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Abstract 

Background: Controlling the False Discovery Rate (FDR) in Multiple Comparison 
Procedures (MCPs) has widespread applications in many scientific fields. Previous 
studies show that the correlation structure between test statistics increases the vari-
ance and bias of FDR. The objective of this study is to modify the effect of correlation 
in MCPs based on the information theory. We proposed three modified procedures 
(M1, M2, and M3) under strong, moderate, and mild assumptions based on the con-
ditional Fisher Information of the consecutive sorted test statistics for controlling 
the false discovery rate under arbitrary correlation structure. The performance 
of the proposed procedures was compared with the Benjamini–Hochberg (BH) 
and Benjamini–Yekutieli (BY) procedures in simulation study and real high-dimensional 
data of colorectal cancer gene expressions. In the simulation study, we generated 
1000 differential multivariate Gaussian features with different levels of the correlation 
structure and screened the significance features by the FDR controlling procedures, 
with strong control on the Family Wise Error Rates.

Results: When there was no correlation between 1000 simulated features, the per-
formance of the BH procedure was similar to the three proposed procedures. In low 
to medium correlation structures the BY procedure is too conservative. The BH proce-
dure is too liberal, and the mean number of screened features was constant at the dif-
ferent levels of the correlation between features. The mean number of screened 
features by proposed procedures was between BY and BH procedures and reduced 
when the correlations increased. Where the features are highly correlated the number 
of screened features by proposed procedures reached the Bonferroni (BF) proce-
dure, as expected. In real data analysis the BY, BH, M1, M2, and M3 procedures were 
done to screen gene expressions of colorectal cancer. To fit a predictive model based 
on the screened features the Efficient Bayesian Logistic Regression (EBLR) model 
was used. The fitted EBLR models based on the screened features by M1 and M2 proce-
dures have minimum entropies and are more efficient than BY and BH procedures.

Conclusion: The modified proposed procedures based on information theory, 
are much more flexible than BH and BY procedures for the amount of correlation 
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between test statistics. The modified procedures avoided screening the non-inform-
ative features and so the number of screened features reduced with the increase 
in the level of correlation.

Keywords: False discovery rate, Multiple comparison procedures, High-dimensional 
data, Arbitrary correlation, Conditional fisher information, Efficient Bayesian logistic 
regression, Entropy

Introduction
Controlling the Family Wise Error Rate (FWER) under the nominal level α, in a large-
scale multiple testing is an important issue in statistical inference. The simplest 
method for controlling FWER is a Bonferroni (BF) correction, which can be defined 
as a modification of the rejection threshold for individual P-values. The BF procedure 
compares all the p-values of K simultaneous hypotheses with α/K. This procedure is very 
conservative and provide a strong control on the FWER and leads to an increase in type 
II error rate. In most studies, researchers accepted the hazard of the false discoveries 
to find any possible significance difference [1]. So, the False Discovery Rate (FDR) 
procedures are proposed and developed. The Benjamini–Hochberg (BH) procedure that 
compares the P-values with a fixed increase in threshold is used in most recent scientific 
research [2].

The BH procedure is one of the most important methodological advances in testing 
multiple hypotheses, which has been widely used for screening large data sets of 
genomic to identify a favorable number of important features. This procedure has an 
essential assumption of independence between test statistics. However, when dealing 
with high-dimensional data such as microarray data, genes are usually associated with 
biological or technical reasons [1, 2].

So, Benjamini-Yekutieli (BY) proposed a simple correction on BH procedure for 
arbitrary correlation structure. As they reported, this corrected procedure is very 
conservative [4]. Considering correlation in estimating FDR suggested in several 
studies [5–17], but to the best of our knowledge, few studies that provide and applicable 
modification of FDR procedures based on the arbitrary correlation structure.

Initial research in the test of multiple hypotheses and controlling the FDR largely ignored 
the structure of dependence among the hypotheses, which is often considered a nuisance 
parameter and is heavily overwhelmed by the assumption of independence [3, 4].

Correlation may lead to more liberal or conservative test methods; therefore, it should 
be considered in deciding which hypotheses should be reported as alternative hypoth-
eses [5]. Also, the correlation may greatly increase (inflate) the variance of false dis-
coveries and estimators of the common discovery rate [6, 7]. Ignoring the dependence 
between hypotheses may lead to loss of efficiency and bias in decision-making. On the 
other hand, errors in non-null distribution can lead to false positive and false negative 
errors [3]. Consequently, correlation can significantly worsen the performance of many 
FDR methods [8], and the FDR can be variable if there is a strong correlation [5, 9].

Controlling the FDR under dependency is a major problem that requires a lot of 
research. The key issue is how to incorporate the dependency structure correctly in the 
inference. Currently, researchers have focused on the development of multiple compar-
ative methods for the affiliated hypotheses. For the first time, Benjamini and Yekutieli 
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mentioned that the effect of the test statistic dependence on FDR at the level of α is 
controlled under the desired dependence between P-values in the BH procedure. This 
method is very conservative in practice. They also introduced the concept of positive 
regression dependence on subsets (PRDS) and proved that the BH procedure controls 
the FDR for P-values with such property [10].

Qiu and Yakovlev showed a strong correlation for FDR only through simulation [7]. 
Storey et al., Wu, and Clarke and Hall showed that in the asymptotic concept, the BH 
procedure is valid in poor dependency models, linear process, and Markov dependency 
[11–13]. Owen and Finner et  al. showed that the expected values and variance of 
false-positive cases might have different features under dependence, but results did 
not provide an FDR, indicating that the BH procedure under severe dependence and 
variation is vulnerable [6, 14].

Efron and Schwartzman and Lin showed that strong correlations reduce the accuracy 
of estimating and testing [2, 5]. Specifically, positive or negative correlations have 
affected the experimental zero distributions of Z-values, which has a significant effect on 
the subsequent analysis.

The studies carried out by Sun and Tony Cai, and Sun and Wei, and Benjamini and 
Heller showed that the combination of functional, spatial, and temporal correlations in 
inference could improve the strength and interpretation of existing methods. However, 
these methods do not apply to general dependency structures [4, 15, 16]. Also, Leek and 
Storey and Friguet et  al. studied multiple testing under the factor models [4, 17, 18]. 
For a general class of dependent models, Leek and Storey, Friguet et al., Fan et al., and 
Fan and Han showed that overall dependence could be very weakened by reducing the 
common factors. Modified P-values can be used to build more powerful FDR methods 
[17–20]. The studies by Hall and Jin, and Li and Zhong showed that multiple testing and 
covariance structures can be used through conversion to make the test statistic, and the 
results indicated the beneficial effects of dependence [21–23].

However, the above methods rely heavily on the accuracy of estimated models and 
the asymptotic assumptions of the test statistics. Under small sample conditions, poor 
estimates of model parameters or violation of independence hypotheses may lead to less 
powerful or invalid FDR methods. Risser developed a theoretical approach of Bayesian 
decision for multiple dependent tests and a nonparametric hierarchical statistical model, 
which controls the FDR and is a strong model for determining the false model. Du et al. 
created a class of multiple testing without distribution for controlling the FDR under 
general dependency by considering a sequence of symmetric ranking statistics [20, 21].

In many cases, especially in high-dimensional data, consecutive test statistics have a 
moderate or strong correlation [24–26]. Although in high-dimensional and fused high-
low order biological information some techniques such as machine learning or graph 
representation learnings are developed to handle the complex structures between 
features, feature selection by MCPs before using these techniques could improve their 
results [27–29].

Benjamini and Tille and Clark and Hall argued that the state of dependency in the 
multiple testing is asymptotic with the same independence [10, 11]. But, general 
dependency structures in multiple testing is still a very challenging and important 
problem. Efron noted that solidarity should be considered in deciding whether zero 
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hypotheses are important because the accuracy of FDR techniques is compromised in 
high-correlation situations [9]. However, even if procedures are valid under specific 
dependency structures, regardless of real dependency information, they will continue to 
suffer from reduced performance.

Due to the widespread use of the BH procedure, considering the effect of correlation 
in practical analysis is important. Previous studies evaluated two type of correlation 
structures; correlation among features and correlated samples. The studies by Storey 
et  al., Hall and Jin, Sun and Cai, and Li and Zhong focused on correlated samples [1, 
10, 19]. In the present study, we consider the correlation between features that leads 
to dependent test statistics, so to modify the BH procedure we accommodate the 
correlation between sorted features based on the absolute values of corresponded test 
statistics. For correct inference, this study modified the FDR procedure according to 
an arbitrary correlation structure and proposed three modified procedures based on 
conditional fisher information of consecutive sorted test statistics for controlling the 
false discovery rate.

In the present study, we proposed three modifications to the FDR procedure which 
can counteract the correlation between sorted features based on the conditional fisher 
information between consecutive sorted test statistics, and applied them for high 
dimensional hypothesis testing. Our proposed methods suggested for simultaneous 
hypothesis testing in two major groups;

1. For simultaneous comparison of P features in two groups; Such as genomic data of 
a specific disease we have thousands of features for two groups (case/control), so we 
must have done P hypothesis testing to find the feature(s) with significant difference 
between groups.

2. For pairwise comparison of a unique feature among k independent groups;Such as 
Post Hoc tests after ANOVA, we must have done k(k-1)/2 hypothesis testing to find 
the group(s) with significant differences.

The correlation structure between test statistics in both categories are exist and 
obviously, it is not ignorable. We applied our modified procedures for first category of 
simultaneous high dimensional hypothesis testing but it could be applied simply for the 
second category.

Results
Results of the simulation study

Table 1 compares the mean and the standard deviation (SD) of the number of screened 
features without adjustment on the p-values, and with adjustment by Bonferroni (BF), 
Benjamini–Hochberg (BH), Benjamini–Yekutieli (BY), and three proposed modified 
procedures under mild (M3), moderate (M2), and strong (M1) assumptions, according 
to the level of the correlation coefficient (ρ = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 0.95, 0.99) 
between consecutive sorted test statistics by their p-values.

When the correlation coefficient between all features is zero the number of features 
with p-value less than 0.05 have the mean and the standard deviation equal to 353.35, 
and 11.80, respectively. Also, the mean number of screened features by BH procedure 
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is approximately equal with all three modified procedures M1, M2, and M3. However 
the mean number of screen features by BY procedure is considerably less than all other 
procedures except BF. The mean number of screen features by BY procedure reaches to 
M1, M2, and M3 procedures when the correlations are 0.95, 0.9, and 0.8, respectively. It 
means that under high levels of correlations the BY procedures are performed approxi-
mately equal to the modified procedure. As shown in Table 1, with an increase in cor-
relation coefficients the mean number of screened features without adjustment on their 
P-values are approximately constant, but the standard deviations increased by ρ. This 
pattern exists for BF, BY, and BH adjustment procedures. But for the M1, M2, and M3 
procedures both means and standard deviations have changed according to the corre-
lation between features. The mean number of the screened features decreased accord-
ing to the increase in the level of correlations in the three proposed methods, but their 
standard deviations increased.

As expected the number of screened features by the M3 procedure is less than the 
number of screened features by the moderate modification M2. The number of screened 
features by M2 is less than the number of screened features by the mild modification 
M3. The standard deviations of the number of the screened features increase with the 
level of correlation in all proposed procedures. As shown in Fig. 1. when ρ = 0 the dis-
tribution of the number of screen features are symmetric, but the kurtosis of BF and 
BY procedures are higher than normal density. The distribution of screen features by 
BH, M1, M2, and M3 procedures are approximately identical and normal. By increas-
ing  ρ  distribution of screen features by all procedures is skewed to right and the skew-
ness increases withρ . The box plots of the number of screened features to compare the 

Table 1 The mean and the standard deviation (SD) of the number of screened features by BF, BH, 
BY, M1, M2, and M3 procedures in the simulation study

ρ Adjustment Procedures

Non BF BH BY M1 M2 M3

0 Mean 353.351 49.357 102.112 228.404 214.429 220.73 227.456

SD 11.801570 5.802294 11.00773 14.75712 14.25881 14.49086 15.70872

0.2 Mean 352.212 48.633 226.385 101.588 222.139 207.094 193.784

SD 19.659031 9.4009941 26.035332 19.48784 25.869149 25.129637 24.196628

0.4 Mean 352.297 48.607 225.246 100.605 209.667 184.369 162.728

SD 33.779963 16.182349 45.693253 33.99483 44.655372 42.601335 40.780916

0.5 Mean 351.997 48.567 225.095 100.674 201.033 171.72 147.963

SD 41.922673 19.446019 56.70119 41.75307 54.320462 51.319834 48.004584

0.6 Mean 352.626 48.713 223.98 100.679 188.669 157.807 133.011

SD 48.744478 23.358516 65.778312 49.88433 62.063107 58.015391 54.002399

0.8 Mean 351.314 48.654 222.664 100.403 153.56 124.238 101.873

SD 64.601368 31.025713 86.84043 64.95349 74.744586 67.477378 60.448514

0.9 Mean 351.197 48.334 221.729 100.706 126.631 101.953 83.708

SD 73.050329 34.773778 97.059054 73.27475 74.665131 66.30559 58.186806

0.95 Mean 350.85 48.39 220.743 100.607 106.651 86.614 72.685

SD 76.59104 36.74164 102.0592 76.72027 68.18917 60.23118 53.29142

0.99 Mean 351.06 48.43 220.587 101.008 82.937 70.063 61.414

SD 80.011926 38.365414 106.24165 79.94535 52.212615 47.445633 43.757392
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median, Interquartile Range (IQR), and outliers are presented in Fig. 2. From these plots, 
we can observe that despite the increase in outliers, with the increase in, the IQR of 
modified procedures is smaller than BH and BY procedures. The range distance between 
the first and the third quartiles with the median for modified procedures is approxi-
mately equal and symmetric in comparison to BY and BH procedures. More descrip-
tive statistics of screen features in simulation study are presented in Additional file 1: S1. 
Also, the results of the othersimulation study when the sample sizes at each group are 
equal to 30, are presented in Additional file 2: S2.

Results of the real study

Based on the p-values of the t-tests, on P = 22,277 gene expressions and at the level of 
the α = 0.05, 8465 gene expressions were significant but, most of these genes are not 
involved in cancer. Since α, type I error rate was not reported in this study, we first 
determined the power (1-β) based on the different values of the effect size and type I 
error rates, using the following formula,

Fig. 1 Density plot of the number of discoveries by MCP procedures at the different level of correlations in 
simulation study
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where φ, is the cumulative Gaussian density function, n = 55, the sample size in the 
healthy tissue group, δ = 0.75 is the midpoint between 0.5 to 1, or between the moderate 
to large effect size, and α = 5 ×  10–12, and 5 ×  10–10. So the calculated powers for 
individual tests are 1-β = 98.9%, and 99.9%, respectively.

Due to the high-dimension data, when performing this hypothesis test, the main 
concern is to keeping the trade between control the amount of type 1 error (i.e., to 
keep the family-wise type I error rate at its nominal level α, such as BF procedure) 
and the power of the study to screening the significance features, by using the FDR 
procedures to screen the more relevant gene expressions to colorectal cancer. We 
compared the performance of BH, BY and three proposed modified procedures; M1, 
M2, and M3 in Table 2.

Firstly, we show the distribution of the 22,277 t-values and bivariate correlations 
between sorted features by their p-values in Fig.  3. As shown in these histograms 
the distribution of t-values and correlations are symmetric around zero. For more 
exploration we draw and show the distribution of the first 200 t-values and bivariate 

1− β = 2× 1− ϕ δ n/2− Z1−α/2 ,

Fig. 2 Box plots of the number of discoveries by MCP procedures at different level of correlations in 
simulation study



Page 8 of 20Rastaghi et al. BMC Bioinformatics  (2024) 25:57

Ta
bl

e 
2 

C
ro

ss
 ta

b 
of

 th
e 
p-

va
lu

es
 a

nd
 P

ea
rs

on
 c

or
re

la
tio

n 
co

effi
ci

en
ts

 b
et

w
ee

n 
so

rt
ed

 fe
at

ur
es

 o
f c

ol
or

ec
ta

l c
an

ce
r s

tu
dy

P-
va

lu
e 

Ca
te

go
ri

es
n %

w
ith

in
co

lu
m

ns

Co
rr

el
at

io
n 

Ca
te

go
ri

es

−
 .0

8,
-0

.6
−

 0
.6

,
−

0.
4

−
 0

.4
,

−
0.

2
−

 0
.2

,
0.

0
0.

0,
 +

 0
.2

 +
 0

.2
,

 +
 0

.4
 +

 0
.4

,
 +

 0
.6

 +
 0

.6
,

 +
 0

.8
 +

 0
.8

,
 +

 1
.0

To
ta

l

0.
00

0,
5 
×

  1
0–1

2
n

17
15

0
1

0
0

8
55

12
10

8

%
12

.6
1.

6
0.

0
0.

0
0.

0
0.

0
0.

6
15

.0
75

.0
0.

5

5 
×

  1
0–1

2 ,
5 
×

  1
0–1

0
n

13
40

13
2

0
7

36
33

0
14

4

%
9.

6
4.

1
0.

4
0.

0
0.

0
0.

2
2.

7
9.

0
0.

0
0.

6

5 
×

  1
0–1

0 ,
5 
×

  1
0–8

n
14

10
3

67
4

6
59

10
3

25
0

38
1

%
10

.4
10

.7
2.

1
0.

1
0.

1
1.

7
7.

7
6.

8
0.

0
1.

7

5 
×

  1
0–8

,
5 
×

  1
0–4

n
33

23
4

50
2

42
6

43
7

55
9

28
0

58
1

25
30

%
24

.4
24

.2
16

.1
6.

5
6.

9
16

.0
20

.9
15

.8
6.

3
11

.4

5 
×

  1
0–4

,
5 
×

  1
0–2

n
21

19
5

75
7

16
50

15
61

81
3

25
4

50
1

53
02

%
15

.6
20

.2
24

.2
25

.3
24

.7
23

.2
19

.0
13

.7
6.

3
23

.8

5 
×

  1
0–2

,
1 
×

  1
0–1

n
2

47
22

2
56

6
55

0
23

4
59

15
1

16
96

%
1.

5
4.

9
7.

1
8.

7
8.

7
6.

7
4.

4
4.

1
6.

3
7.

6

1 
×

  1
0–1

,
1.

00
0

n
35

33
3

15
64

38
61

37
62

18
30

60
0

13
0

1
12

,1
16

%
25

.9
34

.4
50

.0
59

.3
59

.6
52

.3
44

.8
35

.5
6.

3
54

.4

To
ta

l
13

5
96

7
31

25
65

10
63

16
35

02
13

40
36

6
16

22
,2

77



Page 9 of 20Rastaghi et al. BMC Bioinformatics  (2024) 25:57 

correlations between sorted features by their p-values in Fig. 3. As expected the t sta-
tistics for first 200 t-values have bi-module distribution on two tailed of the histo-
gram of t-values for 22,277 features. However, the histogram of correlations is more 
exciting. The correlations between first 200 features are high and also has bi-module 
distribution on the taileds of the histogram of bivariate correlations between 22,277 
consecutive sorted gene expressions. So, independence assumption in the BH proce-
dure is violated and it is necessary to consider the correlation structure in the FDR 
procedures.

Table 3 shows the number of screened features by six adjustment procedures at two 
levels of α. Also the entropy and AUC for the EBLR models were reported in this table. 
As shown in Table  3 the number of screened features by BF and BY procedures are 
equal. Also, the number of screen features by M1 and M2 procedures are equal. The 
numbers of screen feature at α = 5 ×  10–12, by all six procedures are few and the Entro-
pies are approximately equal. So, we prefer to use α = 5 ×  10–10, which gains more power 
and compares the performance of FDR procedures at this level of type I error rate. At 
this level of α, the number of screened features increased considerably for all adjust-
ment procedures. Also, there is a considerable difference in screen features by the dif-
ferent adjustment procedures. By fitting the EBLR model on screened features by six 

Fig. 3 Histogram of t-values and bivariate correlations between sorted features of colorectal gene expression 
data
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adjustment procedure, the entropies and the AUCs were calculated. As seen in this 
table all the AUCs are 1 (perfect fit) except for the BF procedure. The entropies are near 
together, but the entropy of the EBLR model on 94 screen features by the BH proce-
dure is equal to 0.82, and the entropy of the EBLR model on 61 screen features by the 
M1 procedure is equal to 1.19, it means that with losing 94–61 = 33 degree of freedom 
the reduction in entropy is just equal to 1.19–0.82 = 0.37, so the efficiency of M1 pro-
cedure is more than the BH procedure. Also the difference between the entropy of the 
EBLR models fitted on screened features by M2 and M1 procedures is ignorable in com-
pare with loss in degree of freedoms. The box plots in Fig. 4, show that the predicted 
probability of the EBLR model completely separated in cancerous and healthy tissue for 
M1, M2, M3, and BY procedures, but for BF and BH procedures there is no complete 
separation. Although, the box plot of the BY procedure shows perfect fit the entropy of 
the EBLR model fitted on 61 features from the M1 procedure, and 71 features from the 
M2 procedure, and 81 features from the M3 procedure are less than the entropy of the 
EBLR model fitted on the 59 screen features by BY procedure. So, the M1, M2 and M3 
procedures are more efficient than BY procedure. So, finally the M1 procedure with 61 
screened features is the most efficient procedure for feature screening in colorectal can-
cer data according to less entropy with less loss in degree of freedom.

Discussion
The BH procedure for feature screening based on controlling the false discovery rate 
has a substantial assumption of independent test statistics. In large-scale multiple 
testing assumption of independence between test statistics is unrealistic. Many studies 
reported that the dependency structure between test statistics cause over-dispersion 
in the distribution of the FDR [4–8]. In the present study, we observe that the over-
dispersion and right skewness in the distribution of the number of screen features by 
BF, BH, BY and proposed procedures increase with the level of correlations. However, as 
shown in Fig. 1 the skewness in the density of the proposed procedures is less than the 
BH procedure, and also the interquartile range of boxplots in Fig. 2 was thinner than BH 
and BY procedures.

When there was no correlation between 1000 simulated features, the performance 
of the BH procedure was similar to the three proposed procedures, but the BY pro-
cedure is very conservative as reported [4]. In low to medium correlation structures 

Table 3 The entropy, and the Area Under the ROC Curve (AUC) of fitted EBLR models on the 
screened genes by BF, BH, PY, M1, M2, and M3 procedures of colorectal cancer study

α Indices Without 
Adjustment

BF BH BY Modified Procedures

M1 M2 M3

5 ×  10–12 K 108 12 24 12 14 14 17

Entropy 0.439 25.256 16.981 25.256 20.988 20.988 20.203

AUC 1.000 0.968 0.986 0.968 0.976 0.976 0.979

5 ×  10–10 K 252 37 94 59 61 71 81

Entropy 0.094 8.097 0.823 1.716 1.193 1.407 1.120

AUC 1.000 0.996 1.000 1.000 1.000 1.000 1.000
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the BY procedure is too conservative, and the BH procedure is too liberal. The mean 
number of screened features by BH and BY procedures were constant at the differ-
ent level of the correlation between features. The mean number of screen features by 
our proposed procedures were between BY and BH procedures and reduced when 
the level of correlations increased. Where the correlations between features were high 
(ρ > 0.8) the number of screened features by proposed procedures reach to the BF pro-
cedure, as expected. We reduced the acceleration of increasing the number of false 
discoveries by modifying the BH procedure according to the amount of extra infor-
mation of each new feature, resulting in a more precise procedure for screening the 
important features with the presence of a solidarity structure between the features.

Then, we compared the performance of three proposed procedures with BF, BH and 
BY for screening in High-dimensional genomic dataset, with 22,277 gene expressions’ 
comparisons between the healthy and cancerous tissue groups. In this regard, by 
allowing two different levels for nominal type I error rates, α, the significance genes 
were screen by six procedures. The Efficient Bayesian Logistic Regression (EBLR) 
model were used to fit a predictive model based on the screened features. The EBLR 
model based on the screen features by M1 and M2 procedures have minimum entro-
pies and were more efficient than BY and BH procedures. In a study on this data set 

Fig. 4 Box plots of predicted probability for Y = 1 versus observed value of Y, from fitted EBLR model on the 
screen genes by different MCP procedures for colorectal cancer data
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twenty Machin Learning approaches were used to fit the predictive model based on 
the screened features. The maximum AUC was 0.94 obtained by Deep Neural Net-
work (DNN) and Logistic Model Tree (LMT) [27].

Leek and Storey developed an approach to address the strong arbitrary dependence of 
multiple testing collected on the original data surface in a large-scale (high-dimensional 
data) study before calculating the test statistics or P-values. To address the dependency 
problem of multiple testing based on kernel dependency estimation, they presented a 
small set of vectors that define entirely the dependency structure in any high-power 
data set. They showed that hypothesis tests could be randomly independent as long as 
conditioning on a dependence kernel. This generalizes the results of the independent 
error rate control to the general dependency mode. It can also estimate dependence at 
the data level, which is more useful than estimating dependence at the P-value level or 
test statistics [23]. Compared with proposed procedures this method is blind and base 
on the random correlation structures, but our modifications are based on the ordered 
information of whole data set.

Although, some efficient methods for the low to high-correlated feature have been 
proposed and used, our proposed procedures are the first to modify the thresholds of 
the FDR procedure based on the information theory. So, according to the results of 
the simulation study and real data study, the optimization in the number of screened 
features has occurred.

Conclusion
The modified proposed procedures based on information theory, are much more flexible 
than BH and BY procedures for the amount of correlation between test statistics. Our 
modified procedures avoided screening the non-informative features and so the number 
of screened features reduced with the increase in the level of correlation.

The three proposed modified procedures for feature screening are simply applicable 
for arbitrary positive or negative, and low or high correlation structures between 
sorted test statistics. These modifications are based on information theory and lead 
to finding the small set of significant features with sufficient information according to 
correlation between the sorted features and so, the remaining features do not have extra 
information.

Methods
First, we describe the Benjamini–Hochberg (BH) procedure and Benjamini–Yekutieli 
(BY) procedure then introduce our proposed modified procedures.

Benjamini–Hochberg procedure (BH Procedure)

In this procedure, when test statistics under the distribution of the null hypothesis are 
independent, the BH procedure control the FDR at the level of α. The BH procedure is 
shown below:

1. Sorting the observed p-values in ascending order, p(1) ≤ · · · ≤ p(P)

2. Calculation of k = max{1 ≤ i ≤ P : p(i) ≤
li
Pα} where li = i for i = 1, 2, . . . ,P

3. If there is such a K, all the null hypotheses corresponding to p(1) ≤ · · · ≤ p(k) are 
rejected.
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Benjamini–Yekutieli procedure (BY procedure)

The Benjamini–Yekutieli proposed a procedure for controling the false discovery rate under 
arbitrary dependency (test statistics have positive or negative correlations). They modified 
the threshold of BF procedure using a constant function C(P) =

∑P
i=1

1
i  . And find.

But in  situation that the tests statistics are independent or positively correlated they 
suggested C(P) = 1 like as an ordinary BH procedure.

Proposed modified procedures

Consider the simultaneously P hypotheses:

where δi = |µ1i − µ2i| , is the absolute mean difference between two  
groups of the ith feature; µ1i, is the mean of the ith feature at the first (case)group. 
µ2i, is the mean of the ith feature at the second (control)group.

If we assume that all features are independent and following the multivariate Gaussian 
distribution with mean δ = (δ1, δ2, . . . , δP)   and diagonal covariance matrix Σ.

We could scaled each δis by dividing on their variances:

where; σ 2
1i, is the variance of the ith feature at the first (case)group.

σ 2
2i, is the variance of the ith feature at the second (control)group. 

n1&n2, are the sample sizes of the first and second groups, respectively.

So we rewrite the hypotheses (1) as follow:

The t-test statistics for (2) is as follows:

where X1i, is the sample mean of the ith feature at the first (case) group,

X2i, is the mean of the ith feature at the second (control) group, 
S21i, is the sample variance of the ith feature at the first (case) group, 

S22i, is the sample variance of the ith feature at the second (control) group, 

k = max

{

1 ≤ i ≤ P : p(i) ≤
li

P× C(P)
α

}

.

(1)







H0i : δi = 0

H1i : δi �= 0
for i = 1, 2, . . . .,P.

τi =
δi

(
√

σ 2
1i
n1

+
σ 2
2i
n2

) ,

(2)







H0i : τi = 0

H1i : τi �= 0
for i = 1, 2, . . . .,P.

ti =

∣

∣X1i − X2i

∣

∣

Si

√

1
n1

+ 1
n2

with d.f = n1 + n2 − 2.
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Si =

√

(n1−1)S21i+(n2−1)S22i
n1+n2−2 , is pooled variance of the ith feature in both groups, 

n1, n2, are the sample sizes of the first and second groups, respectively, if  n1 and  n2 are 
large enough,(n1 + n2 − 2) ≥ 30 , tis follows Gaussian distribution with mean 
τ = (τ1, τ2, . . . , τP)  and covariance matrix I. So we use  Zi instead of  ti.

According to information theory when 
∣

∣X1i − X2i

∣

∣s are independent multivariate 
Gussian random variables, the fisher information of δi , conditional on δi−1 is as follow;

Also, Zis are independent multivariate standard Gaussian random variables, so 
the fisher information of τi , conditional on τi−1, is I(τi|τi−1)(Zi|Zi−1) = 1, for i = 2, 3, 
…, P. Also the fisher information of P independent Gaussian features is equal to 
I(τ1, τ2, . . . , τP) = P . So,

In BH procedure according to independence assumption, the step-up conditional 
thresholds increase by 1P . But when the features are correlated, if Corr

(

X(i),X(i−1)

)

= ρi 
we have:

So, the fisher information of δi , conditional on δi−1, i �= j, is as follow,

And the fisher information of τi , conditional on τi−1, i �= j, is as follow:

So, under mild condition we propose the conditional thresholds increase by (3).
As 

(

1− ρ2
i

)

≤ 1 the information of τi , conditional on τi−1 decrees when both variables 
are correlated. It is clear, because when two variables are correlated, a part of information 
of the second variable is defined in the first variable. As Corr

(

Z(i),Z(i−1)

)

= ρi we could 
define two independent consecutive sorted standardized Gaussian test statistics as

In genomic high dimensional datasets, features are measured for unique source 
(patient) so we could have a strong assumption that all effects (absolute mean 
differences) are identical with Gaussian distribution, but the correlation between 
features are different. As a Result

I(δi|δi−1)

((

X1(i) − X2(i)

)

|
(

X1(i−1) − X2(i−1)

))

= 1/σ 2
i

I(τi|τi−1)(Z(i)|Z(i−1)) =
1

P
I(τ1,τ2,...,τP)(Z(1),Z(2), . . . ,Z(P))

Corr
(

X1(i) − X2(i),X1(i−1) − X2(i−1)

)

= Corr
(

Z(i),Z(i−1)

)

= ρi.

I(δi|δi−1)

(∣

∣X1i − X2i

∣

∣ |
∣

∣X1(i−1) − X2(i−1)

∣

∣

)

=
(

1− ρ2
i

)

/σ 2
i

(3)
...
I (τi|τi−1)

(

Z(i)|Z(i−1)

)

=
(

1− ρ2
i

)

Z′
(i−1) = Z(i−1) Z′

(i) =
−ρi

√

1− ρ2
i

Z(i−1) +
1

√

1− ρ2
i

Z(i)
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So, the conditional fisher information under strong assumption is

So, under strong assumption we propose the conditional thresholds increase by (4).
Also, we can write:

AS, (1+ |ρi|) ≥ 1 , we proposed a moderate modification between strong and mild 
modification:

As a result, under moderate condition we propose the conditional thresholds increase by 
(5).

The step-down procedure works after sorting absolute values of  Zi, in descending order. 
Supposed that  Z(i) is the ith sorted test statistics and Corr

(

Z(i−1),Z(i)

)

= ρi for i = 2,3,…,P.
In case of ρi  = 0 , the FDR procedure should be modified based on this correlation 

coefficient. The Pearson correlation coefficient  ri, as an estimator of ρi , between sorted 
consecutive features according to their p-values was used to the modifications on the FDR 
procedure.

We propose three (strong, moderate, and mild) modifications on the threshold of the BH 
procedure. So, the thresholds,  li, based on the conditional Fisher information under mild, 
moderate, and strong assumptions were suggested as follow:

1- Mild modification, where 
...
l i =

...
l i−1 +

(

1− |ri|
2
)

2- Moderate modification, where l̈i = l̈i−1 + (1− |ri|)

3- Strong modification, where l̇i = l̇i−1 +
[

(1−|ri|)
(1+|ri|)

]

For i = 1 . . . . . .P , and we define ̇l1 = l̈1 =
...
l 1 = 1.

So, our procedures work as follow,

1. Sorting the observed P-values in ascending order, p(1) ≤ · · · ≤ p(P)

2. Calculating the Corr
(

X(i),X(i−1)

)

= ri , for i = 1, 2, . . . ,P.
3. Calculating the lis , for i = 1, 2, . . . ,P.

4. Calculation of = max{1 ≤ i ≤ P; p(i) ≤
li
Pα}, for i = 1, 2, . . . ,P.

5. If there is such a K, all the first K sorted p-values called significance.

Z′
(i) =





−ρi
�

1− ρ2
i

+
1

�

1− ρ2
i



Z(i) → σ 2
Z(i)

=
1− ρ2

i

(1− |ρi|)
2
=

1+ |ρi|

1− |ρi|

(4)İ(τi|τi−1)

(

Z(i)|Z(i−1)

)

=
1

σ 2
Z(i)

=
1− |ρi|

1+ |ρi|

İ(τi|τi−1)(Z(i)|Z(i−1)) =

...
I (τi|τi−1)(Z(i)|Z(i−1))

(1+ |ρi|)
2

(5)Ï(τi|τi−1)(Z(i)|Z(i−1)) =

...
I (τi|τi−1)

(1+ |ρi|)
= (1− |ρi|)
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If all the sorted features have a complete linear correlation, we will have

it means that all sorted test statistics have same information in the class of the linear 
estimation statistics of τi , and so the thresholds of our proposed procedures do not 
increase for consecutive tests. So, the performance of modified FDR procedures is near 
to the BF procedure.

If the test statistics are independent the pairwise correlation coefficient between all 
features are zero, so we have:

It means that, when all sorted test statistics are independent, the performance of 
three proposed procedures are near to the BH procedure.

We compared the adjusted thresholds and the adjusted p-values procedures of BF, 
BH, BY and three proposed procedures; strong (M1), moderate (M2), and mild (M3) 
by the rank of the sorted p-values in Table 4. Except for the BY procedure, the first 
p-value compared with 1Pα   in all other procedures. The thresholds of BF procedure 
are fixed and there is no increase with the rank of the sorted p-values. Both BH 
and BY thresholds increased constantly by the rank of the sorted p-values, kPα and 

k
P×C(P)α , respectively. The thresholds of M1, M2, and M3, increased by the rank of 
sorted p-values but were proportional to the level of correlation between sorted test 
statistics. The speed of increases in modified procedures is lower than BH procedure. 
So, it is expected that the number of screened features by the modified procedures 
be less than the BH procedure. As C(P) > 1 for P > 1, the first threshold of the 
BY procedure is less than the BF procedure, so, the BY procedure could be more 
conservative than BF procedure due to its first threshold value.

if |ρi| = 1 ⇒ l̇i = l̈i =
...
l i = 1 ∀ i = 1, 2, . . . ,P ⇒ k = max

{

1 ≤ i ≤ P; p(i) ≤
α

P

}

Table 4 Thresholds of BF, BH, BY, M1, M2, and M3 procedures for the sorted p-values

Procedures Rank of p-values

1 2 3 … K

I. Adjusted Thresholds BF 1

P
α 1

P
α 1

P
α … k

P
α

BH 1

P
α 2

P
α 3

P
α … k

P
α

BY 1

P×C(P)
α 2

P×C(P)
α 3

P×C(P)
α … k

P×C(P)
α

M1 1

P
α 1+

(1−|r2|)
(1+|r2|)
P

α
1+(

(1−|r2|)
(1+|r2|)

+
(1−|r3|)
(1+|r3|)

)

P
α

… 1+
∑

k

i=2

(1−|ri |)
(1+|ri |)

P
α

M2 1

P
α 1+(1−|r2|)

P
α

1+(1−|r2|+1−|r3|)
P

α … 1+
∑

k

i=2
(1−|ri |)

P
α

M3 1

P
α 1+(1−ρr2

2
)

P
α

1+
(

1−r
2
2

)

+(1−r
2
3
)

P
α

… 1+
∑

k

i=2
(1−r

2
i
)

P
α

II. Adjusted p-values BF P×  p(1) P×  p(2) P×  p(3) … P×  p(k)

BH P×  p(1)
P

2
×  p(2)

P

3
×  p(3)

… P

k
×  p(k)

BY P × C(P)×  p(1)
P×C(P)

2
×  p(2)

P×C(P)
3

×  p(3)
… P×C(P)

k
×  p(k)

M1 P×  p(1)
P

1+
(1−|r2|)
(1+|r2|)

×

  p(2)

P

1+(
(1−|r2|)
(1+|r2|)

+
(1−|r3|)
(1+|r3|)

)
×

  p(3)

… P

1+
∑

k

i=2

(1−|ri |)
(1+|ri |)

×

  p(k)

M2 P×  p(1)
P

1+(1−|r2|)
×  p(2)

P

1+(1−|r2|+1−|r3|)
×  p(3)

… P

1+
∑

k

i=2
(1−|ri |)

×  p(k)

M3 P×  p(1)
P

1+(1−ρr2
2
)
×  p(2)

P

P1+
(

1−r
2
2

)

+(1−r
2
3
)
×  p(3)

… P

1+
∑

k

i=2
(1−r

2
i
)
×  p(k)
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Illustration example

To demonstrate how we estimate the thresholds and adjusted p-values we make an 
artificial example. Supposed that we did eight individual hypothesis tests to find the 
significance differences for eight features in two groups and sort their p-values as 
follows,

Also we find the Pearson correlation coefficient between two consecutive sorted 
features by their p-values as follow,

The purpose of this example is simultaneous comparison of eight features between two 
groups. So, we must use of an adjustment procedure to control the FDR. We compare 
the performance of six adjustment procedures to find the simultaneous difference at the 
significance level of α = 0.1 With two approaches; first, we calculate the adjusted p-val-
ues and then compared them with α, and secondly, we calculate the adjusted thresh-
olds and compared the sorted p-values with them (Table 5). As shown in Table 5, both 
approaches lead to the same result.

p(1) = 0.0023, p(2) = 0.0098, p(3) = 0.0139, p(4) = 0.0221,

p(5) = 0.0348, p(6) = 0.0421, p(7) = 0.0463, p(8) = 0.052.

r2 = Cor
(

X(2), X(1)

)

= 0.1, r3 = Cor
(

X(3), X(2)

)

= −0.5, r4 = Cor
(

X(4), X(3)

)

= 0.9,

r5 = Cor
(

X(5), X(4)

)

= 0.7, r6 = Cor
(

X(6), X(5)

)

= −0.8, r7 = Cor
(

X(7), X(6)

)

= 0.2, r8 = Cor
(

X(8), X(7)

)

= 0.9.

Table 5 Adjusted thresholds and adjusted p-values by BF, BH, By, M1, M2, and M3 procedures in the 
illustration example

*This adjusted p-value is less than α = 0.1

**p(i) is less than the adjusted threshold

Sorted p-values Adjustment Procedures

BF BH BY M1 M2 M3

Adjusted thresholds 0.0023 0.0125** 0.0125** 0.0046** 0.0125** 0.0125** 0.0125**

0.0098 0.0125** 0.0250** 0.0092 0.0227** 0.0238** 0.0249**

0.0139 0.0125 0.0375** 0.0138 0.0269** 0.0300** 0.0343**

0.0221 0.0125 0.0500** 0.0184 0.0276** 0.0312** 0.0366**

0.0348 0.0125 0.0625** 0.0230 0.0298 0.0350** 0.0430**

0.0421 0.0125 0.0750** 0.0276 0.0311 0.0375 0.0475**

0.0463 0.0125 0.0875** 0.0322 0.0395 0.0475 0.0595**

0.0520 0.0125 0.0999** 0.0368 0.0401 0.0488 0.0619**

Adjusted p-values 0.0023 0.0184* 0.0184* 0.0500* 0.0184* 0.0184* 0.0184*

0.0098 0.0784* 0.0392* 0.1065 0.0431* 0.0413* 0.0394*

0.0139 0.1112 0.0371* 0.1007 0.0517* 0.0463* 0.0406*

0.0221 0.1768 0.0442* 0.1201 0.0802* 0.0707* 0.0603*

0.0348 0.2784 0.0557* 0.1513 0.1169 0.0994* 0.0809*

0.0421 0.3368 0.0561* 0.1526 0.1352 0.1123 0.0886*

0.0463 0.3704 0.0529* 0.1438 0.1173 0.0975 0.0778*

0.0520 0.4160 0.0520* 0.1413 0.1296 0.1067 0.0840*
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Simulation study

We set the dimension of P = 1000 features in two independent equal groups with size 
 n1 =  n2 = 100 and generate the observations for these features sequentially as the 
following scheme with 1000 replications.

1- Simulate δi:  δ = (δ1, δ2, . . . , δP) ∼ MVNorm
(

0, σ2I
)

 with σ2 = 0.0678

2- Simulate  Zi:

with ρ: ρ=0, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 0.95, 0.99.
We set the variance of δ equal to 0.0678, to have strong control on the Family Wise 

Error Rate (FWER). That means we bounded the number of screened features by BF 
adjustment method less than 5% of the total features regardless of which null hypotheses 
are true and which are false.

At each replication we conducted P independent sample t-tests and sort their 
p-values. We sort the p-values and then calculate the adjusted p-values according to the 
BH procedure, our proposed procedures, and BF procedure. Then we set α = 0.05 and 
calculate the number rejected null hypothesis (screened features) without adjustment 
(p-value < α) and with adjustment (adjusted p-value < α) by each procedure. The mean, 
and the standard deviation of the number of discoveries for all (r = 1000) replications 
were calculated separately for each value of ρ.

Real data application: gene expression data from colon cancer patient tissues

In this section, we evaluate the performance of the proposed procedure as an analysis of 
a real data set. From the GSE44861 data set of colorectal cancer, we used 111 samples of 
microarray tests with 22,277 gene expression levels and a binary status feature including 
56 samples of cancer tissue (Y = 1) and 55 samples of healthy tissue (Y = 0). This data 
was generated using the Affymetrix Gene Chip platform and has been preprocessed 
and the gene expression levels are presented as fragments per kilo base million (FPKM. 
The normalization process was done using the “edgeR” package in R. This data set is 
freely available for researchers to investigate gene expression patterns in colon tumors 
and identify potential biomarkers of colorectal cancer. These data were registered in the 
GEO database in 2013 and updated in 2017.

Compared to cancerous and non-cancerous cells, if the difference in expression 
is significant for a specific gene, it can be concluded that the gene was related with 
colorectal cancer. We used a T-test to find genes associated with colon cancer and to 
select the significant gene expressions. The hypothesis of this test is as follows,

where µ1i is the mean of the ith gene in group 1 (cancerous tissue), µ2i is the mean of the 
ith gene expression in group 2 (healthy tissue), and P = 22,277. In this way, the p-values 

Zi|group = 1 : Z = (Z1, Z, . . . ,ZP) ∼ MVNorm(δ, (1− ρ)I + ρJ )

Zi|group = 2 : Z = (Z1, Z, . . . ,ZP) ∼ MVNorm(0, (1− ρ)I + ρJ )

{

H0 : µ1i = µ2i

H1 : µ1i = µ2i. ∀ i = 1. · · · .P
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of the t-tests for all features are determined. Then, we sort the p-values in an ascending 
order. And estimating the bivariate correlation between two consecutive sorted test 
statistics by calculating the bivariate correlation between their sorted features. Then the 
adjusted p-values based on BF, BH, BY, and three proposed procedures M1, M2, and M3 
were calculated and compare with α.

To assessing the efficiency of screen features by different procedures, a multiple 
logistic regression model was used. Due to quasi complete separation, and small sample 
size ordinary maximum likelihood approach did not converge. So, the Efficient Bayesian 
Logistic Regression (EBLR) model that was developed under a highly efficient Ultimate 
Polya Gamma Marcov Chain Monte Carlo (MCMC) algorithms, was used. The “UPG” 
package under R4.3.1 was used to fit EBLR model on screened features.

To compare the results of the EBLR model on screened features by different 
procedures; BF, BY, BH, M1, M2, and M3, we use three approaches:

1. Estimating the Entropy (-log(likelihood)) of models
2. Estimating the Area Under the ROC Curve (AUC) to show the predictive power of 

models
3. Drawing the box plot for the predicted probability of allocating in the cancerous 

tissue group (Y = 1) versus the real status (Y = 1/ 0, cancerous or healthy tissue 
groups) for all models
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