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Abstract 

Background:  Transcriptome assembly from RNA-sequencing data in species with-
out a reliable reference genome has to be performed de novo, but studies have shown 
that de novo methods often have inadequate ability to reconstruct transcript isoforms. 
We address this issue by constructing an assembly pipeline whose main purpose 
is to produce a comprehensive set of transcript isoforms.

Results:  We present the de novo transcript isoform assembler ClusTrast, which takes 
short read RNA-seq data as input, assembles a primary assembly, clusters a set of guid-
ing contigs, aligns the short reads to the guiding contigs, assembles each clustered 
set of short reads individually, and merges the primary and clusterwise assemblies 
into the final assembly. We tested ClusTrast on real datasets from six eukaryotic species, 
and showed that ClusTrast reconstructed more expressed known isoforms than any 
of the other tested de novo assemblers, at a moderate reduction in precision. For recall, 
ClusTrast was on top in the lower end of expression levels (<15% percentile) for all 
tested datasets, and over the entire range for almost all datasets. Reference transcripts 
were often (35–69% for the six datasets) reconstructed to at least 95% of their length 
by ClusTrast, and more than half of reference transcripts (58–81%) were reconstructed 
with contigs that exhibited polymorphism, measuring on a subset of reliably pre-
dicted contigs. ClusTrast recall increased when using a union of assembled transcripts 
from more than one assembly tool as primary assembly.

Conclusion:  We suggest that ClusTrast can be a useful tool for studying isoforms 
in species without a reliable reference genome, in particular when the goal is to pro-
duce a comprehensive transcriptome set with polymorphic variants.

Keywords:  De novo transcriptome assembly, Guiding contigs, Isoform assembly, RNA-
seq, Recall/sensitivity

Background
In eukaryotes, many genes can produce RNA transcripts of differing base sequences 
called transcript isoforms. Transcript isoforms are created by alternative transcriptional 
start sites, splicing, or polyadenylation. Controlling transcript isoform expression is one 
way for a cell to regulate protein expression and thereby its behavior [1–3]. Changes in 
transcript isoform expression have been associated with developmental changes and tis-
sue specificity in eukaryotes, and disease in humans [4–7]. Thus, it is often important 
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to clarify not only what genes are expressed but also which transcript isoforms are 
expressed.

The expression of genes and transcripts is often studied by RNA-sequencing, where 
short reads (SRs) derived from massively parallel shotgun sequencing are aligned to an 
organism’s reference genome. With this approach, reconstructing transcripts is pos-
sible by using the reference genome as a guide [8]. However, many non-model organ-
isms do not have a high-quality reference genome available. In such cases, a commonly 
used approach is de novo assembly in which transcripts are assembled from the reads 
only. The assembled transcripts are sometimes referred to as contigs or reconstructed 
transcripts. Popular tools to perform de novo transcriptome assembly include Trans-
ABySS  [9], Trinity  [10], Oases  [11], and SOAP-denovo-Trans  [12]. An overview of 
current transcriptome assemblers is available [13]. According to that study, the best per-
forming assemblers were Trans-ABySS, Trinity and rnaSPAdes [14].

In principle, these tools can also reconstruct transcript isoforms of the expressed 
genes, but in practice their sensitivity is poor. In Mus musculus, Schultz et  al.  [11] 
reported that Oases, Trans-ABySS, and Trinity assembled 1.21, 1.25, and 1.01 tran-
scripts per gene, respectively, whereas a reference-based assembler reconstructed 1.56 
transcripts per gene. Bushmanova et  al.  [14] also observed poor transcript isoform 
reconstruction performance of transcriptome assembly methods: while their method, 
rnaSPAdes, outperformed the other compared assemblers in gene reconstruction in 
Mus musculus, it assembled only 1.02 transcripts per gene. In the same comparison, 
Trinity managed to assemble the most transcripts, with a ratio of 1.11 transcripts per 
gene. The insufficient ability of current de novo transcriptome assembly approaches to 
reconstruct all expressed transcript isoforms of a gene was evident to us in our work on 
the DAL19 gene in spruce, Picea abies [7]: Only one out of four confirmed DAL19 tran-
script isoforms was reconstructed to at least 90% using Oases and two using Trinity. We 
performed a directed assembly that managed to reconstruct three of the four transcript 
isoforms, but this method did not scale to whole transcriptome assembly. These exam-
ples, and others [15, 16], demonstrate that there is still much room for improvement in 
de novo transcript isoform assembly.

Another observation concerns the imperfect overlap between the sets of reconstructed 
transcripts from different de novo assembly tools. Smith-Unna et al. [17] noted that out 
of Oases, Trinity, and SOAP-denovo-Trans, each assembler reconstructed a large num-
ber of bona fide transcripts that neither of the other assemblers managed to reconstruct. 
They concluded that combining assembly methods may be an effective way to improve 
the detection rate of transcripts.

We report the de novo transcriptome assembler ClusTrast, which builds upon our 
previous experience of transcript isoform assembly [7]. The main purpose of Clus-
Trast is to provide a comprehensive set of transcript isoforms, using only sequence 
reads as input, and with the explicit intent to prioritize recall. The ClusTrast pipeline 
combines two assembly methods, Trans-ABySS and Shannon, incorporates a novel 
approach to clustering guiding contigs, assigns short reads to the clusters, and finally 
performs a cluster-wise assembly of the clustered short reads. We assessed transcript 
isoform reconstruction performance of ClusTrast and several de novo transcriptome 
assemblers in six eukaryotic organisms and found that ClusTrast reconstructed more 



Page 3 of 22Westrin et al. BMC Bioinformatics           (2024) 25:54 	

known transcript isoforms than any other assembler and reconstructed unknown 
(including misassembled) transcripts at a rate comparable to other assemblers.

Implementation
ClusTrast method

We developed an approach for transcriptome assembly from short reads called 
ClusTrast.

Overview

Figure 1 shows a flowchart of the ClusTrast pipeline. The only required input to Clus-
Trast is a file with short RNA-seq reads, referred to as SRs, short reads or SR RNA-
seq. Guiding contigs (GCs) is an optional input. Additional file 1: Fig. S.1 illustrates 
an example of how the method works.

Fig. 1  The ClusTrast pipeline. Orange ovals denote input data, black squares denote actions taken by 
ClusTrast, blue arrows denote intermediate data file transfers, yellow oval denotes output final assembly, 
and the black rhomboid and oval handle the guiding contig user input status. The only required input to 
ClusTrast is a short read RNA-seq data set (orange oval in top left corner). Guiding contigs may optionally be 
input by the user (dashed orange oval in top right corner, and green arrows followed if provided. They may 
also be used as primary assembly (not depicted)). If guiding contigs are not provided by the user, the primary 
assembly is repurposed and used also as guiding contigs (red arrows). SR = short reads, GCs = guiding 
contigs
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Primary assembly and guiding contigs (GCs)

In ClusTrast, Trans-ABySS [9] is employed to create a “primary assembly” from the 
short reads. The primary assembly will by default be used as the set of guiding con-
tigs (GCs) in ClusTrast. The guiding contigs are used in the next step to assign the 
short reads to clusters. Guiding contigs may also be provided separately by the user, 
and could then also serve as primary assembly if desired. The primary assembly is by 
default merged into the final set of assembled transcripts.

Trans-ABySS is one of the leading de novo transcriptome assemblers according to 
Hölzer and Marz  [13]. They evaluated the original strategy of Trans-ABySS, which 
used several different k-mers and merged the resulting assemblies, in order to get 
both recall from small values of k and precision from high values of k. Since a single-
k run uses much less memory (or is substantially faster) than a multi-k run, we tried 
both strategies with ClusTrast. In this report, we have appended -M to the name of a 
method if it used a multi-k strategy. We also tried other assemblers as potential pri-
mary assemblers for ClusTrast, see Primary assembly alternatives.

Clustering of (a) guiding contigs and (b) Assigning short reads to clusters

(a) The clustering of the guiding contigs is performed with isONclust  [18], a tool 
originally developed for clustering long reads (from PacBio or ONT sequencing tech-
nologies) into gene families. It uses a greedy algorithm for the clustering and handles 
variable error rates by the means of the quality values in the FASTQ input files. When 
the set of guiding contigs is in FASTA-format, ClusTrast will convert it to FASTQ-
format with a static quality.
(b) The short reads are aligned to the guiding contigs with minimap2  [19], using 

the preset option -x sr, intended for short read alignment, but included secondary 
alignments. Secondary alignments can optionally be excluded in ClusTrast. Next, the 
short reads are assigned to the guiding contig clusters based on the alignment results. 
If a short read x is aligned to guiding contigs X1 and X2 , and X1 belongs to cluster n1 
and X2 belongs to cluster n2 , x will be included in n1 and n2 . Reads not aligining to any 
guiding contig are put in a separate cluster. Thus, the short reads have now been clus-
tered. A read can only occur once per cluster. See also Additional file 1: Section C.2.

Clusterwise assembly

The cluster-wise assembly in ClusTrast is performed by the transcriptome assembler 
Shannon [20] (also used in refShannon, a genome-guided transcript assembler [21]), 
and aims to be information theoretically optimal. Kannan et al. claim that Shannon 
can finish in linear time given (i) sufficient diversity of transcript abundance and (ii) 
no loops in the graph, but they do not address how it will deal with datasets not meet-
ing these criteria. However, dividing the reads in the short read dataset into clusters 
before assembly will reduce the complexity of each individual assembly and lower 
the risk of violating these requirements. Because of this, and its aim to reconstruct 
as many transcripts as possible, Shannon is used for the cluster-wise assemblies in 
ClusTrast.
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Merging the primary and clusterwise assemblies

The final steps of ClusTrast are to join the concatenated clusterwise assemblies with 
the primary assembly, and next, to remove duplicate instances of reconstructed tran-
scripts. Similar but non-identical reconstructed transcripts are kept, because of possible 
polymorphic variants that we want ClusTrast to retain. The output of ClusTrast is the 
merged final assembly.

Datasets and annotations

Short read RNA‑seq datasets for assembly generation

We evaluated the de novo transcriptome assemblies using the NCBI SRA datasets in 
Table 1. They were all non-stranded paired-end short read RNA-seq datasets. We pre-
processed the datasets with fastp [22] with default parameters, which means removal of 
any remaining adapter sequences, quality pruning (max 40% of the bases were allowed to 
have base quality < 16 , and at most five Ns per read), and exclusion of reads that ended 
up shorter than 15bp (see the Additional file 1: Sections A.1 and B.1 for details).

Reference datasets for assembly evaluation

We downloaded reference genome sequences as well as reference transcript annotations 
from Ensembl for each of the six species. We used the GTF file annotations of genes and 
transcripts, not including the ab initio annotations. We estimated the expression of all 
reference transcripts in each of the six datasets using RSEM [23] and defined a transcript 
isoform as expressed if the transcripts per million (TPM) reported by RSEM was greater 
than zero. Versions and commands for RSEM are listed in Additional file 1: Section A–B. 
We defined a gene as expressed if at least one of the transcript isoforms associated with 
that gene was expressed. The versions of the annotations used and the number of genes 
and isoforms we detected in each dataset are shown in Table 2.

Transcriptome assembly generation

We assembled the transcriptomes for all six datasets (Table 1) using Trans-ABySS [9], 
Trinity [10], Oases [11], SOAP-denovo-Trans [12], BinPacker [24], Shannon [20], rnaS-
PAdes  [14], TransLiG  [25], RNA-Bloom  [26], and ClusTrast. We used each assem-
bler’s own default parameters. Trans-ABySS and Oases can be run in a “multi-k” mode 
where the assembler is first run with a single k-mer (“single-k” mode; where a k-mer is 
a substring, with fixed length k, of a read) for several different k-mers and the resulting 

Table 1  Short read RNA-seq datasets accessed from the NCBI SRA database

RL=read length in bases. Species column, indicated in bold is the name to which the data set is referred to throughout this 
article. RPs=million read pairs, before pre-processing (on the left) and after pre-processing (on the right)

SRA ID RL Species RPs

SRR5133163.1 2× 150 Human 29.51 29.05

SRR8632985 2× 76 Mouse 31 30

SRR11341576 2× 150 Rice 24 23

SRR11278019 2× 126 Arabidopsis 11.2 11.1

SRR10728575 2× 150 Zebrafish 21 20

SRR5986240.1 2× 150 Poplar 25.1 24.4
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assemblies are merged into a single assembly. We used both the single-k and multi-k 
strategies for these two assemblers. We append -M to the name of a method if it uses 
a multi-k strategy, and -S if it uses a single-k strategy. Oases-M uses by default all odd 
k-mers from 19 to 31, but it only finished within less than 58 h on the mouse and arabi-
dopsis datasets. On the rice dataset, it finished after ∼400 h. Therefore, for human and 
zebrafish, we used only Oases-S with k = 31 . The program versions and the executed 
commands are listed in Additional file 1: Sections A.2 and B.2.

We also generated a concatenated assembly from the Trans-ABySS and Shannon tran-
scriptomes, referred to as TrAB+Sh, to examine if the clustering approach of ClusTrast 
improves the assembly quality.

Transcriptome assembly evaluation

We evaluated the transcriptome assemblies by estimating precision (positive predicted 
value, PPV) and recall (sensitivity or true positive rate, TPR). For this, we used the ref-
erence based transcriptome comparison tools Conditional Reciprocal Best BLAST 
(CRBB)  [27], as implemented in the TransRate package  [17], and SQANTI  [28]. Ver-
sions and commands for these tools can be found in the supplementary material. We 
only used reference transcripts that were considered expressed (Table 2). All assembled 
transcripts were considered expressed, since they were reconstructed from actual RNA-
seq data.

Using SQANTI in evaluation

We used SQANTI (Structural and Quality Annotation of Novel Transcript Iso-
forms) [28] to classify assembled transcripts according to their splice junction matches 
with reference genes and transcript isoforms. When an assembled transcript is anti-
sense to an annotated gene, SQANTI will classify that transcript as anti-sense. We 
extracted all transcripts classified as anti-sense, reverse-complemented them, and then 
reclassified them with SQANTI.

When an assembled transcript and a reference isoform have the same number of exons 
and same splice junctions, then SQANTI classifies it as a full splice match (FSM). When 
the assembled transcript has fewer exons than the reference but the splice junctions in 
the assembled transcript all exist in the reference, it is classified as an incomplete splice 
match (ISM). In order for SQANTI to classify an assembled transcript as an ISM, all 

Table 2  Reference transcriptome sequence, genome sequence and annotation versions accessed 
from Ensembl, where the Version id suffix shows the Ensembl version

The number of genes and isoforms are counted from the reference transcriptome. Genes and isoforms are considered 
expressed if TPM>0 as calculated by RSEM on the datasets in Table 1

Reference Total Expressed

Species Version id Genes Isoforms Genes Isoforms

Human GRCh38.99 40,491 1,904,32 22,510 1,02,552

Mouse GRCm38.99 36,711 1,19,353 17,400 52,845

Arabid. TAIR10.48 27,655 48,359 23,085 38,004

Rice IRGSP-1.0.48 37,967 44,761 29,703 34,956

Zeb.fish GRCz11.99 30,628 57,775 23,963 35,189

Poplar Pop_tri_v3.46 41,335 73,012 29,400 44,652
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junctions in the assembled transcript must match the reference, but the exact start and 
end can differ. In case there are several possible consistent reference isoforms, SQANTI 
assigns the assembled transcript to the shortest of the matching references. Assembled 
transcripts classified by SQANTI as novel in catalog (NIC, when the splice junctions 
are known but there is a novel combination) and novel not in catalog (NNC, with novel 
splice junctions) were not classified as true positives.

For recall, we counted all expressed reference isoforms with at least one assembled 
transcript that SQANTI classified as FSM or ISM (and with a certain fraction, 0.25−1.0, 
of the exons covered) as a true positive, and divided the total number of true positives 
by the total number of expressed reference isoforms. For precision, we counted each 
assembled isoform classified by SQANTI as FSM or ISM and covering at least a certain 
fraction (from 0.25 to 1.0) of the reference exons as a true positive, and divided the total 
number of true positives by the total number of assembled isoforms.

Using CRBB in evaluation

We used CRBB [27] to classify assembled transcripts according to their similarity to ref-
erence transcripts. To this end, we used TransRate [17], which in turn used BLAST [29] 
to align each assembled transcript to the set of reference transcripts, and each refer-
ence transcript to the set of assembled transcripts. By using all transcripts which are top 
hits in both BLAST alignments reciprocally, an appropriate E-value cutoff is calculated. 
Transcripts with lower E-values than this cutoff are then considered CRBB hits. We 
defined recall as the proportion of reference transcripts that have a CRBB hit covering 
the reference transcript to at least 25%–100%. We defined precision as the proportion 
of assembled transcripts that are a CRBB hit covering the reference isoform to at least 
25%–100%.

Results
Transcriptome assembly evaluation

Transcriptome assemblies for all compared assemblers, including ClusTrast, were gener-
ated as described under Transcriptome assembly generation. Basic statistics of all assem-
bled transcriptomes are available in Additional file 1: Table S.2–S.7. We collectively refer 
to all tested approaches as “assemblers”, although assembly pipeline (e.g., ClusTrast) or 
concatenation (TrAB+Sh) may be more accurate.

Evaluation with SQANTI

We investigated how recall and precision changed when we varied the proportion of 
exons that an assembled transcript needs to recover in order to be considered a true 
positive. As this proportion was relaxed for the ISM classifications from 1.0 to 0.25 (for 
the FSM category it is by definition 1.0), the recall and precision (Fig. 2) increased. Clus-
Trast-M had the highest SQANTI recall of any assembler for all of the six datasets over 
the entire range (except roughly tied with TrAB+Sh for arabidopsis). The assembler with 
the highest precision varied across datasets; it was RNA-Bloom in human, ClusTrast-M 
in rice and (with TransLiG) poplar, Oases-M in mouse, and TransLiG in arabidopsis and 
zebrafish.
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Fixing the proportion at 0.5 (i.e., at least 50% of exons recovered for ISM), ClusTrast-
M detected more transcript isoforms than the established assemblers Trinity (1.23−2.15 
fold increase), Oases-S (1.33−2.59 fold increase), and Trans-ABySS-M (1.1–1.52 fold 
increase) (Additional file 1: Fig. S.2 and Table S.14). Precision was comparable to Trinity 
(0.9–1.76 fold change), Oases-S (0.78−1.5 fold change) and Trans-ABySS-M (0.73–1.63 
fold change).

Fig. 2  Recall and Precision as measured by SQANTI. a-c,g-i: Proportion of reference isoforms with at least one 
SQANTI classification of FSM or ISM vs. the cumulative proportion of exons recovered by the assembly. d-f,j-l: 
Proportion of reconstructed isoforms classified by SQANTI as FSM or ISM vs. the cumulative proportion of 
recovered exons from the reference
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Evaluation with CRBB

We investigated CRBB recall and precision over the same proportion of required 
recovered exons as for SQANTI and observed an increase in recall and precision as 
this proportion was decreased from 1.0 to 0.25. We observed some changes in the 
relative ordering of assemblers as shown in Fig. 3 (CRBB recall and precision). In par-
ticular, rnaSPAdes performance levelled off in the lower end.

Fig. 3  Recall and Precision as measured by CRBB. a-c,g-i: Proportion of references with a CRBB hit vs. the 
cumulative proportion of recovered reference length. d-f,j-l: Proportion of reconstructed isoforms with a CRBB 
hit vs. the cumulative proportion of recovered reference length
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Fixing the proportion at 0.5, CRBB recall was higher for ClusTrast-M than for Trinity 
(1.01−1.34 fold increase) across all datasets, but not compared to all assemblers (Addi-
tional file 1: Fig. S.3 and Table S.15). ClusTrast-M performed the best on human, mouse, 
rice, and zebrafish, it ranked second for arabidopsis, while its ranking varied from first 
to third as the required reference transcript coverage decreased. ClusTrast-M clearly 
underperformed compared with Trinity with regard to CRBB precision (0.33−0.68 
fold change); the assembler with highest precision in a dataset was always TransLiG or 
RNA-Bloom.

SQANTI and CRBB evaluation metrics were correlated; true positive sets still differed

The number of transcripts that were considered as true positives by both SQANTI and 
CRBB or exclusively by only one of them varied between datasets and between assem-
blers (Additional file  1: Tables  S.18 and  S.19). ClusTrast, Trans-ABySS, Oases-M, and 
(with one exception) Shannon and SOAP-denovo-Trans consistently predicted more 
transcripts that were considered as true positives exclusively by SQANTI and not by 
CRBB, while TransLiG was the only assembler that consistently predicted more tran-
scripts that were considered true positives exclusively by CRBB. We used SQANTI cat-
egories to classify the ClusTrast true positives that were exclusively detected by either 
SQANTI or CRBB (Additional file 1: Tables S.23 and S.24, respectively). We observed 
that the largest category of true positives according to SQANTI but not CRBB was the 
ISM mono-exon class. The largest category of true positives according to CRBB but not 
SQANTI was novel not in catalog (NNC) with novel splice sites.

SQANTI and CRBB recall measurements were highly correlated across all assemblies 
and datasets ( ρ = 0.93 ; Additional file 1: Fig. S.4) while SQANTI and CRBB precisions 
were less correlated ( ρ = 0.75 ; Additional file  1: Fig.  S.5). We calculated the correla-
tion of precision measurements for each assembler individually: ClusTrast-M obtained 
ρ = 0.54 while for all other assemblers ρ ≥ 0.82 . Next, we excluded the ISM mono-exon 
class from the set of true positives and recalculated the precision correlation for Clus-
Trast-M: it increased to ρ = 0.94.

Reference transcripts were often covered to at least 95% by FSMs

We investigated the number of expressed reference transcript isoforms that were recon-
structed to at least 50% and 95% of their length by a single FSM according to SQANTI, 
Additional file  1: Table  S.16. For all assemblies and both length requirements, either 
TrAB+Sh or ClusTrast reconstructed the most reference transcript isoforms, with small 
differences (<5%) except for rice where TrAB+Sh did not produce a result. Between 
35.1% (arabidopsis) and 68.8% (rice) of the reference transcript isoforms that had an 
FSM match were reconstructed by the FSM-classified contig from ClusTrast to at least 
95% of their length. The corresponding range for reconstruction to at least 50% of the 
reference transcript length was between 76.7% (human) and 91.0% (arabidopsis).

An appreciable fraction of reference transcripts were reconstructed with polymorphisms 

by ClusTrast

We used the subset of reference transcripts with FSM or CRBB hits to estimate how 
often these reference transcripts were reconstructed as polymorphic variants (SNPs, 
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indels) or as alternatively spliced contigs. In Additional file 1: Tables  S.20 and S.21, 
the sets labeled A contain the FSMs, while the sets labeled B contain the CRBB hits. 
By definition, FSM contigs corresponding to a specific reference transcript are not 
alternatively spliced, since they contain all splice junctions of their reference tran-
script. Two (or more) FSM contigs matching one and the same reference transcript 
are thus polymorphic variants of each other. This is the A\B and A ∩ B sets in Addi-
tional file 1: Tables S.20 and S.21. On the other hand, two (or more) contigs that are 
not FSMs but considered as CRBB hits to one and the same reference transcript, 
are potentially splice variants of that reference transcript. This is the B \ A sets. We 
estimated that 58–81% of the reference transcripts reconstructed by ClusTrast were 
reconstructed with polymorphic variants, Additional file 1: Table S.22. Conversely, we 
estimated that 47–78% of ClusTrast assembled contigs contained polymorphic vari-
ants, Additional file 1: Table S.22.

Recall varied over expression levels and number of exons in isoforms

To determine if the assemblers differed in how well they recovered isoforms of genes 
with more than one annotated isoform, we calculated SQANTI recall of isoforms 
binned by genes according to the number of isoforms these genes expressed (Fig. 4). 
In most cases the ranking of assemblers by recall did not change with increasing 
number of expressed isoforms per gene. ClusTrast-M came out on top over almost 
the entire range for 5 out of 6 datasets, although for mouse it was tied with TrAB+Sh 
and for arabidopsis it was tied with Oases-M and TrAB+Sh.

We binned reference transcripts by expression quantiles as measured by RSEM. 
The SQANTI recall increased with increased expression level, for all assemblers and 
for all data sets except that some assemblers levelled off in the range 80–100%. We 
observed that recall was higher for ClusTrast-M than all other assemblers in the lower 

Fig. 4  SQANTI recall of reference isoforms (FSM) binned by number of expressed isoforms per gene
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end of expression levels (expression quantile <15%) and across the entire range of 
expression levels for all datasets except arabidopsis and zebrafish where ClusTrast-M 
was tied with TrAB+Sh (Fig. 5).

We observed cases where ClusTrast detected highly expressed isoforms missed by 
other methods. We illustrate this with examples of genes where the highest expressed 
isoform (according to RSEM) was reconstructed only by ClusTrast and not by any other 
method. Additional file  1: Figs.  S.26 to S.31 contain Sashimi plots for these example 
genes, one for each of the six datasets (see Additional file 1: Section C.4 for more details).

Simulated datasets

We evaluated ClusTrast on two simulated datasets: one human dataset from Hölzer and 
Marz [13] and one mouse dataset from Hayer et al. [15]. The results (Figs. 6 and 7) were 
analogous to the ones from the real datasets: On the simulated human dataset, Clus-
Trast was the leading method for recall (according to both SQANTI and CRBB) and 
the worst for precision (according to SQANTI). On the simulated mouse dataset, it was 
even between ClusTrast and TrAB+Sh on recall, and a mediocre to low precision for 
ClusTrast.

Run time and memory usage

Across all real datasets, all assemblers except Oases-M completed within 48  h and 
required less than 300 GB of memory (Additional file 1: Table S.25). ClusTrast-M took 
between 660 and 2145  min to complete, the longest time of all assemblers for mouse 
and arabidopsis. Oases-M took the longest time to complete for one dataset, and did 
not complete for the remaining three. SOAP-denovo-Trans was the fastest assembler for 
all datasets. ClusTrast-M peak memory use was between 57.15 and 267.2 GB for the six 
datasets, highest of all assemblers for one dataset, while Trinity and Oases-M had the 

Fig. 5  SQANTI recall of expressed transcript isoforms stratified according to RSEM expression. Recall within 
each bin (5 percentiles) is defined as the proportion of transcript isoforms that have an FSM match to an 
assembled contig that is ≥ 200bp
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highest peak memory use for two datasets each. RNA-Bloom had the lowest peak mem-
ory usage. Our computational setup is described in Additional file 1: Table S.26.

Primary assembly alternatives

We assessed alternatives to Trans-ABySS-M for primary assembly in ClusTrast: the 
widely used Trinity, and the recent RNA-Bloom (both of which faring well individu-
ally in our own evaluation), and a “meta assembler”, that we call META, constructed by 
taking the union of the individual assemblies from Trans-ABySS-M, Trinity, and RNA-
Bloom (Figs. 8, 9). ClusTrast was tested in four versions, each with a different primary 
assembly, Trans-ABySS-M, Trinity, RNA-Bloom, and META (solid lines). Recall was 

Fig. 6  Results for a simulated human dataset from Hölzer and Marz [13]

Fig. 7  Results for a simulated mouse dataset from Hayer et al. [15]
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improved as compared to the four individual primary assemblies (dashed lines), accord-
ing to both SQANTI, Fig. 8, and CRBB, Fig. 9, while precision was lower for 4/6 datasets 
according to SQANTI and overall according to CRBB. We also concatenated the individ-
ual assembly from Trans-ABySS-M, Trinity, and RNA-Bloom, respectively, to the indi-
vidual assembly from Shannon (dotted lines). These concatenated assemblies (where the 
concatenation of Trans-ABySS-M and Shannon, TrAB+Sh, is included also in Figs. 2, 
3, 4, 5, 6 and 7) yielded higher recall for RNA-Bloom and Trinity as compared to what 

Fig. 8  Recall and Precision as measured by SQANTI for ClusTrast when ran with different tools for primary 
assembly (solid lines), compared with these tools on their own (dashed lines) and concatenated with 
Shannon (dotted lines)
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ClusTrast reached, while ClusTrast demonstrated higher recall for Trans-ABySS-M and 
META.

The META assembly in itself yielded higher recall than ClusTrast when ran with any 
other primary assembly (Trans-ABySS-M, Trinity, or RNA-Bloom). But ClusTrast with 
META as primary assembly yielded higher recall than both META on its own and META 
with Shannon concatenated.

In Fig. 10, we show the number of annotated and expressed isoforms that, of all the 
methods tested in our study, only ClusTrast managed to reconstruct, and with which 

Fig. 9  Recall and Precision as measured by CRBB for ClusTrast when ran with different tools for primary 
assembly (solid lines), compared with these tools on their own (dashed lines) and concatenated with 
Shannon (dotted lines)
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tool for primary assembly (RNA-Bloom, Trinity, Trans-ABySS-M, and META). Clus-
Trast with Trans-ABySS-M for primary assembly (the default version of ClusTrast) 
managed to reconstruct most such isoforms in all instances except rice, where it placed 
second after ClusTrast with META as primary assembly.

Fig. 10  ClusTrast results using four different tools - RNA-Bloom, Trinity, Trans-ABySS-M, and META - for the 
primary assembly. The Venn diagrams show the number of annotated and expressed transcript isoforms 
reconstructed solely by ClusTrast and no other tested method. ClusTrast with primary assembly from 
Trans-ABySS-M generates the highest number of unique transcript isoforms for all datasets (a) - (f)
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The runtimes for ClusTrast with Trinity as primary assembly were comparable to 
using Trans-ABySS-M for primary assembly. With RNA-Bloom (and thus also META) 
as primary assembly, however, ClusTrast required more computational resources: the 
clustering step took ∼68 h to complete, and required memory of over 4TB.

Thus, all taken together, we believe that Trans-ABySS-M is a reasonable choice for pri-
mary assembly in ClusTrast.

Discussion
We described and assessed the de novo transcriptome assembler ClusTrast. Across all 
six tested datasets, ClusTrast-M and ClusTrast-S created assemblies that had the highest 
or among the highest recall as measured by SQANTI and CRBB.

ClusTrast consists of several steps (Fig. 1). In the primary assembly step, we have cho-
sen Trans-ABySS as the primary assembler included in the distributed version of Clus-
Trast. We have shown that it is possible to use other assemblers as well, but with lower 
performance. Using the union of assembled transcripts from more than one assem-
bly tool as the primary assembly improves the recall of ClusTrast. This might be suit-
able for some users, but requires larger computational resources. The clustering of the 
guiding contigs is a way to conceptually focus the assembly to genes, and their corre-
sponding isoforms. The most common case is that a reference gene is represented in 
(i.e., is aligned to) only one cluster, although it is quite common that a reference gene, 
and its corresponding isoforms, is represented in more than one cluster (Additional 
file 1: Fig. S.19). In fact, ClusTrast was used in our recent study [30] to detect isoforms 
in individual gene families of specific biological interest. The core step of ClusTrast is 
the clusterwise assembly, which is followed by concatenation of the clusterwise assem-
blies, and finally by merging with the primary assembly (and removal of duplicates). A 
comparison of the recall and precision using (i) only the primary assembly, (ii) only the 
concatenated clusterwise assemblies, and (iii) the final, merged assembly is in Additional 
file 1: Tables S.28-S.31. The recall increases substantially using the merged assembly as 
opposed to only primary or clusterwise assemblies. The fact that the recall increases 
also when using a union of assembled transcripts from more than one assembly tool 
as primary assembly (discussed above) further supports that the clusterwise assembly 
is a helpful approach. We suggest that a wise choice of method for primary assembly 
coupled with the power of the clusterwise assembly are the key components of the high 
recall performance of ClusTrast.

In our evaluation of ClusTrast and the other transcriptome assemblers, we have 
emphasized metrics that do not penalize the reconstruction of different isoforms of a 
gene. A compact transcriptome assembly is, for instance, preferable when the recon-
structed transcripts are intended to be used for aligning reads to a “reference” for, e.g., 
differential gene expression analysis. In such a situation, our approach would not be 
helpful. However, when the goal is to find as many supported transcript isoforms as pos-
sible, compactness is not in itself desirable and could in fact be counter productive. A 
recent review [16] points out that there is a need for metrics that better capture the per-
formance with regards to transcript isoforms. Our use of SQANTI’s approach to eval-
uation is an attempt to address this. SQANTI [28] was originally designed to evaluate 
long reads (e.g., PacBio CCS) but the categories it defined and its aim to classify each 
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non-redundant transcript individually are useful also in evaluation of assembled tran-
scripts. We have been conservative in that we included only the FSM and ISM categories 
as true positives. Also the NIC category, which encompasses reconstructed transcripts 
that contain annotated reference exons only, but in novel combinations, could have been 
included. We compared the results from SQANTI and CRBB (which has been used 
for transcriptome assembly benchmarking before), and detected a correlation between 
SQANTI and CRBB scores, particularly strong for recall. We noted that most of the con-
tigs where SQANTI and CRBB classifications of true positives disagreed, belong to the 
SQANTI class ISM mono-exon. Excluding these from the set of true positives increased 
the correlation between SQANTI and CRBB precision measurements for ClusTrast. 
We believe this supports the notion that SQANTI is possible to use for transcriptome 
assembly evaluation.

Comparing ClusTrast-M to one of the most popular transcriptome assemblers, Trinity, 
revealed that ClusTrast-M detected more transcript isoforms than Trinity, and also had 
a higher precision for isoforms as measured by SQANTI, but clearly underperformed 
according to CRBB precision. The difference in relative performance of ClusTrast and 
Trinity according to CRBB and SQANTI precision may be explained by how CRBB han-
dles assembled transcripts with high similarity: If two or more highly similar transcripts 
exist in the assembly, and some of them have a lower E-value than others, then only the 
transcripts with E-values below the limit will be considered CRBB hits and thus true 
positives for precision. SQANTI, in contrast, annotates each transcript independently 
and therefore calls all assembled transcripts that are similar to a reference transcript as 
a true positive. We assessed this by recalculating SQANTI precision while only counting 
one transcript match for every reference transcript (Additional file 1: Fig. S.6), and we 
observed a marked reduction in precision of Trans-ABySS-M and ClusTrast across all 
assemblies (compare Additional file 1: Figs. S.2 and S.6). We also tested ClusTrast with 
secondary alignments switched off, and observed a slight improvement for CRBB preci-
sion, but at the cost of a reduction in both CRBB and SQANTI recall for most datasets 
(Additional file 1: Table S.27).

We observed that ClusTrast generally recovered as many or more known isoforms as 
TrAB+Sh as measured by SQANTI (Additional file  1: Fig.  S.2) while suffering only a 
small reduction in CRBB precision (Additional file  1: Fig.  S.3) and that ClusTrast fin-
ished successfully on the rice dataset, where Shannon (and thus TrAB+Sh) failed to 
create an assembly. A possible explanation for both observations is that the clustering 
performed in ClusTrast may simplify sub-graphs enough to allow better handling by the 
Shannon heuristic and thereby increase sensitivity. ClusTrast-M and TrAB-M+Sh were 
also the best in reconstructing isoforms to their full length according to SQANTI.

In general the performance of the assemblers was rather consistent over species, 
regardless of evaluation approach (SQANTI or CRBB). We tested two additional human 
datasets (Additional file  1: Table  S.1), for a total of four datasets, one of which simu-
lated, and observed that ClusTrast showed the highest SQANTI and CRBB recall over 
the range of transcript coverage as well as expression levels for all four human datasets 
(Fig.  6; Additional file  1: Figs.  S.7–S.9). However, the precision performance of Clus-
Trast was mixed. ClusTrast performance was not correlated to the size of the datasets 
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(Additional file 1: Fig. S.17). For all results on all additional datasets, see Additional file 1: 
Section C.3.

We used RSEM to estimate the number of expressed isoforms, and in our recall cal-
culations we used only transcripts with TPM>0. Using all reference transcripts in our 
evaluation, instead of only those that have a TPM>0, would mean a larger denominator 
when calculating recall, which would lower the recall of all compared assemblers alike. If 
RSEM makes a mistake and assigns TPM=0 to a reference transcript that in fact is tran-
scribed, then the recall will be underestimated. If RSEM assigns a TPM>0 to a reference 
transcript which in fact is not transcribed, recall will be overestimated. Similarly, there 
might be assembled contigs that correspond to real isoforms that are not present in the 
reference. These contigs are counted as false negatives while they should be true posi-
tives, thus precision performance is likely underestimated. For the SQANTI evaluation, 
it is possible that many of these would be considered as true positives if we had included 
the NIC category among the true positives.

Within the scope of this paper, we have shown that the current de novo transcriptome 
assembly strategy of ClusTrast is successful in finding the most comprehensive set of 
isoforms from short read RNA-seq datasets, as it outperformed all other tested meth-
ods. We do not claim, however, that we have found the optimal version. Future improve-
ments might come, e.g., from testing other assemblers for the clusterwise assembly, or, 
provided suitable datasets are available, from including long reads as guiding contigs. 
The use of long reads in transcriptome analysis is not a focus of this study, but the accu-
racy of long reads has indeed reached a level that enables the use of long read sequenc-
ing to reliably address questions not easily amenable with short read sequencing. For 
instance, long reads can provide direct information about transcript isoforms present 
in a sample or the methylation status of DNA or RNA molecules  [31]. The most tell-
ing example is perhaps the telomere-to-telomere (T2T) sequencing of the human 
genome [32]: long reads revealed approximately 200 Mbases of genomic DNA sequence 
hitherto undetermined, containing 99 protein coding genes not present in the human 
reference genome GRCh38. There are emerging methods for analysis of long read tran-
scriptome data, e.g. StringTie2 which can accommodate both short and long reads for a 
reference-based transcriptome assembly [33] and IsoQuant that enables transcript dis-
covery in long read data sets [34]. Finally, we note that a short read de novo transcrip-
tome assembly approach, such as ClusTrast or any of the ones included in our study, 
would potentially be able to find the likes of the missing 99 human genes in other species 
which not yet have had their full T2T genomes sequenced. This attests to the lingering 
usefulness of short read sequencing and also to the advantages of de novo transcriptome 
assembly, as a reference-based method by definition would miss any genes or transcripts 
not present in the reference.

Conclusion
In our tests of model organisms, ClusTrast consistently detected the most transcript 
isoforms, but at a cost of lower precision. This agrees with our intention of ClusTrast 
– to provide a comprehensive but non-redundant list of contigs. Therefore, we believe 
researchers interested in a more complete representation of transcript isoforms from 
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eukaryotic organisms may wish to use ClusTrast. The resulting list of contigs is amenable 
for further processing and analysis tailored according to the research question at hand.

Availability and requirements

Project name:	� ClusTrast
Project home page:	� https://​github.​com/​karlj​ohanw/​clust​rast
Operating systems:	� Linux and MacOS
Programming language:	� Bashscript
Requirements:	� transabyss, shannon_cpp, isONclust, mini-

map2, awk.
License:	� GPLv3
Restrictions to use by non-academics:	� None
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TPR	� True positive rate
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