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Abstract 

Background:  Recent developments in the domain of biomedical knowledge bases 
(KBs) open up new ways to exploit biomedical knowledge that is available in the form 
of KBs. Significant work has been done in the direction of biomedical KB creation 
and KB completion, specifically, those having gene-disease associations and other 
related entities. However, the use of such biomedical KBs in combination with patients’ 
temporal clinical data still largely remains unexplored, but has the potential 
to immensely benefit medical diagnostic decision support systems.

Results:  We propose two new algorithms, LOADDx and SCADDx, to combine 
a patient’s gene expression data with gene-disease association and other related 
information available in the form of a KB, to assist personalized disease diagnosis. We 
have tested both of the algorithms on two KBs and on four real-world gene expression 
datasets of respiratory viral infection caused by Influenza-like viruses of 19 subtypes. 
We also compare the performance of proposed algorithms with that of five existing 
state-of-the-art machine learning algorithms (k-NN, Random Forest, XGBoost, Linear 
SVM, and SVM with RBF Kernel) using two validation approaches: LOOCV and a single 
internal validation set. Both SCADDx and LOADDx outperform the existing algorithms 
when evaluated with both validation approaches. SCADDx is able to detect infec‑
tions with up to 100% accuracy in the cases of Datasets 2 and 3. Overall, SCADDx 
and LOADDx are able to detect an infection within 72 h of infection with 91.38% 
and 92.66% average accuracy respectively considering all four datasets, whereas 
XGBoost, which performed best among the existing machine learning algorithms, can 
detect the infection with only 86.43% accuracy on an average.

Conclusions:  We demonstrate how our novel idea of using the most and least differ‑
entially expressed genes in combination with a KB can enable identification of the dis‑
eases that a patient is most likely to have at a particular time, from a KB with thou‑
sands of diseases. Moreover, the proposed algorithms can provide a short ranked 
list of the most likely diseases for each patient along with their most affected genes, 
and other entities linked with them in the KB, which can support health care profes‑
sionals in their decision-making.
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Background
Due to advances in the field of genomics in the past two decades, the focus of medical 
science has been shifting from disease-centric to person-centric diagnostic and thera-
peutic methods [1, 2]. The development of microarray techniques and new advances in 
RNA sequencing have improved our ability to explore the underlying molecular mecha-
nisms associated with complex diseases [3]. Gene expression profiles are being used to 
identify disease-specific genome-wide changes in genes, which can help in the identifi-
cation of differentially expressed genes (DEGs): these are genes whose expression levels 
significantly differ between the healthy state and the diseased state [4, 5]. The motiva-
tion behind the identification of DEGs is to understand the molecular processes involved 
in the progression of a disease. These DEGs can be used as important biomarkers for 
patient classification [3, 6], disease diagnosis [7], and drug target identification [8].

A knowledge base is an extensive collection of structured or unstructured data that 
represent facts about the world [9, 10]. It is a dataset with some formal semantics that 
may contain different kinds of knowledge, for example, facts, rules, axioms, statements, 
definitions, and primitives [11, 12]. Although some researchers have used the terms 
‘knowledge base’ and ‘knowledge graph’ interchangeably, e.g. [13–16], the use of ‘graph’ 
generally implies that it has some specific features. The fundamental factor that sets 
knowledge graphs apart from knowledge bases lies in their emphasis on the intercon-
nectedness of entities, reasoning capabilities, and graph structure [12, 14, 17]. While all 
knowledge graphs can be considered knowledge bases, not all knowledge bases meet the 
criteria to be labeled as knowledge graphs.

To offer personalized diagnostic recommendations using gene expression profiles, it 
is important to obtain knowledge relevant to individual patient data. Huser et al. use the 
term ‘knowledge bases’ to describe resources that include information about the inter-
pretation and implications of specific genomic findings [18]. They further mention that 
knowledge bases typically contain aggregated knowledge and no patient-level data [18].

In our case, the patient’s data that we analyse is their gene expression profile, while the 
knowledge base can encompass additional information related to genes, diseases, and 
associations between them. This knowledge can be accessed through knowledge bases 
such as CTD [19], GisGeNet [20], Gene Ontology [21] and Disease Ontology [22, 23].

Researchers are exploring new ways to use the knowledge represented by biomedical 
KBs to solve complex problems in the biomedical domain [24–27]. Bonner et  al. [28] 
provide an overview of existing biomedical KBs. Biomedical KBs such as DisGeNet [20], 
Hetionet [29], BioKG [30], Bio2RDF [31, 32] and UniProt [33] provide prior biomedical 
knowledge which can be combined with patients’ clinical data for better model building 
in the health care domain.

Using DEGs, it is possible to measure changes in individual patients at the molecular 
level and identify the relevant biological processes triggered by those DEGs. Thus, DEGs 
can play an important role in disease diagnosis. However, a DEG can be involved in mul-
tiple biological processes [34, 35], and so be related to multiple different diseases in a 
KB. This makes it more challenging to perform personalised disease diagnosis based on 
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DEGs, when there are thousands of diseases in the KB and the objective is to identify the 
most probable disease for a patient.

The existing biomedical KBs that we explored for experiments in this paper are not 
available with any quantitative association strength information. This leads to an implicit 
assumption that all associations are of equal significance or strength. For example, in 
biomedical KBs such as DisGeNet,1 if there is an association between a gene and a dis-
ease, the KB does not represent the quantitative strength of the association between the 
gene and the disease. As a result, all genes are simply represented as being linked to all 
associated diseases, but in reality, only a small group of genes are strongly associated to 
a particular disease, while many other genes are weakly associated to it. This can limit 
the usefulness of such KBs for identifying which diseases are most likely, given observed 
gene expression data.

Moreover, KBs are known to be generally quite incomplete. For example, more than 
60% of the people in DBpedia and Freebase are missing their birthplaces [13, 36, 37]. 
Similarly, biomedical KBs also suffer from the problem of missing links. No existing KB 
has information of all possible diseases and related entities. For example, there are more 
than 10,000 rare diseases [38] and most of the biomedical KBs have between 2000 and 
9000 diseases [39]. Missing links can be added based on the literature, as we will describe 
in “CTD knowledge base” section. Missing links can also be identified using KB embed-
ding approaches [37, 40, 41], however, curated KB links are considered more reliable. KB 
embedding approaches such as TransE were found to perform poorly in biomedical link 
prediction (13.88% Hits@10) [42]. Challahan et al. [43] also noted that KB embedding 
and NLP based biomedical KBs are generally very noisy and should be used with cau-
tion. Therefore, we have curated some missing links for the KB that we use in this work; 
see “CTD knowledge base” section. We have also performed experiments with the pub-
licly available DisGeNet KB, without adding or changing any of its links.

The long-established Cyc KB [44] also illustrates the challenges of KB incompleteness. 
Cyc KB is still reported to have gaps, despite being estimated to have accumulated over 
900 person-years of work in its development [16]. It may require many more person-
years to refine such existing KBs to incorporate quantitative link strength manually. 
Therefore, in this paper, we propose an alternative approach that can make use of exist-
ing KBs and assist with disease diagnosis tasks, when we do not know the quantitative 
link strength values between genes and diseases in the KB.

Our overall goal is to predict the disease that a patient is most likely to have at a par-
ticular time, by evaluating changes in their gene expression levels, with the help of a KB 
that represents thousands of diseases and their links to associated genes and other enti-
ties. Bharadhwaj et al. [45] worked on combining gene expression data with biomedical 
KBs, however, their approach is not suitable for longitudinal gene expression datasets, 
where subjects’ samples collected at different time-points play an important role. The 
novelty and advantage of our proposed approach are that it is suitable for longitudinal 
gene expression datasets and that it considers the time aspect for personalised disease 
diagnosis.

1  https://​www.​disge​net.​org/.

https://www.disgenet.org/
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Our specific contributions are as follows: 

(1)	 We demonstrate how a patient’s Least Differentially Expressed Genes (LDEGs) 
along with Most Differentially Expressed Genes (MDEGs) can help in disease diag-
nosis in the presence of a KB. To the best of our knowledge, LDEGs have not previ-
ously been used for disease diagnosis in combination with KBs.

(2)	 We show how KBs that do not include quantitative link strength information can 
be used to infer the strength of links in a patient-specific manner, using the patient’s 
gene expression profile.

(3)	 We propose two new algorithms to combine patients’ time-series gene expression 
data with a KB. Both of the algorithms can assist with personalised disease diagno-
sis and can produce a short personalised ranked list of most likely diseases for each 
patient.

The rest of the paper is structured as follows. In “Description of existing ML algo-
rithms” section, we briefly describe the existing machine learning (ML) algorithms. 
“Gene expression datasets” section describes the real-world gene expression datasets 
that we will use in this work. “Knowledge base” section describes the KBs used to per-
form experiments. In “Proposed algorithms” section, we explain our proposed algo-
rithms. “Experimental design” section describes the experimental design. In “Results” 
section, we discuss and compare results in detail. Finally, we conclude in “Conclu-
sions and future work” section.

Description of existing ML algorithms
In “Results”  section, we will compare the performance of the proposed algorithms 
with existing ML algorithms. These ML algorithms are described here.

k-Nearest Neighbour (k-NN) is an instance-based learning algorithm [46]. k-NN 
stores the training cases, and when presented with a new query case, it finds the set of 
k instances that have the lowest distance, according to some metric; these are termed 
the nearest neighbours. Then, the query case is assigned a class label based on the 
majority class of the k nearest neighbours [47]. We have used the Euclidean distance 
metric for our experiments. The optimum value of k is searched over the range of 
k = 1 to n with a step size of 2 (odd values such as 1, 3, . . . , n ), where n represents the 
number of samples in the training set. We chose odd values for k to avoid ties.

Random Forests is an ensemble machine learning method. It is considered an efficient 
algorithm for the classification of gene expression data [48]. The Random Forest algo-
rithm constructs an ensemble of many classification trees [49, 50]. Each classification 
tree is created by selecting a bootstrap sample from the whole training dataset and a 
random subset of attributes with size denoted na is selected at each split. The optimum 
value of na is searched over the range of 10 to x with a step size of 10, where x represents 
the square root of the total number of attributes (in this case, the total number of genes). 
The number of trees in the ensemble is denoted as nt . We have used nt = 100.

Support Vector Machine (SVM) works on the principle of finding the maximum 
margin separating hpyerplane. Assume that we have a training set of instance-label 
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pairs (xi, yi); ∀i ∈ {1, 2, . . . , l} where xi ∈ R
n and y ∈ {1,−1}l , then the SVM [51–53] 

can be formulated and solved by the following optimization problem:

Here w is normal to the hyperplane, φ is a function that maps the data into a higher 
dimensional space, the parameter C > 0 is the penalty parameter of the error term [53] 
and ξi∀i ∈ {1, 2, . . . , l} are positive slack variables [51].

Furthermore, K (xi, xj) = φ(xi)
Tφ(xj) is called the kernel function [53]. The technique 

known as the kernel trick [54] can be used to translate the linear SVM algorithm into a 
kernelized version. After projecting data into a higher dimensional space, the SVM finds 
a maximal margin linear classifier, f (x) = sign(wTφ(x)) which can be solved using Eq. 
(1). There are four basic kernels that are frequently used: linear, polynomial, sigmoid, 
and RBF. We produced results using both Linear SVM and using SVM with RBF kernel.

For Linear SVM (linear kernel: K (xi, xj) = xi
Txj ), we did a search for best value of 

parameter C for a range of values from 2−5 to 215 in multiples of 4.
We also used SVM with RBF kernel which is a non-linear kernel. We picked the RBF 

kernel, as recommended by Hsu et al. [53]. It has the following form:

We performed a grid-search over the values of C and σ . The different pairs of (C , σ) val-
ues are tried in the range of (C = 2−5, 2−3, . . . , 215; σ = 2−15, 2−13, . . . , 23).

XGBoost (eXtreme Gradient Boosting) [55] is an ensemble learning algorithm that has 
been found to be an effective method for a wide range of machine learning tasks, includ-
ing classification, regression, and ranking. XGBoost builds a set of decision trees itera-
tively, using a gradient boosting approach to minimize a user-specified loss function.

The key idea behind XGBoost is to iteratively add decision trees to the ensemble, with 
each new tree trained to correct the residual errors of the previous trees. In other words, 
XGBoost fits the model by adding new trees to the ensemble that improve the overall 
prediction accuracy, while penalizing trees that are too complex or overfit the data. We 
used the R implementation of the XGBoost library with its default gradient boosting tree 
model, called GBTree.2 The optimal values for XGBoost parameters were determined 
across the following ranges: eta (learning rate) from 0.1 to 1 with a step size of 0.1, 
max_depth (maximum depth of a tree) from 2 to 6, and nround (number of rounds in the 
gradient boosting process) from 10 to 100 with a step size of 10.

(1)

min
w,b,ξi

1

2
wTw + C

l

i=1

ξi,

subject to yi wTφ(xi)+ b ≥ 1− ξi,

ξi ≥ 0.

K
(

xi, xj
)

= exp

(

−�xi−xj�
2

2σ 2

)

; 1
2σ 2 > 0.

2  https://​xgboo​st.​readt​hedocs.​io/​en/​stable/​param​eter.​html.

https://xgboost.readthedocs.io/en/stable/parameter.html
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Gene expression datasets
We have conducted experiments using four real-world gene expression datasets related 
to Respiratory Viral Infection (RVI). Dataset 1 is collected from 7 RVI Challenge studies, 
and is openly available on Gene Expression Omnibus (GEO).3 This dataset consists of 
151 human volunteers who were healthy when they enrolled for the study. After enrol-
ment, all subjects were inoculated with one of four viruses (H1N1, H3N2, HRV, RSV). 
Their blood samples were taken at pre-defined time-points, including before inocula-
tion, thus delivering gene expression profiles from non-infected individuals as well as 
from infected ones [56]. Out of 151 subjects, 47 subjects samples failed quality control 
checks, so we exclude them from the study. For more information, see [57, 58].

Dataset 2 contains gene expression profiles of 133 adults whose samples are taken 
in three different seasons: Autumn, Winter and Spring. Baseline samples are taken at 
the time of enrolment of volunteers [59]. For each volunteer, samples are taken at up to 
seven time-points before, during, and after the occurrence of illness (influenza and other 
acute respiratory viral infections). This dataset is also accessible on GEO.4

Dataset 3, also on GEO,5 is collected from an influenza challenge trial in which 21 vol-
unteers participated. Their samples are collected at baseline (healthy) and 4 different 
time-points after intranasal administration of wild-type A/California/2009 H1N1 virus 
[60]. Out of 21 subjects, 15 got infected and reported symptoms of illness. Three more 
subjects had some detectable amount of live virus shedding [60], however, their mapping 
to subject IDs are not available, therefore, we performed experiments with the data of 
the 15 subjects for whom reliable information is available.

Dataset 4 is also collected from an influenza trial which contains the gene expression 
profile of 22 subjects. All subjects were healthy at the time of enrollment and were aged 
18–45 years [61]. All 22 subjects were inoculated with A/Wisconsin/67/2005 H3N2 
influenza virus at a dose of 1 ml in a quarantine facility [61]. Gene expression data from 
peripheral blood was taken immediately before the viral inoculation and at 12, 24, and 
48 h post-inoculation [61]. Dataset 4 is also accessible on GEO.6

Knowledge base
We performed experiments using two KBs: DisGeNet KB [20] and CTD KB [19]. The 
following subsections provide a description of these KBs.

DisGeNet knowledge base

The DisGeNet KB [20] is a publicly available collection of genes, diseases, and vari-
ants associated with human diseases. For sake of simplicity and for the requirement of 
the research work, we extracted a subset of the DisGeNet KB from the provided por-
tal7 using the R package mentioned on the portal website. The extracted DisGeNet KB 
has 7 types of entities and 6 types of relations. The full RDF schema of DisGeNet KB is 

3  https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE73​072.
4  https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE68​310.
5  https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE90​732.
6  https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE61​754.
7  https://​www.​disge​net.​org/.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68310
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90732
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61754
https://www.disgenet.org/
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available on DisGeNet website.8 The 7 types of entities that our experimental DisGeNet 
KB includes are gene, disease, disease type, disease class, disease semantic type, protein 
class, and UniProt ID. A UniProt ID is linked with a gene, representing a specific protein 
encoded by that gene. UniProt IDs provide information about the gene that encodes a 
particular protein, including its gene symbol and chromosomal location, as well as the 
function and interactions of the protein through the UniProt KB [62]. We included Uni-
Prot IDs in our experimental DisGeNet KB so that it becomes easier for researchers to 
further investigate these relationships if they want to do so.

CTD knowledge base

CTD KB is described as a digital ecosystem that establishes connections between toxico-
logical data pertaining to genes, diseases, chemicals, and phenotypes. [19, 63]. CTD KB9 
has been extensively used in projects where the association between biomedical entities 
plays an important role [64, 65]. There are 11,622 genes which are common between the 
CTD KB and the experimental gene expression data set so we use only these. After pre-
processing, the CTD KB has a total of 14,138,823 links between 11,622 genes and 6430 
diseases.

We found that the CTD KB does not have RVI disease links so we added curated RVI 
links to it. To do this, we referred to five journal papers [56, 59, 66–68] to find informa-
tion about which genes are associated with RVI. All relevant genes as identified in the 
journal papers were already present in the CTD KB, so we added 220 links from them 
to the new RVI disease in the KB. See Fig. S1 in Additional file 1 that plots the disease 
in-degree of the KB, which we define as the number of genes linked to each disease. The 
CTD KB we are using for our experiments also has 7 types of entities and 6 types of 
relations, because for those genes and diseases that are common between CTD and Dis-
GeNet, we have added other entity types and relations in the CTD KB from DisGeNet 
KB.

Proposed algorithms
Our approach to personalised disease diagnosis is inspired by the approach of recom-
mender systems, where the goal is to provide a short ranked list of recommended items 
to a person, from a set of thousands of items, based on the person’s past preferences or 
profile. Here, we aim to provide a short ranked list of most likely diseases from the thou-
sands in the KB, based on the person’s gene expression profile.

For that, we have developed two algorithms, LOADDx (Log-Odds based Assistant 
for Disease Diagnosis (Dx)) and SCADDx (SCore-based Assistant for Disease Diagno-
sis (Dx)). Both of the algorithms share the same basic novel idea of up-weighting dis-
ease scores based on P MDEGs, and down-weighting disease scores based on Q LDEGs, 
where the P MDEGs (Most Differentially Expressed Genes) are the top P ranked genes 
whose expression levels show a large difference between the healthy state (control) and 
the diseased state (target). Conversely, the Q LDEGs (Least Differentially Expressed 
Genes) are the bottom Q ranked genes whose expression levels show little or no 

8  https://​www.​disge​net.​org/​rdf.
9  https://​ctdba​se.​org/.

https://www.disgenet.org/rdf
https://ctdbase.org/
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difference between the two states. In effect, genes are sorted in descending order of their 
differential expression, and we select the top P and bottom Q. The idea is that, for a given 
person at a particular time t, if a significant number of MDEGs are associated with a 
particular disease in the KB, this provides evidence supporting that the person may have 
that disease, so the disease is up-weighted based on the identified MDEGs. Conversely, 
if a significant number of LDEGs are associated with a particular disease, this provides 
evidence against the person having that disease, so the disease is down-weighted. Then, 
the disease with the highest weight should be the most likely disease that the person may 
have at that time. Figure 1 illustrates the basic idea.

In order to test our hypothesis that the magnitude of most/least differentially 
expressed genes may be a useful signal in relating gene expression to disease diagnosis, 
we propose two algorithms: LOADDx does not use the magnitudes of MDEGs/LDEGs, 
whereas SCADDx does. Then, by testing whether SCADDx outperforms LOADDx, we 
will gain insight into whether this magnitude information is important.

LOADDx algorithm

The LOADDx algorithm finds the changes in all genes’ expression levels ( �G ) by sub-
tracting a subject’s gene expression data at time = t1 (healthy state) from their gene 
expression data at time = tD , the time at which disease diagnosis has been requested 
(infected state or when infection is suspected). It selects the P MDEGs and Q LDEGs 
from the sorted list of all DEGs. Then, for each disease in the KB, it finds the number of 
common genes CP between those associated with disease Di and the P MDEGs from the 
gene expression data. It calculates the log-odds (LP) of disease Di from the P LDEGs and 
CP genes as follows:

(2)LP = ln(CP + 1/(P + 1− CP))

Fig. 1  The novel idea based on which we designed both the proposed algorithms. MDEGs and LDEGs 
are the abbreviations for Most Differentially Expressed Genes and Least Differentially Expressed Genes 
respectively
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Algorithm 1  LOADDx Algorithm
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Algorithm 2  SCADDx Algorithm 

Similarly, it finds the number of common genes CQ between those associated with dis-
ease Di and the Q LDEGs in the gene expression data. It calculates the log-odds (LQ) of 
disease Di from the Q LDEGs and CQ genes as follows:

Then, it calculates the weight Wi for each disease Di using the following formula:

Finally, it ranks all the diseases in the KB in descending order based on their calculated 
weights/scores and extracts the top m diseases with the set of other entities (E) linked to 
those diseases in the KB.

SCADDx algorithm

The SCADDx algorithm operates on the same basic idea as that of the LOADDx algo-
rithm. The most fundamental difference between them is that, to calculate disease 
score, SCADDx makes use of the magnitudes of the P MDEGs and Q LDEGs, whereas 
LOADDx does not.

SCADDx selects P MDEGs and Q LDEGs from the list of all DEGs. Then, for each 
disease in the KB, it finds the common genes CP and CQ between those associated with 

(3)LQ = ln(CQ + 1/(Q + 1− CQ))

(4)Wi = LP − LQ
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disease Di and the P MDEGs and Q LDEGs respectively in the gene expression data. It 
calculates the weight Wi for each disease Di using the following formula:

where x represents the total number of genes in CP, y represents the total number of 
genes in CQ and �G denotes the change in the magnitude of gene expression. Finally, 
it ranks all the diseases in the KB in descending order based on their calculated weights 
and extracts the top m diseases with the set of other entities (E) linked to those diseases 
in the KB.

To compute the probabilities of top-ranked m diseases from their weight scores, we 
use the softmax function, f (wi) = ewi/

∑m
j=1 e

wj , where, wi = weight of ith disease, m = 
number of diseases, i = 1, . . . ,m , and f (wi) represents the probability [69].

Experimental design
We design our experiments in a way such that it is possible to enable personalized dis-
ease diagnosis at an early stage of infection. We perform experiments by combining a KB 
with the patients’ gene expression data collected at an early time-point. Here, an early 
time-point means within day 3 (72 h) of exposure to a virus. For each subject, we con-
sider gene expression data collected at two time-points. The first time-point is called the 
reference sample and the second time point is called the target sample. The reference 
sample is collected at time t1 = 0 h, before the patient has the disease. Target samples are 
collected at time tD = day 2 or day 3, based on the availability of data, at which time sub-
jects might or might not be exhibiting signs of infection. For all subjects in all datasets, 
reference samples are available at time t1 = 0 h, however, target samples are not available 
at the same time for all subjects. For Dataset 1, we have target samples available between 
time tD = 60 to 72 h. For Dataset 2, we have target samples available at time tD = day 2. 
For Dataset 3 and Dataset 4, we have target samples available at time tD = 72 h and tD = 
48 h respectively.

We test our proposed algorithms on four real-world gene expression datasets of RVI 
disease that are described in “Gene expression datasets” section. The datasets have a 
true class label indicating whether a subject has a respiratory viral infection or not (see 
Table 1). We use the true class label (actual disease) and predicted class label (predicted 
disease) to compute the accuracy of disease predictions. The formula to compute accu-
racy is: Accuracy = (TP + TN )/(TP + TN + FP + FN ) , where TP = True Positive, TN 
= True Negative, FP = False Positive, and FN = False Negative [70]. For each patient, 
the predicted class label is obtained by comparing the actual disease with the top n pre-
dicted diseases, for values of n = 1, 2, 3, 4, 5 or 10. If there is a match found between the 
predicted top n diseases and the actual disease, then this is assigned as the predicted 
class label. For example, if the actual disease is RVI, and the algorithm includes RVI in its 
top n predicted diseases, the predicted class label is set to RVI, otherwise it is set to Not 
RVI. Influenza is a respiratory viral infection that belongs to the class of respiratory tract 
infections or diseases. As a result, our proposed algorithms have the ability to identify 

(5)Wi =

x
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respiratory viral infections or diseases if the KB contains any of these terms: Influenza or 
Respiratory Viral Infection, or Respiratory Tract Disease.

Because of the small size of the datasets, it would not be practical to use k-fold CV, 
even for small values of k such as 5. Therefore, we employed two alternative validation 
approaches to compare the performance of SCADDx and LOADDx with existing ML 
algorithms. The first approach is single internal validation set approach (see Tables 5, 6) 
and the second is Leave-One-Out Cross-Validation (LOOCV) approach (see Table 7). 
For a fair comparison, the existing ML models are also trained on the same time points 
for which the proposed algorithms are trained.

For the single internal validation set approach, all the datasets are divided into train-
ing, validation, and test sets with a ratio 50:25:25. We used random stratified sampling 
while splitting the datasets. The model parameters are selected based on the perfor-
mance of the validation set. The power of the t-test increases as we increase the number 
of test sets, therefore, we divided the test set of Dataset 1 and Dataset 2 further into two 
parts (Testset 1a, 1b, 2a, and 2b). Thus, we have 6 test sets in total as shown in the tables 

Table 1  Sample of results for the first 5 subjects of Testset 1a using SCADDx on CTD KB. Showing 
top 5 diseases for each subject with most affected 5 genes of the subject

Parameter values: P = 100, Q = 175, m = 5, time tD ≃ 60 hours

Subject
ID

Top 5 genes
(abs(�G))

Disease name Disease
score

Disease 
probability
(Softmax) (%)

Predicted 
class
label

True 
class
label

1 PDIA3 (0.22)
RALGDS (0.21)
TNKS2 (0.21)
NCKAP1L (0.21)
ANXA6 (0.20)

Dysentery, Bacillary 0.73 21.81 Not RVI Not RVI

Colonic Diseases, Functional 0.64 19.99

Esophageal Motility Disorders 0.64 19.99

Hypochondriasis 0.61 19.35

Encephalitis, Herpes Simplex 0.58 18.86

2 APBB1IP (0.33)
HBB (0.29)
TAGLN2 (0.27)
USP34 (0.216)
FAM106A (0.25)

Subdural Effusion 0.65 23.33 Not RVI RVI

Dysentery, Bacillary 0.65 23.33

Penile Neoplasms 0.43 18.77

Hepatitis, Viral, Animal 0.35 17.36

Antley-Bixler Syndrome Phe‑
notype

0.34 17.21

3 IFI27 (0.44)
IFI44L (0.30)
SPATS2L (0.29)
IFI44 (0.29)
RSAD2 (0.29)

Respiratory Viral Infection 9.65 92.66 RVI RVI

Failure to Thrive 5.82 2.02

Paraparesis, Tropical Spastic 5.69 1.77

Mitochondrial myopathy
with lactic acidosis

5.69 1.77

Retroviridae Infections 5.69 1.77

4 CSTA (0.16)
KLRB1 (0.13)
NDUFA1 (0.12)
ATP5F1 (0.12)
RPL36AP37 (0.12)

Extensively Drug-Resistant 
Tuberculosis

0.39 22.7 Not RVI Not RVI

Phantom Limb 0.23 19.4

Trochlear Nerve Diseases 0.23 19.4

Alexander Disease 0.22 19.3

Epilepsy, Benign Neonatal 0.22 19.3

5 DMXL1 (0.22)
BMI1 (0.20)
MYBL1 (0.19)
ZBTB11 (0.17)
PLEKHF2 (0.17)

Osteosclerosis 0.54 20.85 Not RVI Not RVI

Echolalia 0.53 20.78

Contracture 0.50 20.03

Esophageal Stenosis 0.49 19.81

Appendiceal Neoplasms 0.42 18.52
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in the “Results” section. We cannot divide test sets of Dataset 3 and Dataset 4 further as 
they are small.

LOOCV is considered an efficient way to evaluate performance when the num-
ber of samples is very small [56, 71]. Therefore, we also performed evaluations using 
the LOOCV approach. To conduct LOOCV, the data of each subject is held out one 
at a time as a test case, while the data of other subjects are used for training. LOOCV 
ensures there is no risk of a lucky split since each patient’s data serves as the validation 
set in each iteration, with all other data points acting as the training set. This process is 
repeated for each data point, and the results are then averaged to evaluate the model’s 
performance [71]. In our study, LOOCV was chosen to address the challenges posed by 
a limited number of samples. For LOOCV, both Dataset 1 and Dataset 2 are split into 
two equal parts, creating two independent datasets that we refer to as Datasets 1a, 1b, 
2a and 2b. Each split consists of 50% of the data from its respective dataset. Comparative 
analysis with detailed results is presented in the next section.

Results
In this section, we present the results of LOADDx and SCADDx using different param-
eter settings and comparative analysis using different values of n. We also analyse the 
performance of both algorithms on respiratory viral infections generally, as well their 
performance on specific virus types/subtypes in the datasets that can cause respiratory 
viral infections. Finally, we also compare the performance of the proposed algorithms 
with existing ML algorithms.

Comparison of LOADDx with SCADDx

For each subject, both SCADDx and LOADDx produce a ranked list of the top n pre-
dicted diseases with their weights and probabilities (see Table 1 and Tables S1–S12 in 
Additional file 1). These tables present the results obtained using the single internal vali-
dation set approach, as explained in “Experimental design” section. For hyperparameter 
optimization of SCADDx and LOADDx, we conducted a grid search over P and Q in the 
range of 25 to 300 with a step size of 25. Table 1 shows the top 5 diseases predicted by 
the SCADDx algorithm for first 5 subjects for Testset 1a. Please see Additional file 1 for 
full results on all the datasets using both algorithms. Table 1 also shows, for each sub-
ject, the top 5 most affected genes, and the changes in expression values of these genes. 
The subjects with the largest changes in gene expression have the highest disease scores 
in SCADDx (see Table 1, Subject 3). These can indicate severe cases of infection, so such 
subjects should be handled carefully. From Table  1, it can be seen that our SCADDx 
algorithm can produce a short personalised ranked list of most likely diseases for each 
patient, which can help health care professionals in their decision-making.

To compare the performance of proposed algorithms, we compute the accuracy of 
each algorithm based on whether the correct disease is in the top n predicted diseases. 
Table 2 presents a comparative analysis between LOADDx and SCADDx at different val-
ues of n, keeping the parameter values fixed ( P = 200,Q = 200 ). SCADDx achieves a 
median accuracy of 89.52% (average accuracy = 88.81%), whereas LOADDx achieves a 
median accuracy of 86.19% (average accuracy = 86.42%), when n = 10 in both cases con-
sidering all datasets (see Table 2). SCADDx performs as well as or better than LOADDx 
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on all four datasets for all values of n. In almost cases, accuracy scores are higher for 
higher values of n. This is to be expected, since it is more likely that the correct answer 
would be among the top 3 ranked diseases than the top 2, for example. However, as we 
increase n, there is an increased risk of false positives. We can see this in the SCADDx 
result for Testset 1b, when n is increased from 5 to 10 (see Table 2). Therefore, we sug-
gest that the number of predicted diseases (n) should be kept low (from 1 to 10). In any 
case, a short list of predicted diseases would be more useful for the user.

Table  3 presents a comparative analysis between LOADDx and SCADDx on differ-
ent values of n, when performing a grid search over P and Q in the range of 25 to 300 
with a step size of 25. The reported results were obtained by employing the single inter-
nal validation set approach, as explained in “Experimental design” section. The median 
accuracy of SCADDx is 92.86% (average accuracy = 91.21%), whereas for LOADDx 
the median accuracy is 86.19% (average accuracy = 87.70%) when n = 10 (see Table 3). 
Again, SCADDx performs better than LOADDx. The results of the grid search suggest 
that in most of the cases, both algorithms achieved their best accuracies when Q > P 
(see Table 3). When Q > P , the algorithms down-weight those diseases that are linked to 
LDEGs (Q) in the KB, since having a larger number of LDEGs associated with a disease 
provides stronger evidence against the person having that disease. By down-weighing 
the diseases that a person is less likely to have, better accuracy is achieved.

There are many virus types/subtypes that can cause RVI disease. Therefore, we have 
performed what we term a virus-wise performance analysis, to analyse how well the 

Table 2  Comparison between SCADDx and LOADDx using CTD KB

Parameter values: P = Q = 200 genes for all the four datasets

Datasets Algorithm Parameter
values

Accuracy
n@1 (%)

Accuracy
n@2 (%)

Accuracy
n@3 (%)

Accuracy
n@4 (%)

Accuracy
n@5 (%)

Accuracy
n@10 (%)

Dataset 1
Testset 1a
(GSE73072)

SCADDx P = 200
Q = 200

76.92 76.92 76.92 76.92 76.92 76.92

LOADDx P = 200
Q = 200

69.23 69.23 69.23 69.23 69.23 69.23

Dataset 1
Testset 1b
(GSE73072)

SCADDx P = 200
Q = 200

84.62 84.62 84.62 84.62 84.62 76.92

LOADDx P = 200
Q = 200

76.92 76.92 76.92 76.92 76.92 76.92

Dataset 2
Testset 2a
(GSE68310)

SCADDx P = 200
Q = 200

100 100 100 100 100 100

LOADDx P = 200
Q = 200

75 75 87.5 87.5 87.5 100

Dataset 2
Testset 2b
(GSE68310)

SCADDx P = 200
Q = 200

86.66 86.66 86.66 86.66 86.66 93.33

LOADDx P = 200
Q = 200

86.66 86.66 86.66 86.66 86.66 86.66

Dataset 3
(GSE90732)

SCADDx P = 200
Q = 200

100 100 100 100 100 100

LOADDx P = 200
Q = 200

100 100 100 100 100 100

Dataset 4
(GSE61754)

SCADDx P = 200
Q = 200

85.71 85.71 85.71 85.71 85.71 85.71

LOADDx P = 200
Q = 200

85.71 85.71 85.71 85.71 85.71 85.71
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proposed algorithms work on different viruses. The datasets have an entry named virus 
that provides the information about the type/subtype of virus that caused each subject’s 
infection (see Table 4). For example, Dataset 1 contains 4 specific viruses, as shown in 
Table 4. Please refer to Additional file 1 (see Table S13) for the information of all virus 
types/subtypes covered in all the datasets. We categorized all subjects into 7 general 
virus groups: H1N1, H3N2, HRV, RSV, Influenza A, Other viruses and Infected but no 
virus subtype detected (see Table 4).

Table  4 represents virus-wise performance analysis on all the testsets. These results 
were obtained by using the single internal validation set approach, as explained in 
“Experimental design” section. Table  4 shows that SCADDx is able to achieve 100% 
accuracy in the case of Influenza A virus for all the testsets for all values of n. SCADDx is 
also able to achieve 100% accuracy in case of H3N2 and HRV virus on Testset 1a, H1N1 
and HRV virus on Testset 1b, all virus types on Testset 2a, Influenza A and other viruses 
types on Testset 2b, and H1N1 virus on Dataset 3 for all values of n. This illustrates that 
the strengths of relationships between KB entities play an important role, and shows that 
the novel idea on which SCADDx is based has the potential to achieve up to 100% accu-
racy (see Tables 4, 5). Based on the virus-wise comparative analysis, it can be observed 
that SCADDx again performs better than LOADDx. The main reason why SCADDx 
tends to outperform LOADDx is that it makes use of the magnitudes of MDEGs/LDEGs, 
whereas LOADDx does not. We conclude that this magnitude information is important, 
and that SCADDx is successfully able to exploit this information to infer gene-disease 
link strengths in a patient-specific fashion, and incorporate this information in disease 
probability estimates.

Both of the algorithms are able to perform well in case of H1N1, H3N2 and HRV 
viruses. However, they do not perform so well in case of the RSV virus (see Table 4). We 
examined the datasets more deeply to understand why, and concluded that the KB does 
not have sufficient information about genes associated with RSV virus. It has informa-
tion about only 30 genes that are related to the RSV virus - a case of KB incompleteness. 
This could be addressed in future work by conducting further KB curation work to add 
more links.

Figure  2 provides a visualisation of results for a single subject and a single dataset 
(first subject of Dataset 2). In Fig. 2A, we plot the most and least differentially expressed 
genes (MDEGs & LDEGs) of a subject. From Fig. 2B–D, we plot the subject’s MDEGs 
and LDEGs associated with the disease in the KB, with the disease rank predicted by 
SCADDx. For example, as can be seen in Fig. 2B, there are many genes which are highly 
expressed and linked with RVI disease (the top-ranked disease), whereas the lower-
ranked diseases have relatively fewer highly-expressed genes linked with those diseases 
in the KB. As would be expected, the larger the number of MDEGs associated with a dis-
ease, the higher the chances are of having that disease. The trend from Fig. 2B–D shows 
that as we move from the Rank 1 disease to the Rank 100 disease, the number of associ-
ated MDEGs drops significantly. Also, the larger the number of LDEGs associated with 
a disease, the lower the chances are of having that disease. Figure S2 in Additional file 1 
shows that as we move from the Rank 1 disease to the Rank 6000 disease, the number of 
associated LDEGs increases significantly. These trends provide evidence in support of 
the disease rank predicted by SCADDx.
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Based on these observations, we conclude that there are three main contributing fac-
tors that influence which disease will get a high rank. Firstly, a significantly large num-
ber of MDEGs should be associated with the disease. Secondly, a low number of LDEGs 
should be associated with it. Thirdly, among the associated MDEGs, the change in gene 
expression should be larger in comparison to the MDEGs associated with other diseases. 
If a very large number of LDEGs of a patient is associated with a disease in KB, then that 
disease should never get a higher rank.

Comparison with existing ML algorithms

We also compared LOADDx and SCADDx with a number of existing machine learning 
algorithms (see Tables 5, 6, 7). The machine learning algorithms applied are k-NN, Ran-
dom Forest, XGBoost, Linear SVM, and SVM with RBF kernel.

To compare the performance with existing machine learning algorithms, we applied 
two validation approaches. The first approach is the single internal validation set 
approach (see Tables  5, 6) and the second is the LOOCV approach (see Table  7) as 
explained in “Experimental design” section. The aim of applying existing machine learn-
ing algorithms is to determine a baseline performance that can be obtained on these 
datasets. The performance of LOADDx and SCADDx can then be assessed through 
comparison.

Table  5 shows results obtained using the single internal validation set approach. 
This table represents the results of SCADDx and LOADDx using both CTD and 

Fig. 2  A visualisation of results of SCADDx using CTD KB for a single subject and a single dataset (first subject 
of Dataset 2). A shows change in gene expression value of all the P MDEGs and Q LDEGs of subject 1. B shows 
only those genes (MDEGs and LDEGs) of subject 1 which are associated with the disease in KB which has 
been assigned rank 1 by SCADDx. C, and D show only those genes (MDEGs and LDEGs) of subject 1 which 
are associated with the diseases in KB which have been assigned ranks 50 and 100 respectively by SCADDx
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DisGeNet KBs, with the value of n set to 10. For the optimal parameter selection of 
both SCADDx and LOADDx, we conducted a grid search over P and Q in the range of 
25 to 300 with a step size of 25. Refer to “Description of existing ML algorithms” sec-
tion for the criteria used in selecting hyperparameters for the existing machine learn-
ing algorithms. Single internal validation set results show that SCADDx and LOADDx 
are able to detect the infection with up to 100% accuracy in the case of Dataset 2 and 
Dataset 3 (see Table 5). Overall, SCADDx and LOADDx are able to detect the infec-
tion within 72  h of infection with an average accuracy of 91.21% and 87.70% using 
the CTD KB, and 91.38% and 92.66% using the DisGeNet KB, respectively, consider-
ing all four datasets. In contrast, Random Forest and XGBoost, which performed best 
among the existing machine learning algorithms, can detect the infection with only 
an average accuracy of 86.43%.

We also performed a paired t-test using the test set accuracy of all the four datasets. 
The t-test results on Table  5 show that SCADDx performs significantly better than 
three of the existing ML algorithms: k-NN; Linear SVM; and SVM with RBF Kernel. 
LOADDx performs significantly better than two: k-NN; and SVM with RBF Kernel. 
On average, SCADDx and LOADDx match or outperform the existing algorithms.

Table 6 presents SCADDx and LOADDx results at n = 1 . It is of course more chal-
lenging to correctly detect the single most likely disease ( n = 1 ) than for it to be 
in a list of 10 most likely candidates ( n = 10 ). However, SCADDx can still achieve 
an average accuracy of 88.99% using the CTD KB and 91.38% using the DisGeNet 

Table 3  Comparison between SCADDx and LOADDx using CTD KB considering best parameter 
values (P & Q) for all the four datasets

Datasets Algorithm Parameter
values

Accuracy
n@1 (%)

Accuracy
n@2 (%)

Accuracy
n@3 (%)

Accuracy
n@4 (%)

Accuracy
n@5 (%)

Accuracy
n@10 (%)

Dataset 1
Testset 1a
(GSE73072)

SCADDx P = 100
Q = 175

76.92 76.92 76.92 76.92 76.92 84.62

LOADDx P = 25
Q = 225

69.23 69.23 69.23 69.23 69.23 69.23

Dataset 1
Testset 1b
(GSE73072)

SCADDx P = 100
Q = 175

84.62 76.92 76.92 76.92 76.92 76.92

LOADDx P = 25
Q = 225

84.62 84.62 84.62 84.62 84.62 84.62

Dataset 2
Testset 2a
(GSE68310)

SCADDx P = 150
Q = 300

100 100 100 100 100 100

LOADDx P = 50
Q = 300

75 81.25 87.5 87.5 93.75 100

Dataset 2
Testset 2b
(GSE68310)

SCADDx P = 150
Q = 300

86.66 93.33 93.33 93.33 93.33 100

LOADDx P = 50
Q = 300

80 80 80 80 80 86.66

Dataset 3
(GSE90732)

SCADDx P = 25
Q = 25

100 100 100 100 100 100

LOADDx P = 25
Q = 25

75 100 100 100 100 100

Dataset 4
(GSE61754)

SCADDx P = 25
Q = 25

85.71 85.71 85.71 85.71 85.71 85.71

LOADDx P = 25
Q = 50

85.71 85.71 85.71 85.71 85.71 85.71
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Table 4  Virus-wise comparison between SCADDx and LOADDx using CTD KB

Dataset Algorithm
(Parameters)

Virus Subjects
(S+/S)

Accuracy
n@1 (%)

Accuracy
n@2 (%)

Accuracy
n@3 (%)

Accuracy
n@4 (%)

Accuracy
n@5 (%)

Accuracy
n@10 (%)

Dataset 1
Testset 1a
(GSE73072)

SCADDx
P = 100
Q = 175

H1N1 virus 1/2 50 50 50 50 50 50

H3N2 virus 1/3 100 100 100 100 100 100

HRV virus 4/5 100 100 100 100 100 100

RSV virus 2/3 33.33 33.33 33.33 33.33 33.33 66.66

LOADDx
P = 25
Q = 225

H1N1 virus 1/2 50 50 50 50 50 50

H3N2 virus 1/3 100 100 100 100 100 100

HRV virus 4/5 80 80 80 80 80 80

RSV virus 2/3 33.33 33.33 33.33 33.33 33.33 33.33

Dataset 1
Testset 1b
(GSE73072)

SCADDx
P = 100
Q = 175

H1N1 virus 2/3 100 100 100 100 100 100

H3N2 virus 3/4 75 75 75 75 75 75

HRV virus 2/3 100 100 100 100 100 100

RSV virus 1/3 66.66 33.33 33.33 33.33 33.33 33.33

LOADDx
P = 25
Q = 225

H1N1 virus 2/3 100 100 100 100 100 100

H3N2 virus 3/4 75 75 75 75 75 75

HRV virus 2/3 100 100 100 100 100 100

RSV virus 1/3 66.66 66.66 66.66 66.66 66.66 66.66

Dataset 2
Testset 2a
(GSE68310)

SCADDx
P = 150
Q = 300

Influenza A
virus

7/7 100 100 100 100 100 100

Other 
viruses

3/3 100 100 100 100 100 100

HRV virus 5/5 100 100 100 100 100 100

Infected but 
no virus
subtype 
detected

1/1 100 100 100 100 100 100

LOADDx
P = 50
Q = 300

Influenza A
virus

7/7 85.71 85.71 100 100 100 100

Other 
viruses

3/3 66.66 66.66 66.66 66.66 100 100

HRV virus 5/5 80 100 100 100 100 100

Infected but 
no virus
subtype 
detected

1/1 0 0 0 0 0 100

Dataset 2
Testset 2b
(GSE68310)

SCADDx
P = 150
Q = 300

Influenza A
virus

5/5 100 100 100 100 100 100

Other 
viruses

5/5 100 100 100 100 100 100

HRV virus 1/1 0 0 0 0 0 100

Infected but 
no virus
subtype 
detected

4/4 75 100 100 100 100 100

LOADDx
P = 50
Q = 300

Influenza A
virus

5/5 80 80 80 80 80 100

Other 
viruses

5/5 100 100 100 100 100 100

HRV virus 1/1 0 0 0 0 0 0

Infected but 
no virus
subtype 
detected

4/4 75 75 75 75 75 75
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KB within 72  h of infection. Table  6 presents the t-test results, which indicate that 
SCADDx with both KBs and LOADDx with the DisGeNet KB outperformed k-NN 
significantly. Overall, these findings suggest that SCADDx and LOADDx are reliable 
tools for detecting infection, even in challenging circumstances.

Table 7 presents the mean accuracy of various algorithms obtained through LOOCV. 
The results indicate that SCADDx and LOADDx with the DisGeNet KB consistently 
outperformed the existing machine learning algorithms on all the datasets. To determine 
the overall performance of the algorithms, we computed the average accuracy across all 
the datasets (see Table 7). According to the paired t-test results, SCADDx and LOADDx 
using both KBs achieved significantly higher accuracy than all the existing algorithms, 
with a p value < 0.01 (see Table 7).

Based on the results shown in Tables  5, 6 and 7, it can be concluded that overall 
SCADDx with both the KBs performed very well on all the datasets. This shows that the 
use of magnitudes of MDEGs/LDEGs in combination with KB can help in gaining better 
results. In case of Dataset 3 and Dataset 4, LOADDx also performed similar to SCADDx 
but it did not perform so well on other datasets. This is due to the fact that LOADDx 
doesn’t utilize magnitudes of MDEGs/LDEGs. The reason why the machine learning 
models couldn’t perform so well is that they do not exploit KB for prediction. They only 
use the gene expression data. This suggests that the use of KB can help in better disease 
prediction.

We conducted Gene Set Enrichment Analysis (GSEA) [72] by selecting the most 
important 16 genes (listed in Table 8) across all four gene expression datasets used in this 
study. We identified these genes by taking the intersection of the top MDEGs (P) across 
all four datasets used in disease prediction with SCADDx. To perform GSEA, we used 
the Multi-Ontology Enrichment Tool (MOET),10 a web-based enrichment analysis tool 
that supports multiple ontologies for multiple species, including humans. The results of 
GSEA, presented in Table 8, show that the 16 genes are strongly associated with Human 
Influenza. Moreover, the top 10 terms produced by GSEA that are associated with these 

Table 4  (continued)

Dataset Algorithm
(Parameters)

Virus Subjects
(S+/S)

Accuracy
n@1 (%)

Accuracy
n@2 (%)

Accuracy
n@3 (%)

Accuracy
n@4 (%)

Accuracy
n@5 (%)

Accuracy
n@10 (%)

Dataset 3
(GSE90732)

SCADDx
P = 25
Q = 25

H1N1
virus

4/4 100 100 100 100 100 100

LOADDx
P = 25
Q = 25

H1N1
virus

4/4 75 100 100 100 100 100

Dataset 4
(GSE61754)

SCADDx
P = 25
Q = 25

H3N2
virus

4/7 85.71 85.71 85.71 85.71 85.71 85.71

LOADDx
P = 25
Q = 50

H3N2
virus

4/7 85.71 85.71 85.71 85.71 85.71 85.71

S+ denotes the number of infected subjects and S denotes the number of total subjects in the testset in that virus category

10  https://​rgd.​mcw.​edu/​rgdweb/​enric​hment/​start.​html.

https://rgd.mcw.edu/rgdweb/enrichment/start.html
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16 genes are closely related to RVI. These findings suggest that these 16 genes can serve 
as important biomarkers and play a crucial role in precision medicine.

Conclusions and future work
In this paper, we have proposed two new algorithms, LOADDx and SCADDx, to com-
bine patients’ gene expression data with a KB. LOADDx and SCADDx can produce 
a short personalised ranked list of the most likely diseases with other entities linked 
with them in the KB for each patient at a requested time-point. We have discovered 
how a patient’s Least Differentially Expressed Genes (LDEGs) along with Most Dif-
ferentially Expressed Genes (MDEGs) can help in disease diagnosis in the presence 

Table 7  Comparing the performance of LOADDx and SCADDx with the performance of existing 
machine learning algorithms using the LOOCV approach ( n = 10 for SCADDx and LOADDx)

Results in bold denote that they are statistically significant based on the performed t-test

A single asterisk denotes p value < 0.05 and a double asterisk denotes p value < 0.01

Algorithm Mean accuracy (LOOCV) Average 
accuracy
(datasets) 
(%)

Dataset 1a 
(%)

Dataset 1b 
(%)

Dataset 2a 
(%)

Dataset 2b 
(%)

Dataset 3 
(%)

Dataset 4 
(%)

LOADDx 
(CTD KB)

82.69 75 90.16 91.80 93.33 72.73 ∗ ∗ 84.29

SCADDx 
(CTD KB)

80.77 80.77 96.72 95.08 93.33 72.73 ∗ ∗ 86.57

LOADDx 
(DisGeNet 
KB)

82.69 78.85 96.72 95.08 93.33 72.73 ∗ ∗ 86.57

SCADDx 
(DisGeNet 
KB)

84.62 76.92 96.72 93.44 93.33 72.73 ∗ ∗ 86.29

k-NN 48.08 51.92 81.97 80.32 80 40.90 63.87

Random 
Forest

80.77 67.31 90.16 86.88 86.66 63.64 79.24

Linear SVM 73.08 75 90.16 90.16 73.33 59.09 76.80

SVM with 
RBF Kernel

76.92 65.38 90.16 90.16 73.33 59.09 75.84

XGBoost 
(GBTree)

80.77 69.23 91.80 88.52 86.66 54.54 78.59

Table 8  Results of Gene Set Enrichment Analysis performed over the most important 16 genes that 
are common across all four gene expression datasets used in this study

Gene set for GSEA Disease ontology ID Disease or term p Value Odds ratio

RSAD2, IFI44L,
RPS4Y1, IFI44,
HERC5, ISG15,
OAS3, IFIT3,
OASL, SPATS2L,
CCL8, OAS1,
CCL2, OAS2,
CXCL10, IFITM3

DOID:9001488 Human Influenza 7.72E-32 1747.6881

DOID:8469 Influenza 7.86E−31 1464.2384

DOID:9001499 Orthomyxoviridae Infections 1.06E−30 1431.0526

DOID:9008680 Respiratory Tract Infections 2.75E−22 338.23645

DOID:9002150 RNA Virus Infections 1.46E−17 224.25569

DOID:934 Viral infectious disease 1.41E−16 190.4361

DOID:0050117 Disease by infectious agent 6.66E−15 143.48608

DOID:1579 Respiratory system disease 1.91E−12 93.22419

DOID:0080599 Coronavirus infectious disease 1.35E−11 42.894222

DOID:9001645 Coronaviridae Infections 1.37E−11 42.86042
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of a KB. We identified the potential of LDEGs in such settings and used them for 
disease diagnosis in combination with KB. We showed how KBs that do not include 
link strength information can be used to infer the strength of links in a patient-spe-
cific manner, using the patient’s gene expression profile. We evaluated both SCADDx 
and LOADDx using two KBs and four real-world gene expression datasets of respira-
tory viral infections caused by 19 subtypes of Influenza-like viruses. Additionally, we 
compared the performance of these algorithms with five existing machine learning 
algorithms. Our results showed that both SCADDx and LOADDx consistently out-
performed the existing machine learning algorithms, as demonstrated by both valida-
tion approaches, namely LOOCV and single internal validation set approach.

SCADDx and LOADDx can predict the diseases that a person is most likely to have, at 
an early stage, with high accuracy, by combining their gene expression data with a KB. We 
have also provided the visualisation of results that can show the MDEGs and LDEGs asso-
ciated with the disease in KB for each subject. Moreover, for each patient, the proposed 
algorithms can show the changes in gene expression values of the most affected genes 
together with the computed disease scores and can produce a ranked personalized list of 
the most likely diseases along with other entities linked with them in the KB, which can 
support health care professionals in their decision-making.

In future, we intend to perform experiments on subjects who are suffering from multiple 
diseases. We will also explore how the incorporation of more contextual links in KB can 
improve the accuracy of disease diagnosis.
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