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Abstract 

Background:  Technological advances have enabled the generation of unique 
and complementary types of data or views (e.g. genomics, proteomics, metabolomics) 
and opened up a new era in multiview learning research with the potential to lead 
to new biomedical discoveries.

Results:  We propose iDeepViewLearn (Interpretable Deep Learning Method 
for Multiview Learning) to learn nonlinear relationships in data from multiple views 
while achieving feature selection. iDeepViewLearn combines deep learning flexibility 
with the statistical benefits of data and knowledge-driven feature selection, giving 
interpretable results. Deep neural networks are used to learn view-independent low-
dimensional embedding through an optimization problem that minimizes the differ-
ence between observed and reconstructed data, while imposing a regularization pen-
alty on the reconstructed data. The normalized Laplacian of a graph is used to model 
bilateral relationships between variables in each view, therefore, encouraging selec-
tion of related variables. iDeepViewLearn is tested on simulated and three real-world 
data for classification, clustering, and reconstruction tasks. For the classification tasks, 
iDeepViewLearn had competitive classification results with state-of-the-art methods 
in various settings. For the clustering task, we detected molecular clusters that differed 
in their 10-year survival rates for breast cancer. For the reconstruction task, we were 
able to reconstruct handwritten images using a few pixels while achieving competi-
tive classification accuracy. The results of our real data application and simulations 
with small to moderate sample sizes suggest that iDeepViewLearn may be a useful 
method for small-sample-size problems compared to other deep learning methods 
for multiview learning.

Conclusion:  iDeepViewLearn is an innovative deep learning model capable of captur-
ing nonlinear relationships between data from multiple views while achieving feature 
selection. It is fully open source and is freely available at https://​github.​com/​lasan​drall/​
iDeep​ViewL​earn.
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Background
Multiview learning has garnered considerable interest in biomedical research, 
thanks to advances in data collection and processing. Here, for the same individual, 
different sets of data or views (e.g., genomics, imaging) are collected, and the main 
interest lies in learning low-dimensional representation(s) common to all views or 
specific to each view that together explain the overall dependency structure among 
the different views. Downstream analyses typically use the learned representations 
in supervised or unsupervised algorithms. For example, if a categorical outcome is 
available, then the learned low-dimensional representations could be used for clas-
sification. If no outcome is available, the low-dimensional representations could be 
used in clustering algorithms to cluster the samples.

Existing methods

The literature on multiview learning is not scarce. Linear and nonlinear methods 
have been proposed to associate multiview data. For example, canonical correlation 
analysis (CCA) methods have been proposed to maximize the correlation between 
linear projections of two views [1, 2]. The kernel version of CCA (KCCA) has also 
been proposed to maximize the correlation between nonlinear functions of the views 
while restricting these nonlinear functions to reside in reproducing kernel Hilbert 
spaces [3, 4]. Deep learning methods, which offer more flexibility than kernel meth-
ods, have been proposed to learn flexible nonlinear representations of two or more 
views, via deep neural networks (DNNs). Examples of such methods include Deep 
CCA [5], Deep generalized CCA [for three or more views] [6] and DeepIMV [7].

Despite the success of DNN and kernel methods, their main limitation is that they 
do not yield interpretable findings. In particular, if these methods are applied to 
our motivating data, it will be difficult to determine the genes and CpG sites that 
contribute the most to the dependency structure in the data. This is important 
for interpreting the results of downstream analysis that use these methods and for 
determining key molecules that discriminate between those who died from breast 
cancer and those who did not.

Few interpretable deep-leaning methods for multiview learning have been pro-
posed in the literature. In [8], a data integration and classification method (MOMA) 
was proposed for multiview learning that uses the attention mechanism for inter-
pretability. Specifically, MOMA builds a module (e.g. gene set) for each view and 
uses the attention mechanism to identify modules and features relevant to a certain 
task.

In [9], a deep learning method was proposed to jointly associate data from multiple 
views and discriminate subjects that allows for feature ranking. The authors consid-
ered a homogeneous ensemble approach for feature selection that allowed the rank-
ing of features based on their contributions to the overall dependency among views 
and the separation of classes within a view. It is noteworthy that variable selection in 
MOMA and Deep IDA is data driven, and the algorithm for MOMA is applicable to 
two views, which is very restrictive.



Page 3 of 30Wang et al. BMC Bioinformatics           (2024) 25:69 	

Our approach

In this article, we propose a deep learning framework to associate data from two or 
more views while achieving feature selection. Similar to deep generalized CCA [deep 
GCCA] [6] and unlike deep CCA [5], we learn low-dimensional representations that 
are common to all views. However, unlike deep GCCA, we assume that each view 
can be approximated by a nonlinear function of the shared low-dimensional repre-
sentations. We use deep neural networks to model the nonlinear function and con-
struct an optimization problem that minimizes the difference between the observed 
and the nonlinearly approximated data, while imposing a regularization penalty on 
the reconstructed data. This allows us to reconstruct each view using only the rel-
evant variables in each view. As a result, the proposed method allows the selection 
of variables in the views and enhances our ability to identify features from each view 
that contribute to the association of the views. The results of our motivating data and 
simulations with small sample sizes suggest that the proposed method may be a use-
ful method for small-sample-size problems compared to other deep learning methods 
for associating multiple views. Beyond the data-driven approach to feature selection, 
we also consider a knowledge-based approach to identify relevant features. In the sta-
tistical learning literature, the use of prior information (e.g., biological information 
in the form of variable–variable interactions) in variable selection methods has the 
potential to identify correlated variables with greater ability to produce interpretable 
results and improve prediction or classification estimates [10, 11]. As such, we use the 
normalized Laplacian of a graph to model bilateral relationships between variables in 
each view and to encourage the selection of variables that are connected.

In summary, we have three main contributions. First, we propose a deep learning 
method for learning nonlinear relationships in multiview data that is capable of iden-
tifying relevant features that contribute the most to the association among different 
views. Our approach can accommodate more than two views, in contrast to MOMA, 
which requires significant code modifications by users, for the same purpose. Sec-
ond, we extend this method to incorporate prior biological information to yield more 
interpretable findings, distinguishing it from existing interpretable deep learning 
methods for multiview learning, such as MOMA and Deep IDA. To the best of our 
knowledge, this is one of the first nonlinear-based methods for multiview learning 
to do so. Third, we provide an efficient implementation of the proposed methods in 
Pytorch and interface them in R to increase the reach of our algorithm.

The remainder of the paper is organized as follows. In section "Methods", we intro-
duce the proposed method. In section "Simulation experiments", we conduct simula-
tion studies to assess the performance of our methods compared to several existing 
linear and nonlinear methods. In section  "Real-world experiments", we apply our 
method to the Holm breast cancer study for classification and clustering; we fur-
ther consider two additional applications: brain lower grade glioma (LGG) data, to 
demonstrate the use of our method for three views; and MNIST handwriting data, to 
demonstrate that handwritten digits can be reconstructed with few pixels while main-
taining competitive classification accuracy.
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Methods
Model formulation

Assume that d = 1, . . . ,D different types of data or views are available from n individu-
als and organized in D matrices X(1) ∈ R

n×p(1) , . . . , X(D) ∈ R
n×p(D) . For example, for the 

same set of n individuals in our motivating study, the matrix X(1) consists of gene expres-
sion levels and X(2) consists of CpG sites. Denote an outcome variable by y , if available. 
In our motivating study, y is an indicator variable of whether or not an individual died 
from breast cancer. We wish to model complex nonlinear relationships between these 
views via an informative joint low-dimensional nonlinear embedding of the original 
high-dimensional data.

For the sake of clarity, we outline a linear framework which our nonlinear model emu-
lates. Assume that there is a joint embedding (or common factors) Z ∈ R

n×K  of the D 
views that drives the observed variation across the views so that each view is written as 
a linear function of the joint embedding plus some noise: X(d) = ZB(d)T + E(d). Here, 
K is the number of latent components and B(d) ∈ R

p(d)×K  is the loading matrix for view 
d, each row corresponding to the coefficients K for a specific variable. E(d) is a matrix 
of errors incurred by approximating X(d) with ZB(d)T . Let zi ∈ R

K  be the ith row in Z . 
The common factors zi represent K different driving factors that predict all variables in 
all views for the ith subject, thus inducing correlations between views. When we write 
X(d) ≈ ZB(d)T for d = 1, . . . ,D , we assume that there is an “intrinsic” space RK  so that 
each sample is represented as z ∈ R

K  . For each d = 1, . . . ,D , x(d) is an instance in X(d) , 
and B(d) maps a low-dimensional representation z to this x(d) , i.e., restricting the map-
pings to be linear. Now, we generalize these mappings to be nonlinear, parameterized by 
neural networks.

For d = 1, . . . ,D , let Gd denote the neural network that generalizes B(d)T for the view 
d. As typical neural networks, each of the Gd ’s is composed of multilayer affine mapping 
followed by nonlinear activation, i.e., of the form WL ◦ σ ◦WL−1 . . . σ ◦W2 ◦ σ ◦W1 , 
where σ denotes the nonlinear activation applied element-wise, and Wi ’ s for i = 1, . . . , L 
denote the affine mappings. We prefer to state the affine layers in abstract form, as we 
can have different types of layer. In this paper, we use Gd consisting of fully-connected 
and convolutional layers to reconstruct numerical data and images, respectively.

For simplicity, assume that each layer of the dth view network, except the first layer, has 
cd units. Let the size of the input layer (first layer) be K, where K is the number of latent 
components. The output of the first layer for the dth view is a function of the shared 
low-dimensional representation, Z , and is given by h(d)1 = σ(ZW

(d)
1 + b

(d)
1 ) ∈ R

n×cd 
where W(d)

1 ∈ R
K×cd is a matrix of weights for view d, b(d)1 ∈ R

n×cd is a matrix of 
biases, and σ : R −→ R is a nonlinear mapping. The output of the second layer for 
the dth view is the h

(d)
2 = σ(h

(d)
1 W

(d)
2 + b

(d)
2 ) ∈ R

n×cd , W
(d)
2 ∈ R

K×cd matrix of 
weights, b(d)2 ∈ R

n×cd matrix of biases. The final output layer for the dth view is given 
by Gd(Z) = σ(h

(d)
(Kd−1)W

(d)
Kd

+ b
(d)
Kd

) ∈ R
n×p(d) , h

(d)
(Kd−1) ∈ R

n×cd , W
(d)
Kd

∈ R
cd×p(d) , 

b
(d)
Kd

∈ R
n×p(d) , and the subscript Kd denotes the Kth hidden layer for the view d. Gd(Z) is 

a function of the weights and biases of the network.
Our first goal is to approximate each view with a nonlinear embedding of the joint 

low-dimensional representation in an interpretable manner, i.e., X(d) ≈ Gd(Z) . To 
achieve interpretability, MOMA used the attention mechanism to choose important 
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features. In the statistical learning literature, regularization techniques (e.g., lasso [12], 
elastic net [13], SCAD [14]) are oftentimes used for variable selection to promote inter-
pretability. We also propose a regularization approach for interpretability. Specifically, 
we assume that some variables in X(d) are irrelevant and are not needed in the approxi-
mation of X(d) . Thus, the columns of Gd(Z) corresponding to the unimportant variables 
in X(d) should be made zero or nearly zero in the nonlinear approximation of X(d) . To 
achieve this, we adopt the ℓ2,1 norm from [15] to promote column-wise sparsity for fea-
tures, where ℓ2,1 is denoted as follows: �X�2,1 =

p
j=1

n
i=1 Xij , X ∈ R

n×p , where Xij 

is the ijth element in X . Given these assumptions, we propose to solve the following 
optimization problem: find the parameters of the neural network (weight matrices, 
biases) defining the neural network Gd , and the shared low-dimensional representation 
Z , for d = 1, . . . ,D that

The two terms �X(d) − Gd(Z)�2,1 + �
d�Gd(Z)�2,1 together ensure that we select a subset 

of columns from X(d) to approximate X(d) . �d ’s are regularization parameters that could 
be selected by k-fold cross-validation, where k = 5 throughout this paper.

Although � · �2,1 helps promote column-wise sparsity, we did observe that the columns 
of Gd(Z) were not exactly zero across all samples but were shrunk towards zero for noise 
variables, perhaps as a result of our use of an automatic differentiation function. Thus, 
we proceed as follows to select/rank features. Once we have learned the latent code Z 
and neural networks G1 , G2,..., GD , we use this information to obtain reconstructed data 
for the different views, that is, to obtain Gd(Z) for the view d. We then calculate the 
column-wise l2 norm of Gd(Z) , and choose the top r% columns with the largest column 
norms as important features for the corresponding view. It is imperative that the vari-
ables in each view be on the same scale in order to use this ranking procedure. Thus, we 
standardize each variable to have mean zero and variance one. We save the indices of 
important features as I1 , I2,...,ID , and we denote the new datasets with the selected indi-
ces as X′(1),X′(2), ...,X′(D).

Compared to existing deep learning methods for associating multiple views (e.g., 
deep generalized CCA), our formulation (1) is unique because we learn the shared low-
dimensional representation, Z , while also selecting important variables in each view 
that drive the association among views. Similarly to Deep GCCA, and unlike CCA and 
Deep CCA that only learn linear transformations of each view, we learn Z , which is inde-
pendent of the views and allows one to reconstruct all the view-specific representations 
simultaneously. Figure 1 is a schematic representation to train the neural network and 
select features. After that, downstream analyses can use the learned Z in classification, 
regression, and clustering algorithms, as shown in Fig. 2.

Network‑based feature selection

We consider a knowledge-based approach to identify potentially relevant variables that 
drive the dependency structure among views (see Fig.  1). In particular, we use prior 
knowledge about variable–variable interactions (e.g., protein–protein interactions) in 

(1)min
W(1),...,W(D),b(1),...,b(D),Z

D∑

d=1

(
�X(d) − Gd(Z)�2,1 + �

d�Gd(Z)�2,1

)
.
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the estimation of Gd(Z) . Incorporating prior knowledge about variable–variable interac-
tions can capture complex bilateral relationships between variables. It has the potential 
to identify functionally meaningful variables (or networks of variables) within each view 
for improved prediction performance, as well as aid in interpretation of variables.

There are many databases for obtaining information on variable–variable relation-
ships. One of such database for protein–protein interactions is the Human Protein 

Fig. 1  Feature selection. We train a deep learning model that takes all the views, estimates a shared 
low-dimensional representation Z that drives the variation across the views, and obtains nonlinear 
reconstructions ( G1(Z),...,GD(Z) ) of the original views. We impose sparsity constraints on the reconstructions 
allowing us to identify a subset of variables for each view ( I1 , ...,ID ) that approximate the original data

Fig. 2  Reconstruction and downstream analysis. We train a deep learning model to obtain a common 
low-dimensional representation Z′ that is based on the features selected in Algorithm 1, we obtain nonlinear 
approximations ( R1(Z),...,RD(Z)) , and we perform downstream analyses using estimated Z′
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Reference Database (HPRD) [16]. We capture the variable–variable connectivity within 
each view in our deep learning model using the normalized Laplacian [17] obtained from 
the graph underlying the observed data. Let G(d) = (V (d),E(d),W (d)) , d = 1, 2, . . . ,D be 
a graph network given by a weighted undirected graph. V (d) is the set of vertices cor-
responding to the p(d) variables (or nodes) for the d-th view. Let E(d) = {u ∼ v} if there 
is an edge of variable u to v in the dth view. W (d) is the weight of an edge for the d-
th view that satisfies w(u, v) = w(v,u) ≥ 0 . Denote rv as the degree of vertex v within 
each view; rv =

∑
u w(u, v) . The normalized Laplacian of G(d) for the d-th view is 

L(d) = T−1/2LT−1/2 where L is the Laplacian of a graph defined as

and T is a diagonal matrix with rv as the (u,v)-th entry. Given L(d) , we solve the problem:

The normalized Laplacian L(d) is used as a smoothing operator to smooth the columns 
in Gd(Z) so that the variables connected in the d-th view are encouraged to be selected 
together.

Prediction of shared low‑dimensional representation and downstream analyses

In this section, we would like to predict the low-dimensional representation shared 
from the test data X(d)

test , d = 1, . . . ,D , (i.e., Ztest ) and use this information to predict 
an outcome, y , if available. The schematic graph is shown in Fig. 2. Note that y can be 
continuous, binary, or multiclass. We discuss our approach to predict the shared low-
dimensional representation, Ztest . After getting important features of X(d) using equation 
(1) or (3), we extract these features from the original training dataset and form a new 
training dataset X′(d) . We also form a new testing dataset X

′(d)
test d = 1, . . . ,D that con-

sists of the important features. Let p′(d) denote the cardinality of the columns in view 
d. Since the Z learned in Equation (1) or (3) is estimated using important and unimpor-
tant features, when used in downstream analyses, it can lead to poor results. Therefore, 
we construct a new shared low-dimensional representation, Z′ , which is based only on 
important features, that is, X′(d), d = 1, . . . ,D . Because we have already selected a sub-
set of relevant columns of Xd , we are willing to have non-sparse reconstruction results. 
Therefore, we find Z′ by solving the optimization problem:

where Rd depends on the weights of the network parameters W
′(d) and the 

biases b
′(d) , and � · �F is the Frobenius norm. Specifically, the final output 

Rd = σ(h
(d)
(Kd−1)W

′(d)
Kd

+ b
′(d)
Kd

) ∈ R
n×p

′(d) , the subscript Kd denotes the Kth hidden layer 
for view d, and the first hidden layer is given as h1 = σ(Z′W

′(d)
1 + b

′(d)
1 ).

(2)L(u, v) =





rv − w(u, v) if u = v
−w(u, v) if u and v are adjacent
0 otherwise,

(3)min
W(1),...,W(D),b(1),...,b(D),Z

D∑

d=1

(
�X(d) − Gd(Z)�2,1 + �

d�Gd(Z)L
(d)�2,1

)
.

(4)min
W

′(1),...,W
′(D),b

′(1),...,b
′(D),Z′

D∑

d=1

�X
′(d) − Rd

(
Z′
)
�2F ,
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Suppose that R̃d

(
Z̃′
)
 can approximate X

′(d) well for each view, that is, 

X
′(d) ≈ R̃d

(
Z̃′
)
, d = 1, . . . ,D . Then it is easy to find X′(d) ≈

(
τ R̃d

)(
Z̃′

τ

)
 for any τ ∈ R �=0 

because R̃d and Z̃′ are optimized simultaneously. The lack of control of the scaling of the 
learned representation Z̃′ can lead to robustness problems in downstream analysis, so 
we add additional constraints on Z′ in equation (4). However, since it is likely that the 
shape of Z′ is not the same as the latent code learned in the testing stage due to the dif-
ferent number of samples, we put constraints on each row of Z′ (we assume that the 
number of latent components in the training and testing data is the same) as �z′i�2 ≤ 1 
where z′i means the i-th row vector of Z′ , that is, the latent code of the ith sample. Finally, 
the optimization problem is as follows:

To learn Z′
test from the test data X

′(d)
test , d = 1, . . . ,D , we use the weights of the learned 

neural network, W̃′(1), . . . , W̃
′(D) and biases b̃′(1), . . . , b̃

′(D) and we solve the following 
optimization problem for Z̃test:

Here, z′testi is the ith row vector in Ztest and X
′(d)
test  refers to the testing dataset with col-

umn indices Id , i.e.,, only the columns that are selected as important are used to esti-
mate Z̃′

test . The output layer R̃d = σ(h
(d)
(Kd−1)W̃

′(d)
Kd

+ b̃
′(d)
Kd

) ∈ R
n×p

′(d) , the subscript 
Kd denotes the Kth hidden layer for view d, h(d)(Kd−1) ∈ R

n×cd , W̃
′(d)
Kd

∈ R
cd×p

′(d) , and 
b
′(d)
Kd

∈ R
n×p(d) , and h1 = σ(Z′

testW̃
′(d)
1 + b̃

′(d)
1 ).

Now, when predicting an outcome, the low-dimensional representations Z̃′ and Z̃′
test 

become training and testing data, respectively. For example, to predict a binary or mul-
ticlass outcome, we train a support vector machine (SVM) [18] classifier with the train-
ing data Z̃′ and the outcome data y , and we use the learned SVM model and the testing 
data Z̃′

test to obtain the predicted class membership, ŷtest . We compare ŷtest with ytest and 
we estimate the classification accuracy. For continuous outcome, one can implement a 
nonlinear regression model and then compare the predicted and true outcomes using a 
metric such as the mean squared error (MSE). For unsupervised analyses, such as clus-
tering, an existing clustering algorithm, such as K-means clustering, can be trained on 
Z̃′ . Figure  2 is a schematic representation of the prediction algorithm and the down-
stream analyses proposed.

We provide our optimization approach in the Additional file  1. Our algorithm is 
divided into three stages. The first stage is the Feature Selection stage. In this stage, we 
solve the optimization problem (1) or (3) to obtain features that are highly ranked. The 
second stage is the Reconstruction and Training stage using selected features. Here, 
we solve the optimization problem (4). Our input data are the observed data with the 
selected features (that is, the top r or r% features in each view), X′(1) . . .X

′(D) . At conver-
gence, we obtain the reconstructed data Rd(Z

′) , and the learned shared low-dimensional 
representations Z̃′ based only on the top r or r% variables in each view. Downstream 

(5)min
W

′(1),...,W
′(D),b

′(1),...,b
′(D),Z′

D∑

d=1

�X
′(d) − Rd

(
Z′
)
�2F , s.t.�z

′
i�2 = 1, i = 1, . . . , n

(6)min
Z′
test

D∑

d=1

�X
′(d)
test − R̃d

(
Z′
test

)
�2F , s.t.�z

′
testi

�2 = 1, i = 1, . . . , n.
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analyses such as classification, regression, or clustering could be carried out on these 
shared low-dimensional representations learned. The third stage is the prediction 
stage, if an outcome is available. Here, we solve the optimization problem (6) for the 
learned shared low-dimensional representation ( ̃Z′

test ) corresponding to the test views 
( X

′(1)
test . . .X

′(D)
test  ). This can be used to obtain prediction estimates (e.g. testing classification 

via an SVM model).

Simulation experiments
We conducted simulation studies to assess the performance of iDeepViewLearn for 
varying data dimensions, as the relationship between views becomes more complex and 
when prior information on variable–variable relationships is available or not. Please 
refer to the Additional file 1 for more simulation setup and results.

Set‑up when there is no prior information on variable–variable interactions

We consider two different simulation scenarios to demonstrate both the variable selec-
tion and classification performance of the proposed method. In the first scenario, we 
simulate data with linear relationships among the views and within a view (see Addi-
tional file 1). In the second scenario, we simulate the data to show nonlinear relation-
ships. In each scenario, there are D = 2 views and within each view there are two distinct 
classes. In all scenarios, we generate 20 Monte Carlo training, tuning, and testing sets. 
We train the models on the training set, choose optimal hyper parameters using the tun-
ing set, and obtain classification performance using the testing set. We evaluate the pro-
posed and existing methods using the following criteria: i) test accuracy, and ii) feature 
selection. For feature selection, we evaluate the methods ability to select the true signals 
and ignore noise variables. We use true positive rates (TPR), false positive rates (FPR), 
and F-measure as metrics to evaluate the variable selection performance. In Scenario 1, 
the first 20 variables are important, and in Scenario Two, the top 10% of the variables in 
both views are signals.

Nonlinear simulations

We consider three different settings for this scenario. Each setting has K = 2 classes, but 
they vary in dimension. In each setting, 10% of the variables in each view are signals and 
the first five signal variables in each view are related to the remaining signal variables in a 
nonlinear way (see Fig. 3). We generate data for View 1 as follows: X(1) = X̃1 ·W + 0.2E1 
where (·) is element-wise multiplication, W ∈ R

n×p(1) = [10.1×p(1) , 00.9×p(1) ] is a matrix of 
ones and zeros, 1 is a matrix of ones, 0 is a matrix of zeros, and E1 ∼ N (0, 1) . Each of the 

Fig. 3  Structure of nonlinear relationships between (First left panel) signal variables in View 1; (Second left 
panel) signal variables in View 2; (Middle panel)-(Fifth panel) signal variables between Views 1 and 2. Black 
circle: Class 1; Red triangle: Class 2
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first five signal variables in X̃1 ∈ R
n×p(1) is obtained from θ = θ̃ + 0.5U(0, 1) , where θ̃ is a 

vector of n evenly spaced points between 0 and 3π . The next 45 signal variables (or col-
umns) in X̃1 ∈ R

n×p(1) are simulated from cos(θ) plus random noise from a standard nor-
mal distribution. The remaining 0.9p(1) variables (or columns) in X̃1 are generated from 
the standard normal distribution. We generate data for View 2 as: X(2) = X̃2 ·W + 0.2E2 
where E2 ∼ N (0, 1) . The first five columns (or variables) of X̃2 ∈ R

n×p(2) are simu-
lated from exp(0.15θ) · sin(1.5θ) . The next 0.1p(2) − 5 variables are simulated from 
exp(0.15θ) · cos(1.5θ) . The remaining 0.9p(2) variables (or columns) in X̃2 are generated 
from the standard normal distribution. The class labels y = [1n1/2 2 · 1n2 1n1/2] where 
(n1, n2) = (200, 150) or (6000, 4500). Figure 3 shows the structure of the nonlinear rela-
tionships between signal variables in View 1(First left panel), signal variables in View 
2( Second left panel), and signal varibles between Views 1 and View 2 (Middle to Last 
panel), with black circles denoting data from Class 1 and red triangles data from Class 2.

Competing Methods and Results

We compare the proposed method, iDeepViewLearn, with linear and nonlinear meth-
ods for associating data from multiple views. For linear methods, we consider the sparse 
canonical correlation analysis [Sparse CCA] proposed in [2]. For the nonlinear meth-
ods, we compare with deep canonical correlation analysis (Deep CCA) [5] and MOMA 
[8]. We note that MOMA is a joint integration and classification method and as such 
does not require further training a classification method such as SVM, after train-
ing MOMA. However, per reviewer comment, we add a comparison where we use the 
important features chosen by MOMA to train and test an SVM classifier; we call this 
MOMA + SVM. For Sparse CCA and Deep CCA, we use the estimated canonical vari-
ates in SVM for classification performance since these two methods are unsupervised. 
We also compare the proposed method that integrates the two views with our method 
on stacked data, and SVM and random forest  [19] on stacked data as well, to explore 
the benefits of multiview learning. Of note, by stacking the data, we do not appropri-
ately model the dependency structure among views as one assumes that the views are 
not correlated, contrary to the assumption for data integration. We perform Sparse CCA 
with the SelpCCA​ R package provided by the authors on GitHub. We performed Deep 
CCA and MOMA using PyTorch codes provided by the authors. We pair Deep CCA 
with the teacher-student framework (TS) [20] to rank variables, and compare the TS 
feature selection approach with the proposed method. We follow the variable-ranking 
approach in MOMA to rank variables. We report the classification and variable selec-
tion results in Table  1 for nonlinear simulations (see results of linear settings and the 
network structures in Additional file 1). We implemented the proposed method in the 
training data, selected the top 10% variables for each view, learned a new model with 
these selected variables, and obtained test errors with the test data. The misclassification 
rates for the proposed method were lower or competitive compared to all the competi-
tors. We observed a decreasing misclassification rate with increasing sample sizes for 
all the methods; nevertheless, the proposed method produced lower or competitive test 
errors even when the sample size was smaller than the dimension of the variables. In 
terms of variable selection, the TS framework applied to Deep CCA yielded suboptimal 
results; MOMA and random forest rank the important features based on their influence 
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on the classification performance, and the two methods usually select unimportant 
features when the sample size is small; iDeepViewLearn and Sparse CCA can always 
achieve nearly perfect performance for feature selection in the nonlinear simulations. 
The performance of iDeepViewLearn on the stacked data was similar, although it had 
slightly higher classification errors, when compared to iDeepViewLearn that holistically 
integrates the views; thus we recommended against stacking data and implementing the 
proposed method, but rather using the method that integrates the two views as we have 
proposed. The results of the linear simulations mimic those of the nonlinear simulations.

Set‑up when there is prior information on variable–variable interactions

Here, X(1) = X̃1 ·W + E1 and X(2) = X̃2 ·W + 0.2E2 . X̃i , i = 1, 2 is defined as before. 
However, Ei ∼ N (0,�i ), i = 1, 2 , �i is a diagonal block matrix with two blocks that 
represent signal and noise variables. The first block is a 50× 50 covariance matrix that 

Table 1  Nonlinear settings: randomly select combinations of hyper-parameters to search over

 TPR-1; true positive rate for X(1) . Similar for TPR-2. FPR-1; false positive rate for X(1) . Similar for FPR-2; F-1 is the F measure 
for X(1) . Similar for F-2. The highest F-1/2 is in. (The mean error of two views is reported for MOMA; MOMA + SVM means 
selecting features using MOMA and training an SVM on the selected features) 

Method Error (%) TPR-1 TPR-2 FPR-1 FPR-2 F-1 F-2

Setting 1

(p1 = 500, p2 = 500, n1 = 200, n2 = 150)

iDeepViewLearn 1.89 (0.47) 100.00 100.00 0.00 0.00 100.00 100.00

iDeepViewLearn on stacked data 4.00 (0.47) 100.00 100.00 0.00 0.00 100.00 100.00

Sparse CCA + SVM 6.10 (0.73) 100.00 90.00 0.11 0.01 99.51 94.69

Deep CCA + TS + SVM 35.61 (2.22) 11.10 11.30 9.88 9.86 11.10 11.30

MOMA 44.96 (1.70) 22.00 29.90 8.67 7.89 22.00 29.90

MOMA + SVM 30.47 (6.05) 22.00 29.90 8.67 7.89 22.00 29.90

Random Forest on stacked data 1.94 (0.60) 70.10 98.00 3.32 0.22 70.10 98.00

SVM on stacked data 28.07 (0.65) – – – – – –

Setting 2

(p1 = 500, p2 = 500, n1 = 6000, n2 = 4500)

iDeepViewLearn 1.26 (0.11) 100.00 100.00 0.00 0.00 100.00 100.00

iDeepViewLearn on stacked data 1.38 (0.08) 100.00 100.00 0.00 0.00 100.00 100.00

Sparse CCA + SVM 4.25 (0.15) 100.00 90.00 0.00 0.00 100.00 94.74

Deep CCA + TS + SVM 0.66 (0.13) 30.40 21.60 7.73 8.71 30.40 21.60

MOMA 12.77 (8.63) 76.30 89.90 2.63 1.12 76.30 89.90

MOMA + SVM 0.63 (0.08) 76.30 89.90 2.63 1.12 76.30 89.90

Random Forest on stacked data 0.66 (0.05) 100.00 100.00 0.00 0.00 100.00 100.00

SVM on stacked data 2.31 (0.15) – – – – – –

Setting 3

(p1 = 2, 000, p2 = 2, 000, n1 = 200, n2 = 150)

iDeepViewLearn 2.56 (0.78) 99.98 99.88 0.00 0.00 99.98 99.88

iDeepViewLearn on stacked data 2.86 (0.73) 99.98 99.65 0.01 0.04 99.98 99.65

Sparse CCA + SVM 4.86 (0.88) 100.00 97.50 0.08 0.02 99.63 98.66

Deep CCA + TS + SVM 29.91 (1.27) 10.30 11.20 9.97 9.87 10.30 11.20

MOMA 46.14 (2.44) 16.40 13.68 9.29 9.59 16.40 13.68

MOMA + SVM 35.46 (5.91) 16.40 13.68 9.29 9.59 16.40 13.68

Random Forest on stacked data 5.40 (1.02) 58.67 89.88 4.59 1.13 58.67 89.88

SVM on stacked data 28.57 (0.53) – – – – – –
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captures the relationship among these 50 variables. Let G be the true graph structure 
for these variables. The second block is the identity matrix. We use bdgraph.sim in the 
BDGraph R package [21] to simulate three different types of networks for the first 50 
variables: Scale-free, Lattice, and Cluster, and to obtain the adjacency matrix corre-
sponding to the graph structure G. We then use rgwish from the same R package to gen-
erate a precision matrix distributed according to the G−Wishart distribution, WG(b,D) , 
with parameters b = 3 and D = I with respect to the graph structure G. We obtain the 
covariance matrix from the precision matrix. Figure 4 shows the variable–variable rela-
tionships among these 50 variables for the different network structure. Figure  4 [left 
panel], variable two is connected to more variables, so we consider variable 2 as a hub 
variable. We set W = [1H, 0p(1)−H

] , H to denote the variables directly connected to vari-
able 2, and p(1) −H (similarly p(2) −H ) denote the remaining variables. By defining W 
this way, we assume that only the variables directly connected to the hub variable are 
signals and contribute to the nonlinear relationship between the two views. For the Lat-
tice network (Middle panel), all variables in the network except variable 50 contribute to 
the nonlinear relationships among the views. For the cluster network, only two clusters 
(circled) are signals.

Competing methods and results

We explore the proposed method with and without the use of network information. In 
addition to competitors in the nonlinear simulations, we further compare the proposed 
method with Fused CCA [11]. Fused CCA is a sparse canonical correlation analysis 
method that uses variable–variable information to guide the estimation of the canonical 
variates and the selection of variables that contribute most to the association between 
two views. We implemented Fused CCA using the R code accompanying the manuscript. 
We followed Fused CCA with SVM for classification. We implemented the proposed 
method on the training data with and without the network information, selected the top 
ranked variables (21 variables for Scale-free network, 49 variables for Lattice network, 
and 33 for Cluster network) for each view, learned a new model with these selected vari-
ables, and obtained test errors with the testing data. We also compared the top-ranked 
variables with the true signal variables and the estimated true positive rates (TPR), false 
positive rates (FPR), and F-score. From Table  2, the classification performance of our 
method that does not incorporate prior knowledge is comparable to our method that 

Fig. 4  Network structure for the first 50 variables in X(1) and X(2) . Left: scale-free network; Middle: Lattice; 
Right: Cluster. For the Scale-free network, we consider variable 2 has a hub variable. Variable 2 and the 
variables directly connected to it are considered as signal variables. For the Lattice network, all variables 
except variable 50 are considered as signals. For the Cluster network, the circled clusters are considered as 
signals
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Table 2  Simulation with variable–variable connections: randomly select combinations of hyper-
parameters to search over

Method Error (%) TPR-1 TPR-2 FPR-1 FPR-2 F-1 F-2

Scale-free

Setting 1

(p1 = 500, p2 = 500, n1 = 200, n2 = 150)

iDeepViewLearn 6.84 (1.96) 95.71 96.19 0.19 0.17 95.71 96.19

iDeepViewLearn-Laplacian 7.10 (1.65) 97.86 98.57 0.09 0.06 97.86 98.57

Sparse CCA + SVM 21.80 (10.14) 100.00 100.00 14.12 15.13 42.97 43.26

Fused CCA + SVM 41.33 (7.52) 19.29 23.10 17.90 33.29 6.56 4.08

Deep CCA + TS + SVM 40.43 (1.61) 5.00 3.33 4.16 4.24 5.00 3.33

MOMA 45.55 (1.84) 17.14 25.95 3.63 3.25 17.14 25.95

MOMA + SVM 36.76 (5.41) 17.14 25.95 3.63 3.25 17.14 25.95

Random Forest on stacked data 11.99 (2.22) 52.38 85.23 2.09 0.65 52.38 85.23

SVM on stacked data 35.46 (1.23) – – – – – –

Setting 2

(p1 = 500, p2 = 500, n1 = 6000, n2 = 4500)

iDeepViewLearn 2.77 (0.62) 99.76 100.00 0.01 0.00 99.76 100.00

iDeepViewLearn-Laplacian 2.71 (0.14) 100.00 100.00 0.00 0.00 100.00 100.00

Sparse CCA + SVM 9.25 (2.39) 100.00 100.00 9.35 9.22 56.74 52.59

Fused CCA + SVM 33.24 (4.83) 99.75 100.00 13.69 48.83 48.74 19.90

Deep CCA + TS + SVM 2.44 (0.31) 17.62 17.38 3.61 3.62 17.62 17.38

MOMA 41.88 (4.11) 63.81 72.62 1.59 1.20 63.81 72.62

MOMA + SVM 3.56 (4.37) 63.81 72.62 1.59 1.20 63.81 72.62

Random Forest on stacked data 1.86 (0.10) 100.00 100.00 0.00 0.00 100.00 100.00

SVM on stacked data 27.61 (0.23) – – – – – –

Lattice

Setting 1

(p1 = 500, p2 = 500, n1 = 200, n2 = 150)

iDeepViewLearn 4.90 (1.76) 100.00 98.88 0.00 0.12 100.00 98.88

iDeepViewLearn-Laplacian 3.90 (0.82) 99.80 99.59 0.02 0.04 99.80 99.59

Sparse CCA + SVM 16.03 (0.86) 100.00 100.00 1.29 1.45 94.96 94.77

Fused CCA + SVM 38.26 (11.58) 22.04 24.69 24.59 30.99 11.13 9.30

Deep CCA + TS + SVM 36.53 (2.05) 10.61 10.71 9.71 9.70 10.61 10.71

MOMA 44.76 (2.12) 23.98 26.53 8.26 7.98 23.98 26.53

MOMA + SVM 32.20 (4.27) 23.98 26.53 8.26 7.98 23.98 26.53

Random Forest on stacked data 3.41 (0.71) 66.84 92.86 3.60 0.78 66.84 92.86

SVM on stacked data 28.51 (0.56) – – – – – –

Setting 2

(p1 = 500, p2 = 500, n1 = 6000, n2 = 4500)

iDeepViewLearn 1.64 (0.17) 100.00 100.00 0.00 0.00 100.00 100.00

iDeepViewLearn-Laplacian 1.56 (0.12) 100.00 100.00 0.00 0.00 100.00 100.00

Sparse CCA + SVM 7.14 (2.92) 100.00 100.00 1.14 1.72 95.52 93.52

Fused CCA + SVM 5.26 (2.27) 100.00 100.00 3.44 6.84 88.89 78.95

Deep CCA + TS + SVM 0.98 (0.19) 39.49 32.04 6.57 7.38 39.49 32.04

MOMA 21.22 (13.01) 73.98 79.08 2.83 2.27 73.98 79.08

MOMA + SVM 1.27 (1.53) 73.98 79.08 2.83 2.27 73.98 79.08

Random Forest on stacked data 1.02 (0.07) 100.00 100.00 0.00 0.00 100.00 100.00

SVM on stacked data 8.57 (0.24) – – – – – –

Cluster
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does, in all settings. The fused CCA result for Scale-free Setting 2 was based on 19 out of 
the 20 simulation replicates due to a computational error. The fused CCA result for Lat-
tice Setting 2 was not available due to time constraints. Like the scenario with no prior 
information, the misclassification rates for the proposed method (with or without prior 
information) were lower or competitive, especially for the Scale-free and Lattice net-
works, when compared to the association-based methods. Furthermore, the proposed 
method was superior to MOMA and SVM on stacked views across all settings and net-
work type, for both classification and variable selection accuracy. For random forest, 
it can achieve very comparable prediction and feature selection performance with our 
methods when there are sufficient training data points; however, our iDeepViewLearn’s 
performance outperforms random forest when the sample size is limited when consider-
ing both classification and variable selection performance.

In summary, the classification and variable selection accuracy from both the linear and 
nonlinear simulations, and when we use or do not use prior information, suggest that 
the proposed methods are capable of ranking signal variables as high and ignoring noise 
variables. The proposed methods are also capable of producing competitive or better 
classification performance among all settings. In particular, we notice that random forest 
can achieve comparable classification and variable selection accuracies with our iDeep-
ViewLearn when the number of training samples is relatively large, but the feature selec-
tion performance of random forest is usually suboptimal in situations where the sample 

Table 2  (continued)

Method Error (%) TPR-1 TPR-2 FPR-1 FPR-2 F-1 F-2

Setting 1

(p1 = 500, p2 = 500, n1 = 200, n2 = 150)

iDeepViewLearn 22.50 (1.73) 96.21 100.00 0.27 0.00 96.21 100.00

iDeepViewLearn-Laplacian 22.40 (2.14) 95.15 100.00 0.34 0.00 95.15 100.00

Sparse CCA + SVM 16.70 (1.22) 100.00 100.00 4.24 3.91 77.50 78.54

Fused CCA + SVM 43.27 (1.65) 16.97 16.06 18.96 22.76 5.52 5.56

Deep CCA + TS + SVM 37.96 (1.81) 7.12 6.97 6.56 6.57 7.12 6.97

MOMA 45.28 (2.02) 21.52 23.18 5.55 5.43 21.52 23.18

MOMA + SVM 36.61 (3.77) 21.52 23.18 5.55 5.43 21.52 23.18

Random Forest on stacked data 29.23 (1.19) 27.42 65.76 5.13 2.42 27.42 65.76

SVM on stacked data 31.60 (1.02) – – – – – –

Setting 2

(p1 = 500, p2 = 500, n1 = 6000, n2 = 4500)

iDeepViewLearn 15.78 (0.65) 100.00 99.39 0.00 0.04 100.00 99.39

iDeepViewLearn-Laplacian 15.70 (0.35) 96.21 100.00 0.27 0.00 96.21 100.00

Sparse CCA + SVM 14.59 (0.53) 100.00 100.00 12.07 7.54 57.31 66.46

Fused CCA + SVM 29.17 (9.55) 72.73 92.42 26.12 30.40 31.17 41.73

Deep CCA + TS + SVM 28.48 (1.52) 10.45 8.64 6.33 6.46 10.45 8.64

MOMA 39.22 (4.95) 73.18 91.82 1.90 0.58 73.18 91.82

MOMA + SVM 12.77 (0.72) 73.18 91.82 1.90 0.58 73.18 91.82

Random Forest on stacked data 13.83 (0.21) 100.00 100.00 0.00 0.00 100.00 100.00

SVM on stacked data 29.68 (0.22) – – – – – –

TPR-1; true positive rate for X(1) . Similar for TPR-2. FPR; false positive rate for X(2) . Similar for FPR-2; F-1 is the F measure for 
X
(1) . Similar for F-2. The highest F-1/2 is in red. (The mean error of two views is reported for MOMA; MOMA + SVM means 

combining the feature selection part of MOMA and SVM)
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size is less than the number of variables, as shown in Tables 1 and 2. These findings are 
encouraging to us since in a typical setting of high-dimensional and biomedical prob-
lems, the sample size is smaller than the number of variables.

Real‑world experiments
In this section, we consider three real-world applications to show the effectiveness of 
the proposed method across different tasks and settings. We first applied the proposed 
method to integrate gene expression and methylation data from the Holm breast can-
cer study [22] for classification and clustering tasks with two views. We next applied the 
proposed method to data pertaining to brain lower grade glioma (LGG) to demonstrate 
the use of our method for classification tasks with three views. Finally, we applied our 
method on a MNIST handwriting data, for a reconstruction task, demonstrating that 
handwriting digits can be reconstructed with few pixels while maintaining competitive 
classification accuracy. The details of all the datasets used in this section are shown in 
Table 3.

Evaluation of data from holm breast cancer study

Breast cancer is the most common cancer among women worldwide, accounting for 
12.5% of new cases and is one of the leading causes of death in women [23]. Research 
shows that breast cancer is a multi-step process that involves both genetic and epigenetic 
changes. Epigenetic factors such as DNA methylation and histone modification lead to 
breast tumorigenesis by silencing critical tumor suppressor and growth regulator genes 
[24]. Identifying methylated sites correlated with gene expression data could shed light 
on the genomic architecture of breast cancer. Our work is motivated by a molecular sub-
typing study conducted in [22], which used gene expression and DNA methylation data 
to identify methylation patterns in breast cancer. For completeness, we describe the data 
here. Raw methylation profiles from 189 breast cancer samples were extracted using the 
Beadstudio Methylation Module (Illumina). There were 1452 CpG sites (corresponding 
to 803 cancer-related genes). β-values were stratified into three groups: 0, 0.5, and 1. The 
value of 1 corresponded to hypermethylation. Relative methylation levels were obtained 
from raw values by centering the stratified β values in all samples. Furthermore, relative 

Table 3  Summary of datasets for each analysis

Dataset Categories Number of features Sample Size Task
in each view

Holm Breast Cancer Died: 65 View 1, gene expres-
sion, 469

Training n = 112 Classification and

Study Survived: 103 View 2, methylation, 334 Testing n = 56 Clustering

LGG Dataset Grade 2: 246 View 1, methylation, 
9691

Training n = 410 Classification

Grade 3: 264 View 2, miRNA, 235 Testing n = 100

View 3, mRNAseq, 7603

Shear Transformed Hand-written digits 0 
to 9

View 1, digits, 784 Training n = 60000 Classification and

MNIST Dataset count ranging from 
5400 to 6800

View 2, digits, 784 Testing n = 10000 Reconstruction
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gene expression levels of 179 of 189 breast cancer tumors were obtained using oligonu-
cleotide arrays for 511 probes. The number of samples with data on gene expression and 
methylation for our analysis is n = 179 . The first view, corresponding to gene expression 
data, had 468 variables (genes), and the second view, corresponding to methylation data, 
had 1452 variables (CpG sites). The methylation data were filtered to include the most 
variable methylated sites by removing CpG sites with a standard deviation less than 0.3 
between samples; this resulted in 334 CpG sites (corresponding to 249 cancer-related 
genes). In addition to molecular data, data on whether an individual died from breast 
cancer or not is also available.

The goal of our analysis is to perform an integrative analysis of the methylation and 
gene expression data to model nonlinear associations between CpG sites and genes 
through a joint non-linear embedding that drives the overall dependency structure in 
the data. Importantly, we wish to identify a subset of CpG sites and genes that contribute 
to the dependency structure and could be used to discriminate between those who sur-
vived and those who did not survive breast cancer. Further, we wish to explore the use of 
the joint nonlinear embedding in molecular clustering.

Goal 1: Model nonlinear relationships between methylation and gene expression data 

and identify CpG sites and genes that can discriminate between those who died and those who 

did not die from breast cancer

For the first goal, we split the data into three sets of approximately equal size. We used 
2/3rd of the data to train the model and we used the remaining 1/3rd to test our models. 
We implemented the proposed method on the training set, selected the top 10% and 20% 
highly ranked variables in each view, learned new models with these selected features, 
used the test data and the models learned to predict the test outcomes, and obtained test 
errors. We repeated the process 20 times, obtained the highly ranked variables for each 
run, and estimated the average test errors. We compared the proposed method with 
SVM, random forest, Deep CCA, Sparse CCA, MOMA and MOMA + SVM based on 
average test errors.

Average misclassification rates and genes and CpG sites selected Table 4 gives the aver-
age test errors for the methods. On the basis of the high classification errors across the 
methods, it seems that separating those who died from breast cancer from those who 
did not die using methylation and gene expression data is a difficult problem. We inves-
tigate the use of iDeepViewLearn on the stacked data, and we notice that, similar to the 
nonlinear simulations, there are small gaps present compared to the results when we 
integrate the data. Hence, we still recommend using our method as proposed when there 
are two or more views, and not apply on stacked data. The average test error for the pro-
posed method based on the top 10% or 20% CpG sites and genes is comparable to that of 
the other methods. Our proposed method allows us to obtain insight into the genes and 
CpG sites that drive the classification accuracy.

For this purpose, we explored the “stable” genes and CpG sites that potentially dis-
criminate between people who died and those who did not die from breast cancer. We 
consider a variable to be “stable” if it is ranked in the top 20% at least 16 times ( ≥ 80% ) 
of the 20 resampled datasets. Table 5 shows the genes selected and how often they were 
selected. Genes DAB2, DCN, HLAF, MFAP4, MMP2, PDGFRB, TCF4 and TMEFF1 
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Table 4  Breast cancer data: SVM is based on stacked raw data with two views

Deep CCA + SVM is a training SVM based on the last layer of Deep CCA. iDeepViewLearn with selected top 10% features 
reconstructs the original views with only 10% of the features and obtains a test classification error based on a shared low-
dimensional representation trained on data with only 10% of the features. Similar to iDeepViewLearn with selected top 
20% . (The mean error of two views is reported for MOMA; MOMA + SVM means combining the feature selection part of 
MOMA and SVM)

Method Average Error 
(Std.Dev) (%)

SVM 39.02 (4.77) 

Deep CCA + SVM 38.57 (5.40)

Sparse CCA + SVM 40.94 (4.24)

MOMA 44.51 (3.90)

MOMA + SVM 39.46 (5.67)

Random Forest 40.36 (5.28)

iDeepViewLearn with selected top 10% features 39.02 (5.03)

iDeepViewLearn with selected top 20% features 39.02 (5.03)

iDeepViewLearn with selected top 10% stacked features 39.11 (4.82)

iDeepViewLearn with selected top 20% stacked features 39.38 (5.55)

Table 5  Frequency of Genes selected at least 16 times in the top 20% across 20 resampled datasets

Gene Gene Name Frequency

DAB2 DAB adaptor protein 2 20

DCN decorin 20

HLAF major histocompatibility complex, class I, F 20

MFAP4 microfibril associated protein 4 20

MMP2 matrix metallopeptidase 2 20

PDGFRB platelet derived growth factor receptor beta 20

TCF4 transcription factor 4 20

TMEFF1 transmembrane protein with EGF like and two follistatin like domains 1 20

AFF3 AF4/FMR2 family member 3 19

BIRC5 baculoviral IAP repeat containing 5 19

CDH11 cadherin 11 19

COL1A2 collagen type I alpha 2 chain 19

LYN LYN proto-oncogene, Src family tyrosine kinase 19

SPARC​ secreted protein acidic and cysteine rich 19

THBS2 thrombospondin 2 19

BGN biglycan 18

COL6A1 collagen type VI alpha 1 chain 18

CSPG2 versican 18

LOX lysyl oxidase 18

SLIT2 slit guidance ligand 2 18

TIMP2 TIMP metallopeptidase inhibitor 2 18

EPHB3 EPH receptor B3 17

HLADPA1 Major Histocompatibility Complex, Class II, DP Alpha 1 17

IGFBP7 insulin like growth factor binding protein 7 17

SPDEF SAM pointed domain containing ETS transcription factor 17

THY1 Thy-1 cell surface antigen 17

TNFRSF1B TNF receptor superfamily member 1B 17

IL16 interleukin 16 16
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were consistently selected in the top 20% in all resampled data sets. There is support in 
the literature for the potential role of some of these genes in a variety of human cancers. 
Disabled homolog 2 [or DAB adaptor protein 2] (DAB2) is a protein-coding gene that 
is often deleted or silenced in several human cancer cells. The decorin gene (DCN) is 
a protein coding gene that encodes the protein decorin. Research on different human 
cancers (e.g. breast, prostate, bladder) has shown that DCN expression levels in cancer-
ous cells are significantly reduced from expression levels in normal tissues or are often 
completely silenced in tumor tissues [25]. Research suggests that individuals expressing 
lower levels of DCN in cancer tend to have poorer outcomes compared to individuals 
expressing higher levels of DCN. In our data, the mean expression levels of DCN for 
those who survived were not statistically different (based on the Anova test) from those 
who did not.

We observed statistically significant differences in mean expression levels of PDGFR 
and BIRC5 for the two groups (p-value < 0.05 from ANOVA test), as shown in Fig. 5. 
The median expression values of these genes were higher in individuals who died of 
breast cancer. The platelet-derived growth factor receptor alpha (PDGFRA) gene is 
a protein encoding gene that encodes the PDGFRA protein. The PDGFRA protein is 
involved in important biological processes such as cell growth, division, and survival. 
Mutated forms of the PDGFRA gene and protein have been found in some types of can-
cer. The BIRC5 gene is a protein encoder gene that encodes the baculoviral IAP repeat 
containing protein 5 in humans. This protein is believed to play an important role in the 
promotion of cell division (proliferation) and in the prevention of cell apoptosis (death) 
[26, 27].

Table 6 shows the CpG sites selected at least 16 times in the top 20% of the highly 
ranked CpG sites. The CpG sites FGF2_P229_F, IL1RN_E42_F, RARA_P1076_R, 
TFF1_P180_R, TGFB3_E58_R, WNT2_P217_F were consistently selected in the top 
20% of highly ranked CpG sites across all resampled datasets. Figure  6 shows the 
relative methylation levels of the CpG sites that were consistently selected or were 

Fig. 5  All genes except BIRC5 were consistently selected in the top 20% of highly-ranked genes across the 
twenty resampled datasets. BIRC5 was selected 19 times (out of 20) in the top 20% highly-ranked genes. 
Genes PDGFRB and BIRC5 have mean expression levels that are statistically significantly different between 
individuals that died from breast cancer and those that survived
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significantly different between those who survived and those who died. The mean 
methylation levels for the CpG sites IL1RN_E42_F and TGFB3_E58_R were statisti-
cally different between those who died and those who survived breast cancer (p-value 
< 0.05 from Anova test). In particular, the mean relative methylation levels for 
IL1RN_E42_F and TGFB3_E58_R were lower in those who died from breast cancer 
compared to those who did not. The interleukin 1 receptor antagonist (IL1RN) gene 
is a protein-coding gene that encodes the interleukin-1 receptor antagonist protein, a 
member of the interleukin 1 cytokine family. IL1RN is an anti-inflammatory molecule 

Table 6  Frequency of Genes selected at least 16 times in the top 20% across 20 resampled datasets

CpG Site Corresponding Gene Gene Name Frequency

FGF2_P229_F FGF2 Fibroblast growth factor 2 20

IL1RN_E42_F IL1RN Interleukin 1 receptor antagonist 20

RARA_P1076_R RARA​ Retinoic acid receptor alpha 20

TFF1_P180_R TFF1 Trefoil factor 1) 20

TGFB3_E58_R TGFB3 Transforming growth factor beta 3 20

WNT2_P217_F WNT2 Wnt family member 2 20

ADAMTS12_E52_R ADAMTS12 ADAM metallopeptidase with thrombospon-
din type 1 motif 12

19

RASSF1_P244_F RASSF1 Ras association domain family member 1 18

FABP3_E113_F FABP3 Fatty acid binding protein 3 16

IGFBP7_P297_F IGFBP7 Insulin like growth factor binding protein 7 16

IL1RN_P93_R IL1RN Interleukin 1 receptor antagonist 16

RASSF1_E116_F RASSF1 Ras association domain family member 1 16

SLC22A3_E122_R SLC22A3 Solute carrier family 22 member 3 16

TPEF_seq_44_S88_R TPEF Transmembrane Protein With EGF Like 16

And Two Follistatin Like Domains 2

Fig. 6  All CpG sites were consistently selected in the top 20% of highly-ranked CpG sites across the twenty 
resampled datasets. The mean methylation levels of IL1RN_E42_F and TGFB3_E58_R are statistically different 
between individuals that died from breast cancer and those that survived
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that modulates the biological activity of the pro-inflammatory cytokine, interleukin-1 
[28]. IL1RN has been implicated in several cancers.

Gene Ontology and Pathway Enrichment Analyses: We use an online enrichment tool, 
ToppGene Suite [29], to explore the biological relationships of these “stable” genes and 
CpG sites. We took these genes from the gene expression data and genes correspond-
ing to the CpG sites as input for ToppFun in ToppGene Suite. Some of the biological 
processes enriched with gene ontology (GO) included vasculature development, tissue 
development, angiogenesis, and tube morphogenesis (see Tables 7 and 8). Some of the 
biological processes significantly enriched in our list of methylation include tissue mor-
phogenesis, epithelial tube morphogenesis, and tube development. All these biological 
processes are essential in cell development, and aberrations or disruptions in these pro-
cesses could result in cancer. Tables 9 and 10 show the top 10 pathways that are enriched 
in our list of methylated genes and genes, respectively. Some of these pathways included 
cancer and pathways related to extracellular matrix orgnaization (ECM). ECM is a com-
plex collection of proteins and plays a key role in cell survival, cell proliferation, and 

Table 7  Top 10 Gene Ontology (GO) Biological Processes enriched with ToppFun in ToppGene Suite

GO ID GO Biological Bonferroni Genes
Process P-value

GO:0001944 Vasculature development 2.71E-10 DAB2,EPHB3,SLIT2,BIRC5,TCF4,THBS2,SPA
RC,MMP2

TNFRSF1B,THY1,DCN,IGFBP7,PDGFRB,LOX
,HLA-F,COL1A2

GO:0001568 Blood vessel development 2.10E-09 DAB2,EPHB3,SLIT2,BIRC5,TCF4,THBS2,SPA
RC,MMP2

THY1,DCN,IGFBP7,PDGFRB,LOX,HLA-
F,COL1A2

GO:0048514 Blood vessel morphogenesis 9.21E-09 DAB2,EPHB3,SLIT2,BIRC5,TCF4,THBS2,SPA
RC,MMP2

THY1,DCN,IGFBP7,PDGFRB,LOX,HLA-F

GO:0030198 Extracellular matrix organization 1.40E-08 COL6A1,MFAP4,SPARC,MMP2,TNFRSF1B

DCN,TIMP2,LOX,VCAN,BGN,COL1A2

GO:0043062 Extracellular structure organization 1.43E-08 COL6A1,MFAP4,SPARC,MMP2,TNFRSF1B

DCN,TIMP2,LOX,VCAN,BGN,COL1A2

GO:0045229 External encapsulating structure organi-
zation

1.53E-08 COL6A1,MFAP4,SPARC,MMP2,TNFRSF1B

DCN,TIMP2,LOX,VCAN,BGN,COL1A2

GO:0072359 Circulatory system development 1.83E-08 DAB2,EPHB3,SLIT2,BIRC5,TCF4,THBS2,SPAR
C,MMP2,TNFRSF1B

THY1,DCN,IGFBP7,PDGFRB,LOX,VCAN,
HLA-F,COL1A2

GO:0001525 Angiogenesis 2.46E-08 DAB2,EPHB3,SLIT2,BIRC5,TCF4,THBS2,SP
ARC​

MMP2,THY1,DCN,IGFBP7,PDGFRB,HLA-F

GO:0035295 Tube development 1.39E-07 DAB2,EPHB3,SLIT2,SPDEF,BIRC5,TCF4,THBS
2,SPARC,MMP2

THY1,DCN,IGFBP7,PDGFRB,LOX,VCAN,
HLA-F

GO:0035239 Tube morphogenesis 1.02E-06 DAB2,EPHB3,SLIT2,BIRC5,TCF4,THBS2,SPA
RC,MMP2
THY1,DCN,IGFBP7,PDGFRB,LOX,HLA-F
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Table 8  Genes corresponding to CpG sites. Top 10 Gene Ontology (GO) Biological Processes 
enriched with ToppFun in ToppGene Suite

GO ID GO Biological Bonferroni Genes
Process P-value

GO:0048729 Tissue morphogenesis 0.00003361 ADAMTS12,IGFBP7,TGFB3,IL1RN,FGF2,WN
T2,RARA,FABP3

GO:0060562 Epithelial tube morphogenesis 0.0002242 ADAMTS12,IGFBP7,FGF2,WNT2,RARA,F
ABP3

GO:0010092 Specification of animal organ identity 0.003616 FGF2,WNT2,RARA​

GO:0060591 Chondroblast differentiation 0.004815 FGF2,RARA​

GO:0008285 Negative regulation of cell population 
proliferation

0.004981 IGFBP7,TGFB3,FGF2,TFF1,RARA,FABP3

GO:0002009 Morphogenesis of an epithelium 0.005639 ADAMTS12,IGFBP7,FGF2,WNT2,RARA,F
ABP3

GO:0035295 Tube development 0.01252 ADAMTS12,IGFBP7,TGFB3,FGF2,WNT2,R
ARA,FABP3

GO:0048598 Embryonic morphogenesis 0.0138 TGFB3,IL1RN,FGF2,WNT2,RARA,FABP3

GO:0061035 Regulation of cartilage development 0.01498 ADAMTS12,TGFB3,RARA​

GO:1905330 Regulation of morphogenesis of an 
epithelium

0.01603 ADAMTS12,FGF2,WNT2

Table 9  Genes corresponding to CpG sites. Top 10 Pathways enriched with ToppFun in ToppGene 
Suite

ID Pathway Source Bonferroni
P-value

Genes

M12868 Pathways in cancer MSigDB C2 BIOCARTA​ 0.001107 TGFB3,FGF2,WNT2,RASSF1,RARA​

M39427 Pluripotent stem cell dif-
ferentiation pathway

MSigDB C2 BIOCARTA​ 0.002385 TGFB3,FGF2,WNT2

83105 Pathways in cancer BioSystems: KEGG 0.002876 TGFB3,FGF2,WNT2,RASSF1,RARA​

M5889 Ensemble of genes 
encoding extracellular

MSigDB C2 BIOCARTA​ 0.02151 ADAMTS12,IGFBP7,TGFB3

matrix and extracellular IL1RN,FGF2,WNT2

matrix-associated 
proteins

M5883 Genes encoding secreted 
soluble factors

MSigDB C2 BIOCARTA​ 0.04072 TGFB3,IL1RN,FGF2,WNT2

M5885 Ensemble of genes 
encoding ECM-associated

MSigDB C2 BIOCARTA​ 0.06319 ADAMTS12,TGFB3,IL1RN,

proteins including ECM-
affilaited proteins,

FGF2,WNT2

ECM regulators

and secreted factors

138010 Glypican 1 network BioSystems: Pathway 
Interaction

0.06838 TGFB3,FGF2

Database

M33 Glypican 1 network MSigDB C2 BIOCARTA​ 0.07382 TGFB3,FGF2

749777 Hippo signaling pathway BioSystems: KEGG 0.07853 TGFB3,WNT2,RASSF1

M12095 Signal transduction 
through IL1R

MSigDB C2 BIOCARTA​ 0.09762 TGFB3,IL1RN
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differentiation [30]. ECM is involved in tumor progression, dissemination, and response 
to therapy [30, 31].

Goal 2: Model nonlinear relationships between methylation and gene expression data 

and derive molecular clusters

We demonstrate the use of the estimated shared low-dimensional representation and 
the reconstructed methylation and gene expression data in molecular clustering. For this 
purpose, we applied the proposed method (without Laplacian) to all data to identify the 
top 20% genes and CpG sites that could be used to nonlinearly approximate the origi-
nal views. Then we obtained the shared low-dimensional representation ( ̃Z′ ), and the 
reconstructed views ( R1(Z

′) , and R2(Z
′) ) based only on the top 20% genes and CpG sites. 

We perform K-means clustering on Z̃′ , R1(Z) and R2(Z) . We set the number of clusters 
to 4, which is within the number of clusters investigated in the original article [22]. We 
compared the number of clusters detected with several variables related to breast can-
cer, including estrogen receptor (ER) status, progesterone receptor (PgR) status, survival 
time, and survival status for ten years. We obtained Kaplan-Meier (KM) curves to com-
pare the survival curves for the identified clusters. We also fitted a Cox regression model 
to compare the estimated hazard ratios for 10-year survival. Finally, we performed an 
enrichment analysis of the top 20% genes and CpG sites.

Figure 8A shows the KM curves for the clusters detected using the low-dimensional 
shared representation (first panel) and the reconstructed gene expression (middle panel) 
and methylation data (right panel). From the KM plots, the 10-year survival curves for 
the clusters detected using the shared low-dimensional representation or the recon-
structed methylation data are significantly different (p-value = 0.041 and 0.032, respec-
tively, based on a log-rank test to compare survival curves). As reported in Table  11, 

Table 10  Genes selected. Top 10 Pathways enriched with ToppFun in ToppGene Suite

ID Pathway Source Bonferroni
P-value

Genes

1270244 Extracellular matrix organiza-
tion

BioSystems: REACTOME 5.117E-08 COL6A1,MFAP4,SPARC,MMP2
DCN,TIMP2,LOX,VCAN,BGN,C
OL1A2

M5889 Ensemble of genes encod-
ing extracellular matrix

MSigDB C2 BIOCARTA​ 0.000000478 SLIT2,COL6A1,MFAP4,THBS2

and extracellular matrix-
associated proteins

IL16,SPARC,MMP2,DCN,IGFBP7
ITIMP2,LOX,VCAN,BGN,COL1A2

1269016 Defective CHSY1 causes 
TPBS

BioSystems: REACTOME 0.0001055 DCN,VCAN,BGN

1269017 Defective CHST3 causes 
SEDCJD

BioSystems: REACTOME 0.0001055 DCN,VCAN,BGN

1269018 Defective CHST14 causes 
EDS,
musculocontractural type

BioSystems: REACTOME 0.0001055 DCN,VCAN,BGN

1269986 Dermatan sulfate biosyn-
thesis

BioSystems: REACTOME 0.0004947 DCN,VCAN,BGN

1269987 CS/DS degradation BioSystems: REACTOME 0.001087 DCN,VCAN,BGN

1270256 ECM proteoglycans BioSystems: REACTOME 0.001966 SPARC,DCN,VCAN,BGN

1309217 Defective B3GALT6 causes 
EDSP2 and SEMDJL1

BioSystems: REACTOME 0.002875 DCN,VCAN,BGN
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the clusters (from shared low-dimensional representations) are significantly associated 
with ER, PgR, overall survival time, and 10-year survival event. Individuals in Clus-
ter 3 seemed to have worse survival outcomes compared to individuals in Cluster 0. 
In particular, the proportion of individuals in Cluster 3 with ER/PgR negative tumors 
was higher, the 10-year survival rate was lower (only 40% of participants from Cluster 
0 survived while 69% of participants from Cluster 1 survived, Fig. 8B), and the average 
survival time was shorter compared to those in Cluster 1 (Fig.  8C). Furthermore, the 
estimated unadjusted risk ratio for 10-year survival for those in Cluster 3 compared to 
those in Cluster 0 was 1.409 (Fig. 8D 95%CI: 1.686–2.894, p-value = 0.04), suggesting 
that being in Cluster 3 reduces your survival rate by a factor of 1.41 at each point during 
10-year follow-up compared to Cluster 0. This effect persisted even after adjusting for 
age or age and ER status. Significantly enriched pathways, as shown in Fig. 7, from our 
gene list and CpG sites (genes corresponding to the top 20% CpG sites) include ECM, 
inflammatory response pathway, and pathways in cancer.

Evaluation of brain lower grade glioma data

We applied our method to data pertaining to brain lower grade glioma (LGG) to iden-
tify molecules that discriminate between levels of LGG grade (grade 2 vs 3 gliomas). We 
obtained data from the Board GDAC Firehose of the Cancer Genome Atlas Program 
(TCGA).1 We used three types of omics data: methylation, miRNA, and mRNAseq, 
following the analysis in [32]. Only patients with all available omics and classifica-
tions of grade were included in our analyses, giving a total sample size of 510, with 246 
patients classified as grade 2 and 264 patients as grade 3. We used the LGG dataset to 

Table 11  Characteristics of the patients. Continuous variables are tested based on regular ANOVA 
with equal variance assumption, and categorical variables are tested based on the Chi-square test

n Cluster 0 Cluster 1 Cluster 2 Cluster 3 p test
32 51 35 50

ER = er_pos (%) 7 (22.6) 37 (75.5) 18 (51.4) 43 (87.8) <0.001

PgR = pgr_pos (%) 7 (22.6) 38 (77.6) 16 (45.7) 39 (79.6) <0.001

Overall Survival

Time (yr) (mean (SD)) 9.14 (5.30) 11.13 (4.32) 11.87 (5.05) 8.68 (5.31) 0.010

Event = 1 (%) 11 (34.4) 18 (35.3) 10 (28.6) 26 (52.0) 0.125

Ten Year Survival

Survived = 1 (%) 17 (53.1) 18 (35.3) 9 (25.7) 31 (63.3) 0.002

HuSubtype (%) <0.001

Basal 21 (65.6) 6 (11.8) 12 (34.3) 0 (0.0)

Her2 1 (3.1) 5 (9.8) 6 (17.1) 2 (4.0)

LumA 4 (12.5) 15 (29.4) 6 (17.1) 19 (38.0)

LumB 4 (12.5) 8 (15.7) 6 (17.1) 14 (28.0)

non-classified 0 (0.0) 12 (23.5) 4 (11.4) 6 (12.0)

Normal 2 (6.2) 5 (9.8) 1 (2.9) 9 (18.0)

ageYear (mean (SD)) 48.84 (9.64) 52.16 (11.75) 47.74 (10.46) 49.80 (12.14) 0.308

1  https://​gdac.​broad​insti​tute.​org.

https://gdac.broadinstitute.org
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demonstrate that the proposed method can be used to associate three views, select 
important biomarkers, and predict patient grade category.

Data cleaning and data preprocessing were carried out on each view of data to remove 
features with low potential for discrimination. For all views, we first removed features 
with missing measures. Due to the limited number of features left in the miRNA view 
after removing missing values, future preprocessing was conducted only on the DNA 
methylation view and the mRNAseq view. Unsupervised preprocessing was applied to 
remove features whose variance was less than 0.001 for DNA methylation measures and 
0.1 for mRNAseq measures, following the thresholds used in [32]. The data were then 
divided into training  ( n = 410 ) and testing (n = 100 ) sets and supervised preprocessing 
was conducted on the training set. Logistic regression was fitted for each feature in the 
DNA methylation view and the mRNAseq view. The p-values were adjusted by the Ben-
jamini-Hochberg procedure, and the features with adjusted p-values < 0.05 were kept 
in the dataset. After data cleaning and preprocessing, the number of features for DNA 
methylation, miRNA, and mRNAseq was 9691, 235, and 7603 respectively.

Fig. 7  Top 10 significant pathways using highly-ranked genes (Top Panel) and genes corresponding to 
highly-ranked CpG sites (Bottom Panel)
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Fig. 8  Top 20% genes and CpG sites that approximate the original data are used to obtain shared 
low-dimensional representations, and reconstructed gene expression and methylation data. A Kaplan–Meier 
plots comparing survival curves for clusters obtained from the shared low-dimensional representations, 
and the reconstructed data. Survival curves for the clusters based on the joint and low-dimensional 
representations and reconstructed methylation data are significantly different. B–D Clusters are derived from 
the shared low-dimensional representation. B Comparison of 10-year survival rates across clusters. Chi-square 
test of independence shows that the clusters detected are significantly associated with 10-year survival event 
(p-value = 0.011). C Violin plot of overall survival time by clusters. The average survival times are significantly 
different across clusters. D Comparison of hazard ratios and survival curves across clusters

Table 12  LGG dataset: SVM and random forest are based on stacked views. Deep IDA + SVM means 
selecting features from Deep IDA and training an SVM classifier on these features. iDeepViewLearn 
with selected top 50 features obtains a classification error based on a shared low-dimensional 
representation trained on data with the selected top 50 features. Similar for iDeepViewLearn with 
selected top 100 features

Method AverageError (%)

SVM on stacked data 30.00

Random Forest on stacked data 26.00

iDeepViewLearn with selected top 50 features 28.00

iDeepViewLearn with selected top 100 features 26.00

SIDA 29.00

Deep GCCA + SVM 29.00

Deep IDA 28.00

Deep IDA + SVM 26.00
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We applied the proposed approach to the training dataset, where we selected the 
important features from each type of omics data. Subsequently, we used these selected 
features to make predictions for the patient’s grade category in the testing dataset, as 
shown in Table  12. We used cross-validation to tune hyper-parameters based on the 
training set. Our proposed method was compared with Deep Generalized Canonical 
Correlation Analysis (Deep GCCA) [33] with PyTorch implementation.2 We added the 
teacher-student network (TS) [20] for feature selection, and implemented SVM for clas-
sification; Deep IDA [9]; Features selected from Deep IDA with SVM for classification; 
SIDA [10], and SVM and Random Forest on stacked data. The classification performance 
of our method is comparable to other methods (Table 12).

In Fig. 9, we show the overlaps of features selected by the methods. We used the top 
100 features of each view selected by the proposed method. We compare the top 100 
features selected by the TS network with Deep GCCA and the top 50 features selected 
by the TS network with Deep IDA. SIDA selected 46, 29, and 304 features for each 
omics, respectively. We presented the overlaps between the selected genes across the 
four methods matched from NCBI.3 The overlaps between 2 or more methods of DNA 
methylation were COL11A2 and FBLN2. The overlaps between 3 or more methods for 
miRNA view were MIR379, MIR409, MIR29C, MIR129-1, MIR20B, MIR30E, MIR92A2, 
MIR222, MIR24-2, MIR767, MIR128-2, MIR105-2, and MIR17. The overlaps between 2 
or more methods for mRNAseq view were NCAPH, LY86-AS1, HSFX2, and SLC25A41.

Evaluation of shear transformed MNIST data

We apply our method to the MNIST dataset [34]. The MNIST handwritten image data-
set consists of 70,000 images of handwritten digits divided into training and testing sets 
of 60,000, and 10,000 images, respectively. The digits have been size-normalized and 
centered in a fixed-size image. Each image is 28× 28 pixels and has an associated label 
that denotes which digit the image represents (0–9). We make good use of a shear map-
ping to generate a second view of these handwritten digits. A shear mapping is a lin-
ear map that displaces each point in a fixed direction by an amount proportional to its 
signed distance from the line that is parallel to that direction and goes through the ori-
gin. Figure 10 shows two image plots of a digit for views 1 and 2.

Fig. 9  Venn diagrams of features selected by the proposed method, and the three comparison methods that 
are capable of feature selection. The left, middle, and right panels correspond to DNA methylation, miRNA, 
and mRNAseq, respectively. The percentages represent the proportion of the total selected features from the 
four methods

2  https://​github.​com/​armin​arj/​DeepG​CCA-​pytor​ch.
3  https://​www.​ncbi.​nlm.​nih.​gov/.

https://github.com/arminarj/DeepGCCA-pytorch
https://www.ncbi.nlm.nih.gov/
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We used the MNIST dataset to demonstrate the ability of the proposed method to 
reconstruct handwritten images using a few pixels. In particular, neural networks Gd 
consist of convolutional layers instead of fully connected layers, since they reconstruct 
images. We apply the proposed method to the training dataset, select 20% and 30% of the 
pixels based on our variable ranking criteria and reconstruct the images using only the 
selected pixels. We also learn a new model with these pixels, we use the learned model 
and the testing data to classify the test digits, and we obtain the test errors. Figure 10 
shows the reconstructed images based on the top 20% and 30% pixels. The digits are 
apparent even with only 30% of the pixels. From Table 13, the classification performance 
using the top 30% of the pixels is comparable to Deep CCA and SVM, which use all pix-
els. Even when only 20% of the pixels were selected and used to reconstruct the images, 
the classification performance of our method was competitive.

Ground Truth

Top 20% Pixels
Reconstruction

Top 30% Pixels
Reconstruction

View 1 View 2

Fig. 10  An example of shear transformed MNIST dataset. For the subject with label “0” and “9”, view 1 
observation is on the left and view 2 observation is on the right. Notably, we show the grayscale images with 
color only for better visualization

Table 13  MNIST dataset: SVM is based on stacked views. Deep CCA + SVM is a training SVM based 
on the last layer of Deep CCA. iDeepViewLearn with selected top 20% pixels obtains a classification 
error based on a shared low-dimensional representation trained on data with the selected 20% of the 
pixels. Similar for iDeepViewLearn with selected top 30%

Method AverageError 
(%)

Deep CCA + SVM 2.97

SVM on stacked data 2.81

iDeepViewLearn with selected top 20% pixels 3.91

iDeepViewLearn with selected top 30% pixels 2.56
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Discussion
We have presented iDeepViewLearn, short for Interpretable Deep Learning Method 
for Multiview Learning, to learn nonlinear relationships in data from multiple 
sources. iDeepViewLearn combines the flexibility of deep learning with the statisti-
cal advantages of data- and knowledge-driven feature selection to yield interpretable 
results. In particular, iDeepViewLearn learns low-dimensional representations of the 
views that are common to all the views and assumes that each view can be approxi-
mated by a nonlinear function of the shared representations. Deep neural networks 
are used to model the nonlinear function and an optimization problem that mini-
mizes the difference between the observed data and the nonlinearly transformed data 
are used to reconstruct the original data. A regularization penalty is imposed on the 
reconstructed data in the optimization problem, permitting us to reconstruct each 
view only with relevant variables. Beyond the data-driven approach for feature selec-
tion, we also consider a knowledge-based approach to identify relevant features. We 
use the normalized Laplacian of a graph to model bilateral relationships between var-
iables in each view and to encourage the selection of connected variables.

We have developed a user-friendly algorithm in Python 3, specifically PyTorch, and 
interfaced it with R to increase the reach of our method. Extensive simulations with 
varying data dimensions and complexity revealed that iDeepViewLearn outperforms 
several other linear and nonlinear methods for integrating data from multiple views, 
even in high-dimensional scenarios where the sample size is typically smaller than the 
number of variables.

When iDeepViewLearn was applied to methylation and gene expression data 
related to breast cancer, we observed that iDeepViewLearn is capable of achieving 
meaningful biological insights. We identified several CpG sites and genes that bet-
ter discriminated people who died from breast cancer and those who did not. The 
biological processes of the gene ontology enriched in the top-ranked genes and meth-
ylated CpG sites included processes essential to cell proliferation and death. The 
enriched pathways included cancer and others that have been implicated in tumor 
progression and response to therapy. Using the shared low-dimensional representa-
tions of gene expression and methylation data from our method, we detected four 
molecular clusters that differed in their 10-year survival rates. The enrichment analy-
sis of highly ranked genes and genes corresponding to the CpG sites selected by our 
method showed a strong enrichment of pathways and biological processes, some 
related to breast cancer and others that could be further explored for their potential 
role in breast cancer. We also applied iDeepViewLearn to DNA methylation, miRNA, 
and mRNASeq data pertaining to Brain Lower Grade Glioma (LGG) and found our 
method to be competitive in discriminating between LGG categories, demonstrating 
the ability of our methods to be used for more than two views. We further applied 
iDeepViewLearn to handwritten image data and we were able to reconstruct the dig-
its with about 30% pixels while also achieving competitive classification accuracy. For 
more applications, e.g., drug repositioning  [35–37], we leave them for future work. 
A limitation of our work is that the number (or proportion) of top-ranked features 
needs to be specified in advance.
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Conclusion
In conclusion, we have developed deep learning methods to learn nonlinear relation-
ships in multiview data that are able to identify features likely driving the overall asso-
ciation in the views. The simulations and real data applications are encouraging, even 
for scenarios with small to moderate sample sizes, thus we believe the methods will 
motivate other applications.
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