylation site prediction. Take the step of predicting the 
m1A methylation site as an example. First, click the “Prediction” button and select the 
“m1A” successively. Next, type or paste the RNA sequence, as shown in Fig. 6a. Third, 
leave your email address in the input box and click the “submit” button. After a calcula-
tion period, the prediction results will be displayed in a table, as shown in Fig. 6b. This 
intuitive web server offers researchers an efficient and convenient platform for employ-
ing the MSCAN model in their investigations of RNA modifications and their functional 
implications.

Discussion
First, based on the test data of Chen et  al., we compared the performance of various 
features based on the MSCAN model, including One-hot encoding, ENAC, and Word-
2vec. The results reveal that Word2vec outperforms One-hot and ENAC in predicting 
AUROC and AUPRC. Specifically, the AUPRC of MSCANword2vec is 5.96% and 5.68% 
higher than that of MSCANOne-hot and MSCANENAC, respectively. These findings are in 
line with Zhang et al.’s study [20], which highlights that One-hot focuses on local seman-
tic information while ENAC only considers the sequence’s nucleic acid composition and 
position, neglecting more profound semantic information. Conversely, Word2vec cap-
tures the contextual semantic information of the sequence, significantly enhancing the 
model’s predictive capability.

Fig. 6  Webserver interface. a. Input interface. b. Prediction result

http://47.242.23.141/MSCAN/index.php
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Second, based on the test data of Chen et  al., we assessed the impact of various 
MSCAN components by comparing the performance of different MSCAN variants, 
such as SCAN, SAN, MCAN, and CAN. Experimental results show that MSCAN 
reduces AUPRC by 3.04% and 2.77% respectively after deleting a self-attention module 
or a cross-attention module. This finding is consistent with Sun et al.’s study [35], which 
posits that the removal of self- or cross-attention modules leads to diminished model 
performance. When both the Multi-Scale and cross-attention modules are removed, the 
AUPRC of MSCAN decreases by 2.86%. This result aligns with Chen et al.’s study [36], 
which emphasizes that cross-attention effectively learns multi-scale transformer features 
for data recognition.

Third, we compared the performance of m6A-word2vec, DeepM6ASeq, Plant6mA, 
and MSCAN based on the test data of Chen et al. MSCAN’s AUROC and AUPRC out-
performed the other three state-of-the-art models. In particular, MSCAN surpassed 
Plant6mA by 2.14% in terms of AUPRC. This study substantiates that the utilization of 
multi-scale input and cross-attention allows the model to extract diverse features and 
provide deep semantics, which Plant6mA cannot achieve through information fusion 
from multiple scales. This conclusion is supported by Guo et al.’s study [37], which dem-
onstrated that multi-scale transformers could extract rich and robust features from dif-
ferent scale inputs.

Four, To make fair comparisons with m6A-word2vec, DeepM6ASeq, Plant6mA meth-
ods, we tested MSCAN on twelve RNA modification datasets(m6A, m1A, m5C, m5U, 
m6Am, m7G, Ψ, I, Am, Cm, Gm, and Um). The results show that MSCAN outperforms 
all other competing methods. our predicted results may also be consistent with biologi-
cal insights, which illustrates that MSCAN has good robustness.

Five, based on the dataset of Song et al., we designed a cross-modification validation 
experiment in which twelve different methylation models were tested using twelve sets 
of methylation test datasets, respectively. We discovered that the most strongly associ-
ated modifications originated from the same base class, such as A and G belonging to 
purine-like bases. The AUROC and AUPRC metrics of the Am test set on the Gm pre-
diction model are second only to the Am test set on the similar Am prediction model. 
This finding is consistent with Song et al.’s study [5], which proposed the existence of an 
inherent shared structure between different RNA modifications.

Lastly, we compared Am, Gm, Cm, and Um correlations through local BLAST 
software. We found the average bit-score value of the Gm sequence compared to 
the Am comparison library is high, indicating that the Am sequence and the Gm 
sequence are highly similar. Similarly, the average bit-score value of the Um 
sequence compared to the Cm comparison library is high, indicating that the Um 
sequence and Cm sequence similarity is high, which may validate the idea that the 
most closely related modifications originate from the same type of bases.These find-
ings underscore the potential of the MSCAN model in advancing our understand-
ing of the complex interplay between some RNA modifications and their functional 
implications.
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Conclusions
This study presents a novel multi-scale cross-attention network (MSCAN) for predict-
ing RNA methylation sites. By combining multi-scale, self-, and cross-attention mech-
anisms, MSCAN effectively extracts in-depth features from 41 base pair sequences at 
various scales. The model outperforms state-of-the-art predictors for all twelve modifi-
cation sites, demonstrating its strong generalization ability.

Crucially, through the cross-modification validation experiments, our model unveils 
significant associations among different types of RNA modifications in terms of their 
related sequence contexts. This finding offers valuable insights into the complex rela-
tionships between RNA modifications and their respective sequence environments.

It is worth noting that the data set samples of the MSCAN model have the follow-
ing conditions: (1) The sample is a 41-nt fixed-length sequence, (2) The methylation site 
must be in the center of the sequence, (3) The sample sequence must have a label. It may 
seem that MSCAN may only be tested by this method.We hope that in the future, tar-
geting the characteristics of RNA sequences of different lengths, the model structure is 
adjusted to better capture and utilize these characteristics, and focusing particularly on 
studies that investigate the biological functions and regulatory mechanisms of different 
RNA sequence lengths.

Materials and methods
Datasets

In the present study, the benchmark datasets employed to train and test the proposed 
methods were gathered from previous works [5, 25]. These datasets encompass twelve 
distinct types of RNA modifications, namely m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, 
Am, Cm, Gm, and Um from H. sapiens. They can be downloaded from http://​47.​242.​23.​
141/​MSCAN/​index.​php, and detailed information is provided in Table 11. To maintain 
consistency, all sequence samples were adjusted to a length of 41-nt, with the modified or 
unmodified site positioned at the center. In cases where the original sequence length fell 
short of 41-nt, we employed a padding technique, appending “−” to the head or tail of the 
sequence, to ensure a uniform length of 41-nt across all samples. The raw RNA datasets 
are represented as R0 = {xn}Nn=1 , where N is the sequence number, and each xn ∈ R

L is an 
RNA sequence. Each entry xni ∈ A,C ,G,U , ‘−′ or xni ∈ {A,C ,G,U}, i = 1, 2, 3, . . . , L , 
where L is the fixed sequence length. The model training and experimental parameter 
optimization of MSCAN are based on the dataset of Chen et al., and the evaluation of 
MSCAN generalization capability is based on the dataset of Song et al. The ratio of pos-
itive-to-negative samples of Chen’s and Song’s datasets was 1:10 and 1:1, respectively, 
as shown in Table  11. The corresponding sequences were followed by aligning of the 
sequences according to sequence-logo representations rendered using the WebLogo 
program [38, 39], As shown in Fig. 7.

Feature encoding representation

Achieving an effective feature encoding representation of the sequence is crucial for 
improving the evaluation metrics of a model. This study uses Word2vec to transform 
the sequence into embedded vector representations. Since its introduction in 2013, 

http://47.242.23.141/MSCAN/index.php
http://47.242.23.141/MSCAN/index.php
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Word2vec has significantly advanced the performance of a wide array of natural lan-
guage processing (NLP) tasks.

The Word2vec methodology offers two different frameworks for encoding: Skip-gram 
and Continuous Bag of Words (CBOW). The Skip-gram approach predicts contextual 
information surrounding a given word, whereas the CBOW model generates an embed-
ding for the target word based on its contextual associations. These embeddings are 
derived through a neural network application, adeptly capturing the inherent relation-
ships within the data.

We developed an RNA embedding approach by treating RNA sequences as sentences 
and k consecutive RNA nucleotides (k-mers) as words within these sentences. Mathe-
matically, we define the mapping from single nucleotides to the vector representation of 
k-mers f :

∑L �→ Y L−k+1 , which is subsequently fed into the neural network for train-
ing. This process results in d-dimensional embedded vectors, denoted by Xn

m ∈ R
m×dm , 

where m = L − k + 1, and dm represents the embedding dimension. Gene2vec [21] dem-
onstrated that 3-mers provide the optimal prediction performance. Consequently, 
we adopted a 3-mers encoding strategy for the input data. Specifically, we employed a 
sliding window of size 3-nt to slide 41-nt sample sequences with one stride, generat-
ing a sequence of 39 words. Each word corresponds to an index in all possible 3-mer 

Table 11  A statistic of the training and test datasets

Full name Dataset Original base Number of 
positive

Number of 
negative

Source of data

1-Methyladenosine m1A_train0 A 593 5930 Chen et al.[25]

m1A_test0 A 114 1140

N6-methyladenosine m6A_ train A 41,307 41,307 Song et al.[5]

m6A_test A 5901 5901

1-Methyladenosine m1A_train A 7357 7357

m1A_test A 1051 1051

5-Methylcytidine m5C_train C 5953 5953

m5C_test C 850 850

5-Methyluridine m5U_train U 863 863

m5U_test U 123 123

N6,2′-O-dimethyl adenosine m6Am_train A 1172 1172

m6Am_test A 167 167

7-Methylguanosine m7G_train G 605 605

m7G_test G 86 86

Pseudouridine Pse_train U 1989 1989

Pse_test U 284 284

2′-O-methyladenosine Am_train A 848 848

Am_test A 121 121

2′-O-methylcytidine Cm_train C 1058 1058

Cm_test C 151 151

2′-O-methylguanosine Gm_train G 636 636

Gm_test G 90 90

2′-O-methyluridine Um_train U 1438 1438

Um_test U 205 205

Inosine I_train A 5164 5164

I_test A 737 737
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Fig. 7  The motif of methylation sites. a m1A in the dataset of Chen et al. b m6A. c Ψ. d m1A. e m6Am. f Am. g 
Cm. h Gm. i Um. j m5C. k m5U. l m7G. m I in the dataset of Song et al.



Page 18 of 25Wang et al. BMC Bioinformatics           (2024) 25:32 

combinations(105 or 65 types). Given the relatively large dataset and limited word types 
in our corpus, we chose the Continuous Bag of Words (CBOW) model for encoding, as 
it offers faster training times than the Skip-gram model. We used the grid-search strat-
egy for the optimization of the parameters for the experiments, word vector dimension 
in [100,3 00]. Feature encoding with a word vector dimension of 100 achieved the best 
performance. In summary, each 3-mer is converted into a word vector, transforming a 
41-nt sequence into a 39 × 100 matrix, where 100 represents the word vector dimension.

Fig. 7  continued
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Model

As shown in Fig. 8, MSCAN represents an innovative DL architecture that employs a 
combination of multi-scale self- and cross-attention mechanisms and point-wise, fully 
connected layers in the encoder. This innovative approach enables the effective modeling 
of both intra- and inter-sequence interactions across a wide range of scales within RNA-
seq data by transforming local RNA sequences into high-dimensional vectors via repre-
sentations through its multi-scale self- and cross-attention networks. MSCAN efficiently 
extracts crucial RNA sequence features, thereby facilitating the accurate prediction of 
m1A modifications.

The results of this study indicate that the nucleotide base neighboring the methylation 
site is instrumental in determining the specific type of methylation site and its potential 
functional consequences [40–42]. Therefore, the original sample sequence was extracted 
with two subsequences. These subsequences were centered on the sequence midpoint. 
One subsequence was 21-nt long, and the other was 31-nt long, as shown in Fig. 9.

Fig. 8  Structure of our computational framework based on multi-scale self- and cross-attention network to 
predict m1A methylation site
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In this paper, we represent the dataset as a collection of sample sequences, each 
consisting of a main sequence and two subsequences. The dataset can be expressed 
as   {(x1s0, x1s1, x1s2, y1) , (x2s0, x2s1, x2s2, y2), ⋯, (xns0, xns1, x

n
s2, y

n)} , where yn ∈ {0, 1},  xis0, x
i
s1, x

i
s2 

are the three sequences of the i-th sample, xis0 is the main sequence, with s0 = 41, xis1, x
i
s2 

is the subsequence, with s1 = 21, and s2 = 31. Experiments show that the performance of 
trained models exhibits variability when the order of input sample sequences is altered, 
as shown in Table 1. MSCAN employs the Word2vec encoder to encode word vectors 
for these sequences. For example, sequences with lengths 21-nt, 41-nt, and 31-nt are 
transformed into three distinct matrices of varying dimensions: 19 × 100, 39 × 100, and 
29 × 100, respectively.

To account for the lack of recursion or convolution in the model, it is necessary to 
incorporate information about the relative positions of tokens within sequences so that 
the model can utilize sequence order effectively. To achieve this, "position encoding" is 
added to the Word2vec embedding output, forming the input for the encoder. The posi-
tional encoding method employed in this work was first introduced by Vaswani et  al. 
[43] in a machine translation task.

The encoder is composed of a stack of N = 3 identical layers. Each layer has two sub-
layers. The first sub-layer is a multi-scale self- and cross-attention network, while the 
second is a position-wise, fully connected feed-forward network. To facilitate effective 
information flow, each of these sub-layers incorporates a residual connection in con-
junction with layer normalization.

The output generated by each sub-layer can be expressed as 
LayerNorm(x + sublayer(x)), where sublayer(x) represents the function associated with 
the sub-layer in question. Both the embedding layer and all model sub-layers yield out-
puts with a dimension of dmodel = 64 , allowing for seamless residual connections.

Upon completion of the classification process, a linear transformation followed by a 
sigmoid function is employed to convert the encoder output into predicted probabilities. 
We used grid-search to choose the hyperparameters on the training data of Chen et al., 
specifically, epoch in [50, 100], learning_rate in [5e−4, 5e−2], batch in [5, 10, 20, 60], 
and dropout in [0.2, 0.5]. Final epoch = 100, learning_rate = 5e−4, batch = 10, and drop-
out = 0.2 is the optimal hyperparameters.

Multi‑scale self‑ and cross‑attention network

The multi-scale self and cross-attention network constitutes the initial layer of the 
encoder, designed to handle linguistic input at various scales. Utilizing word2vec embed-
dings, matrices at three distinct scales (take Xs0,Xs1,Xs2 as an example) are introduced 
into the self-attention and cross-attention modules for simultaneous computation. Spe-
cifically, Xs0 is incorporated into the self-attention module, while the two combinations 
( Xs0 and Xs1 , Xs0 and Xs2 ) are integrated into the cross-attention module. Subsequently, 

Fig. 9  Schematic diagram of the obtained subsequences
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the outputs from these modules are directly added and relayed to the subsequent layer, 
as shown in Fig. 10.

Cross‑attention network

The cross-attention network is designed to extract and learn relationships between 
words in sequences of varying scales, effectively capturing associations across different 
sequences. Using sequences Xs0 and Xs1 as examples, we first transform each sequence 
into three different terms, which are query, key, and value. This is achieved through the 
application of linear projections.

where Xm ∈ R
m×dmodel is the output of the sequence embedding module, m represents 

the length of the input sequence m ∈ {s0, s1, s2} . WQ
m ,WK

m ∈ R
dmodel×dk , WV

m ∈ R
dmodel×dv . 

Xm is transformed into the query matrix Qm ∈ R
m×dk , the key matrix Km ∈ R

m×dk , and 
the value matrix Vm ∈ R

m×dv , in which dk is the dimension of matrices Qm, Km, and dv is 
the dimension of matrix Vm.

Second, we compute the cross-modal dot product between the query vector of Xs0 
and the key vector of Xs1 , dividing the result value by 

√

dk  , to estimate the association 
between the Xs0 and Xs1 . These results are subsequently refined and normalized utiliz-
ing the softmax function, yielding attention weight coefficients. Lastly, we leverage these 
coefficients to aggregate the corresponding value vectors from each feature sequence, 
thereby facilitating that the associated information between the two sequences is 
obtained. The cross-attention function can be described as follows:

Self‑attention network

In contrast to the cross-attention module, which primarily focuses on inter-sequence 
interactions, the self-attention module identifies and elucidates intra-sequence associa-
tions. The self-attention function is described as

(7)Qs0 = Xs0W
Q
s0 ,Ks0 = Xs0W

K
s0 ,Vs0 = Xs0W

V
s0

(8)Qs1 = Xs1W
Q
s1 ,Ks1 = Xs1W

K
s1 ,Vs1 = Xs1W

V
s1

(9)Cross − Attention(Qs0,Ks1,Vs1) = softmax

(

Qs0K
T
s1

√

dk

)

Vs1

Fig. 10  The internal structure of the multi-scale self- and cross-attention network
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Multi‑head multi‑scale self‑ and cross‑attention

The above elucidation pertains to single-headed attention, a fundamental mechanism 
in attention-based models. However, multi-headed attention is commonly employed in 
practice to augment model efficacy and expedite training. This technique entails con-
ducting single-headed attention in parallel across multiple instances, known as "heads", 
and subsequently integrating the outcomes derived from each head. By incorporating 
multi-headed attention, the model can effectively capture diverse contextual information 
and intricate relationships inherent in the input data. The function of cross-attention is 
described as:

where the WQs0
s0s0i,W

Ks0
s0s0i,W

Qs0
s0s1i,W

Ks1
s0s1i,W

Qs0
s0s2i,W

Ks2
s0s2i,∈ R

dmodel×dk , WVs0

s0s0i
,W

Vs1

s0s1i
,W

Vs2

s0s2i

∈ R
dmodel×dv and WO ∈ R

hdv×dmodel

In this task, we employ h = 8 parallel attention layers. For each layer,we use 
dk = dv = dmodel/h = 8.

Position‑wise feed‑forward networks

After the multi-headed, multi-scale self- and cross-attention layer, a second sub-layer 
is incorporated to augment the representative capacity of the model further. This addi-
tional component comprises a position-wise, fully connected feed-forward network, 
enhancing the overall model performance. The architecture of this network entails two 
successive linear transformations, with an intervening rectified linear unit (ReLU) acti-
vation function, ensuring a non-linear and expressive representation of the input data. It 
is defined as:

The input and output have dimensionality dmodel = 64, while the inner layer’s dimen-
sionality is dff = 256.

Classification module

To accomplish the classification task, the initial step involves computing the average of 
the encoder output. Subsequently, a linear transformation is applied, followed by imple-
menting a sigmoid activation function. The optimization of the model is facilitated by 
employing cross-entropy loss as the primary objective. Finally, the methylation site 

(10)Self − Attention(Qs0,Ks0,Vs0) = softmax

(

Qs0K
T
s0

√

dk

)

Vs0

(11)

MultiHead(Q,K ,V ) = Concat(head1, ..., headh)W
O

whereheadi = Attention
(

Qs0W
Qs0
s0s0i,Ks0W

Ks0
s0s0i,Vs0W

Vs0
s0s0i

)

+ Attention
(

Qs0W
Qs0
s0s1i,Ks1W

Ks1
s0s1i,Vs1W

Vs1
s0s1i

)

+ Attention
(

Qs0W
Qs0
s0s2i,Ks2W

Ks2
s0s2i,Vs2W

Vs2
s0s2i

)

(12)FFN (x) = max(0, xW1 + b1)W2 + b2
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probabilities are acquired, providing a robust and comprehensive representation of the 
underlying biological processes.
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