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TDepartment of Computer Background: The rapid advancement of next-generation sequencing (NGS) machines
Science, Faculty of Computers in terms of speed and affordability has led to the generation of a massive amount

and Information, Mansoura of biological data at the expense of data quality as errors become more prevalent.
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Mansoura, Egypt This introduces the need to utilize different approaches to detect and filtrate errors,

? Biomedical Informatics and data quality assurance is moved from the hardware space to the software preproc-
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and Engineering, New Mansoura Results: We introduce MAC-ErrorReads, a novel Machine learning-Assisted Classifier
University, Gamasa 35712, Egypt designed for filtering Erroneous NGS Reads. MAC-ErrorReads transforms the errone-

ous NGS read filtration process into a robust binary classification task, employing

five supervised machine learning algorithms. These models are trained on features
extracted through the computation of Term Frequency-Inverse Document Frequency
(TF_IDF) values from various datasets such as E. coli, GAGE S. aureus, H. Chr14, Arabidop-
sis thaliana Chr1 and Metriaclima zebra. Notably, Naive Bayes demonstrated robust per-
formance across various datasets, displaying high accuracy, precision, recall, F1-score,
MCC, and ROC values. The MAC-ErrorReads NB model accurately classified S. aureus
reads, surpassing most error correction tools with a 38.69% alignment rate. For H. Chri14,
tools like Lighter, Karect, CARE, Pollux, and MAC-ErrorReads showed rates above 99%.
BFC and RECKONER exceeded 98%, while Fiona had 95.78%. For the Arabidopsis thali-
ana Chrl, Pollux, Karect, RECKONER, and MAC-ErrorReads demonstrated good align-
ment rates of 92.62%, 91.80%, 91.78%, and 90.87%, respectively. For the Metriaclima
zebra, Pollux achieved a high alignment rate of 91.23%, despite having the lowest
number of mapped reads. MAC-ErrorReads, Karect, and RECKONER demonstrated good
alignment rates of 83.76%, 83.71%, and 83.67%, respectively, while also producing
reasonable numbers of mapped reads to the reference genome.

Conclusions: This study demonstrates that machine learning approaches for filtering
NGS reads effectively identify and retain the most accurate reads, significantly enhanc-
ing assembly quality and genomic coverage. The integration of genomics and artificial
intelligence through machine learning algorithms holds promise for enhancing NGS
data quality, advancing downstream data analysis accuracy, and opening new oppor-
tunities in genetics, genomics, and personalized medicine research.
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Background

DNA sequencing data serves as a digital record of the nucleotide arrangement (A, C,
G, and T) within a DNA molecule, playing a pivotal role in contemporary genomics
research. DNA sequencing has evolved through generations. Sanger sequencing, repre-
senting the first generation, was labor-intensive and limited in volume. Next Generation
Sequencing (NGS), the second generation (e.g., Illumina, Ion Torrent), enabled cost-
effective high-throughput data generation. Third-generation technologies (e.g., Pacific
Biosciences (PacBio), Oxford Nanopore) brought longer reads, increased speed, and cost
reduction but with a trade-off of higher error rates [1-3].

NGS sequencing experiments generate a large volume of sequencing reads that
require preprocessing, filtration, and mapping to a reference genome to uncover biologi-
cal insights. Some reads fail to align uniquely and accurately to the reference according
to different variations (substitutions, insertions, and deletions) and their origin from a
repetitive region [2, 4, 5]. Variations impacting accurate mapping comprise true varia-
tions between reads and the reference (e.g., when sequencing similar genomes) and false
variations, including errors from sequencing machines, contamination, and biases like
PCR amplification during sequencing experiments [6, 7].

As sequencing machines become faster and more affordable, they generate extensive
biological data, accompanied by errors that compromise data quality. This necessitates
error detection and correction tools, shifting the responsibility from the hardware space
to the software preprocessing stages. Most error detection and correction tools use two
approaches: k-mer-based and alignment-based [8-11]. In the k-mer approach, reads are
scanned by a window of size k, and k-mers are classified as strong or weak based on their
frequency. While this approach is efficient, it introduces false positive corrections and
requires intensive computational preprocessing tasks. Musket [12], Lighter [13], BFC
[14], RECKONER [15], Blue [16], RACER [17], Pollux [18], and BLESS [19] are examples
of error correction tools that follow this approach.

The second paradigm involves sequence alignment-based tools that organize the
sequencing reads into an alignment matrix to maximize their similarity by align-
ing identical bases within the same column. Error correction tools based on sequence
alignment consider the consensus of identical bases within each column, emphasizing
high-frequency base coverage over low-frequency occurrences. Computing sequence
alignment for high-throughput sequencing data is computationally intensive; some tools
address this with heuristics and efficient data structures like hash tables, suffix trees/
arrays, and de Bruijn graphs. Coral [20], ECHO [21], Fiona [22], Karect [23], Bcool [24],
BrownieCorrector [25], and CARE [26] are examples of tools that follow the sequence
alignment approach.

Machine learning is crucial in genomics to filter errors in NGS data, ensuring high-
quality results. Machine learning algorithms play a pivotal role in identifying and
removing sequencing errors, distinguishing true genetic variations from artifacts, and
enhancing data accuracy. Automating data filtration with machine learning saves time
and resources, allowing researchers to focus on the biological significance of the data
rather than tedious error correction tasks [27, 28].

Many previously introduced error filtration approaches, based on machine learning
techniques, rely on a complex computation of Multiple Sequence Alignment (MSA) and
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multiple k-mer hashing techniques as preprocessing stages [29, 30]. These approaches
are designed to discern the accuracy of individual bases within sequencing reads by
leveraging information gleaned from MSA, particularly when compared with similar
sequences. The process of MSA involves the computation of nucleotide frequencies and
the extraction of relevant information from adjacent columns. This information and fac-
tors such as quality scores and genomic coverage contribute to the formulation of fea-
tures used in training machine learning models. Furthermore, other machine learning
methods specialize in identifying the optimal k-mer size essential for independent error
correction tools [31, 32] (see Table 1).

This paper introduces MAC-ErrorReads, a machine learning-assisted classifier
designed to filter erroneous NGS reads. This innovative approach harnesses the power
of machine learning to convert the process of erroneous NGS read filtration into a
robust binary classification problem, where reads are classified as either ‘1’ for erroneous
or ‘0’ for correct. MAC-ErrorReads was trained using five supervised machine learning
algorithms: Naive Bayes (NB) [33], Support Vector Machine (SVM) [34], Random Forest
(RF) [35], Logistic Regression (LR) [36, 37] and eXtreme Gradient Boosting (XGBoost)
[38]. These algorithms were trained on a set of extracted features obtained through the
computation of TF_IDF values for the set of identified k-mers from the sequencing
data. The extracted features are computed without relying on expensive preprocessing
stages such as MSA or multiple k-mers hashing techniques. To assess the efficacy and
accuracy of these models, comprehensive testing and evaluation are conducted using
simulated and real sequencing experiments. We employed stand-alone NGS alignment
programs to evaluate the accuracy, precision, recall, F1-score, the Matthews correlation
coefficient (MCC), and Receiver Operating Characteristic (ROC) metrics by comparing
the predicted labels generated by MAC-ErrorReads with the true labels encoded in the
alignment scores relative to the reference genome. Also, the correct classified reads were
subjected to further downstream data analysis, involving genome mapping and assem-
bly, to assess their respective mapping and assembly results. We expanded our analy-
sis by assessing assembly results both with and without employing stand-alone error
correction tools. Subsequently, we compared these results with those generated by the
best reported machine learning model, both without error correction and after correct-
ing the misclassified reads. Additionally, we benchmarked the correctly classified reads
against those generated by various error correction tools, computing the total number
of mapped reads and the overall alignment rate. The correct and false classified reads
reported by the MAC-ErrorReads are subjected to redundancy analysis to identify the
duplicated reads within both positive and negative sets.

MAC-ErrorReads makes the following contributions:

1. Most existing error filtration methods reliant on machine learning involve computa-
tionally intensive preprocessing stages, such MSA and multiple k-mer hashing tech-
niques. Other machine learning methods specialize in identifying the optimal k-mer
size essential for independent error correction tools. In contrast, MAC-ErrorReads
eliminates the need for these costly preprocessing steps by computing TF_IDF val-
ues of identified k-mers from sequencing data, significantly reducing computational

complexity.
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2. MAC-ErrorReads simplifies the erroneous NGS read filtration into a robust binary
classification problem. Instead of relying on complex preprocessing, it utilizes
machine learning to categorize reads as "1’ for erroneous or '0’ for correct, ensuring
efficiency and simplicity.

3. MAC-ErrorReads utilizes five supervised machine learning algorithms (NB, SVM,
RE LR, XGBoost) trained on features extracted from sequencing data using TF IDF
values of identified k-mers. The error filtration results are evaluated against various
stand-alone error correction tools and one of the machine learning-based methods
for error correction.

4. MAC-ErrorReads extends its analysis beyond error filtration to downstream pro-
cesses such as genome mapping and assembly. It assesses the impact of correctly
classified reads and correcting false ones using one of the stand-alone error cor-
rection tools on mapping and assembly results. This evaluation is conducted com-
prehensively through testing with both simulated and real sequencing experiments
across different organisms.

Methods

MAC-ErrorReads converts the process of filtering erroneous NGS reads into a machine
learning classification problem. MAC-ErrorReads learns a mapping function F that trans-
forms the input features space X extracted from each sequencing read into a binary label
classification Y of this read as (1) for erroneous read and (0) for correct one. The MAC-
ErrorReads workflow, depicted in Fig. 1, starts with preparing and preprocessing input
data (reads) and assigning labels for training various machine learning models. The frame-
work then extracts features by computing TF_IDF values for the k-mers derived from the
labeled reads. These extracted features serve as inputs for training five distinct machine
learning models. Subsequently, the models are tested and evaluated to determine their per-
formance and accuracy, with detailed explanations of each stage provided in the following
subsections.

MAC-ErrorReads data preprocessing stage
The preprocessing stage started by preparing the labeled reads required for training
machine learning models on a specific reference genome. Correct reads are labeled with 0,
while the erroneous ones are labeled with 1. The wgsim [39] simulator, included within the
SAMtools for whole genome simulation, generates the labeled reads for a reference genome
with error rates equal e=0 and e=1 for correct and erroneous reads respectively. The total
number of reads, N, that are required to cover a specific reference genome is computed in
the proposed MAC-ErrorReads method as the following:

Suppose you have a reference genome with a length G, the genome is represented with a
number of N randomly generated reads, and each read has a length of L. According to the
Lander/Waterman equation for sequencing coverage, C, computation [40]:

LN
c="=
G
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By knowing the genome length G and adjusting different parameters such as sequenc-
ing coverage C and read length L, we can expect the total number of N reads used to
cover the genome randomly and subsequently used in the training process.

MAC-ErrorReads k-mers and feature extraction stages

After preparing the training dataset (labeled reads), the MAC-ErrorReads machine
learning framework (see Fig. 2) begins by extracting k-mers from each labeled read. This
is achieved by sliding a window of length k along the read sequence and capturing the
k-mer at each position. The extracted k-mers are transformed into the set of TF_IDF val-
ues [41] that is used as training features for different machine learning algorithms. The
TF_IDF is a numerical representation used in information retrieval and natural language
processing to quantify the importance of a term in a document relative to a collection
of documents. It is commonly used for text analysis and document ranking in search
engines and information retrieval systems.

In this work, the sequencing reads are viewed as a set of documents, and the extracted
k-mers are the terms that are quantified and analyzed. The TF_IDF score for a term
(k-mer) in a document (sequencing read) is calculated based on two factors: Term
Frequency (TF): This measures the frequency of a term (k-mer) within a document
(sequencing read). It represents how often a particular k-mer appears in a sequencing
read relative to the total number of k-mers in that sequencing read. The idea is that the
more times a k-mer appears in a sequencing read, the more important it might be to that
read sequence and consequently correct k-mer. The second factor is Inverse Document
Frequency (IDF), which evaluates the significance of a term (k-mer) across a collection
of documents (sequencing reads). It measures how rare or common a k-mer is in the
entire sequencing dataset.

Suppose that a set of sequencing reads is R, with each read denoted as r;, where i <N,
and N is the total number of reads in the set R. Each read r; has a set of extracted k-mers
called S; where j < |rj| — k + 1. Each k-mer indicated as s; and its corresponding fre-
quency in the read r; is f;. The TF; and IDF;; scores are defined for each k-mer s in each

j
read r;, where Nj; is the number of reads r; that have the k-mer s;; in the whole dataset R.

o
sy

N
IDF;; = log (N)
i

The TF_IDF; score for a k-mer s; in a read r; is calculated by multiplying the Term Fre-

quency (TFy) and the Inverse Document Frequency (IDF) of that k-mer:

TF_IDFL']' = TFZ']' X IDFl'j

The result is a numerical value that reflects the importance of a k-mer in a particu-
lar read relative to the entire collection of sequencing reads. High TF_IDF; scores indi-
cate that a k-mer is both frequent in the sequencing read and rare across the sequencing
dataset, suggesting it is highly relevant to that read’s content. Conversely, low TF_IDF;
scores imply that the k-mer is common in the read or not particularly discriminative
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across the entire sequencing dataset. TF_IDF;; is often used in text mining, document
clustering, and information retrieval tasks to rank documents based on their relevance

to a specific query or topic.

MAC-ErrorReads classification system
The set of computed TF_IDF values represents a set of training features that feed into
different machine algorithms for classifying each read as erroneous or error-free. The
input sequences are classified into erroneous read (1) and correct read (0). The MAC-
ErrorReads classification system utilizes five supervised machine learning algorithms:
NB [33], SVM [34], RF [35], LR [36, 37], and XGBoost [38].

The NB classifier uses Bayes’ theorem to calculate the probability of input belonging
to a class based on its features. It multiplies conditional probabilities to predict the class
with the highest probability, showing reliable performance in genomics. SVM seeks a

hyperplane to separate data into classes by maximizing the margin between it and the
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closest data points. This method accurately assigns new data points to their respective
classes. LR models relationships between input variables and a binary outcome using a
logistic function, providing probabilities between 0 and 1, which is valuable for genom-
ics and binary classification. RF aggregates predictions from multiple decision trees,
each trained on a data subset, ensuring robust classification. XGBoost iteratively adds
trees to correct errors made by previous trees using gradient boosting, resulting in accu-

rate predictions and reliability.
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MAC-ErrorReads evaluation stage

The machine learning models are evaluated using standard metrics such as accuracy,
precision, recall, F1-score, MCC, and ROC. These metrics are defined in terms of True
Positives (TP), False Positives (FP), False Negative (FN), and True Negative (TN). TP is
the number of error-free reads that are correctly classified as error-free by the classifica-
tion model. In other words, TP represents the instances where the model correctly iden-
tifies an error-free read as error-free. FP is the number of erroneous reads incorrectly
classified as error-free by the classification model. In this case, the model mistakenly
identifies a read containing errors as error-free. FN is the number of error-free reads
incorrectly classified as erroneous by the classification model. Here, the model wrongly
labels an error-free read as containing errors. TN is the number of erroneous reads cor-
rectly classified as erroneous by the classification model. In other words, TN represents
the instances where the model correctly identifies a read containing errors as errone-
ous. Standard evaluation metrics for different machine learning models are defined in
Table 2. To assess the efficacy of the trained machine learning models, we utilized reads
obtained from real sequencing experiments that corresponded to the previously trained
reference genomes. The primary objective was to classify each read as correct or incor-
rect using various machine learning models. However, a significant challenge arose from
the fact that the reads in the sequencing experiments lacked explicit labels, and their
accuracy levels were unknown beforehand. This uncertainty was attributed to the pres-
ence of diverse library preparation and sequencing biases that influenced the quality of
the reads.

To address this issue, we aligned the reads to their reference genome by utilizing NGS
aligners such as BWA [42] and Bowtie 2 [43]. The alignment statistics, including the
total number of mapped reads and the alignment rate, are reported by Bowtie 2. The
alignment score, computed for each read by BWA, allowed us to evaluate the accuracy
of the reads based on the total number of bases aligned to the reference genome relative
to the overall read length. Through a comprehensive analysis of the alignment scores, we
were able to extract valuable insights regarding the accuracy level of the reads. Conse-
quently, the corresponding labels of the reads were established by implementing specific
threshold settings that varied based on the total number of mismatches, considering the
total read length.

By comparing the predicted labels generated by MAC-ErrorReads with the true labels
inferred from the alignment scores, we could effectively evaluate the performance of
the trained models. This approach allowed us to assess how well the models classified
the reads as correct or incorrect based on the alignment score-derived labels, provid-
ing crucial feedback on the models’ effectiveness and reliability. Furthermore, the col-
lection of correctly labeled reads could be subjected to additional analysis, where they
are assembled using one of the NGS assemblers (i.e., Velvet [44]) that bypass the error
correction stage. Subsequently, various assembly evaluation metrics [45] can be applied
to assess the quality and accuracy of the assembled sequences. We extended our analysis
by evaluating the assembly results with/without applying the error correction using a
stand-alone tool (i.e., Lighter [13]). We then compared these assembly results with those
filtered by the best reported machine learning model without error correction and with
correcting the erroneously classified reads.
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MAC-ErrorReads is implemented in Python 3.9, with the availability of librar-
ies numpy, pandas, matplotlip, and sklearn. Its source code is freely available from the
GitHub repository (https://github.com/amirasamy95/MAC-ErrorReads) under the MIT
license.

MAC-ErrorReads performance on E. coli dataset

The first genome used in the training process of the MAC-ErrorReads system is Escheri-
chia coli str. K-12 substr. MG1655 (E. coli) with RefSeq accession NC_000913. Using
C=30X,=4641652 bp, and L=300 bp, the total number of paired-end reads used to
cover the genome is N < 464165. Machine learning models were trained using various
k-mer sizes (7, 9, 11, 13, and 15) [46] on a dataset comprising 400,000 correctly reads
labeled with 0 and 400,000 erroneous reads labeled with 1. To ensure that the labels
assigned to the reads reflect its accuracy, we used a wgsim simulator to generate the
required number of N=2800,000 paired-end reads with L =300, and the error rate e=0
for correct reads, and e=1 for erroneous reads. We split the data into training (600,000
reads) and testing (200,000 reads). Subsequently, the training data is divided using a five-
fold cross-validation scheme. The hyperparameters’ settings for different machine learn-
ing models are presented in Table 3.

The performance of SVM, RF, LR, NB, and XGBoost on a simulated testing dataset
(200,000 reads) is presented in Table 4, demonstrating the algorithmic performance
across various k-mer sizes.

The accuracy, precision, recall, and Fl-score are calculated using the equations
provided in Table 2. Some reported results encountered issues, denoted by " x " indi-
cating that these metrics could not be computed. Across all k-mer sizes, SVM con-
sistently achieved a perfect score (1) for accuracy, precision, recall, and F1-score.
Like SVM, RF and NB achieved very high scores for all metrics across most k-mer
sizes, with a minor decrease observed when a small k-mer size (7 and 9) is used. LR
and XGBoost addressed difficulties in handling high k-mer sizes (13 and 15), indicat-
ing the importance of selecting the appropriate k-mer size for the given dataset (see
Fig. 3, represented by dotted lines). All models applied to an E. coli simulated dataset
with a k-mer size of 11 achieved a value of 0.99 for both MCC and ROC, indicating a
consistent and strong performance across the different machine learning models (see
Fig. 4).

Table 2 Standard evaluation metrics for machine learning reads classification

Metric Definition
P True Positives are error-free reads correctly classified as error-free
FP False Positives are erroneous reads incorrectly classified as error-free
FN False Negatives are error-free reads incorrectly classified as erroneous
N True Negatives are erroneous reads correctly classified as erroneous
accuracy __(P+TN)
(TP+TN+FP+FN)
precision _(ap
(TP+FP)
recall _ap
(TP+FN)
F1-score 2xrecallxprecision
(recall+precision)
McC TPXTN—FPxFN

TPHFP) X (TPEFN) X (INHFP) X (INHFN)
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To evaluate the effectiveness of the E. coli trained models on reads from real
sequencing experiments, we utilized a real dataset with accession number SRR625891.
For the testing phase, we employed 100,000 reads from this sequencing experiment,
where each read had a length of 90 bases. Tables 4, 5, 6, and 7 show the accuracy,
precision, recall, and F1-score results of different algorithms for different k-mer sizes
with different alignment thresholds.

As the reads in real sequencing experiments lacked labels, we employed the BWA
aligner to align the reads to the E. coli reference genome and extract their alignment
scores from the resulting SAM files. Using the read length and the alignment score,
which represents the total number of bases in the read aligned to the reference, we could
establish thresholds to assign labels to the reads. This enabled us to compare the classifi-
cation labels generated by various models with the actual labels computed by the aligner
based on the alignment score. The results computed in Table 5, 6, 7, and 8 consider dif-
ferent thresholds for the total number of aligned bases in the read sequence to the refer-
ence genome (i.e., 90, 80, 70, and 60).

The performance of machine learning models varied based on k-mer size and align-
ment thresholds. SVM demonstrated high accuracy (0.91-1) for k-mer sizes 13 and 15,
effectively distinguishing true positive reads, but showed slightly lower accuracy for k-
mer size 9 at lower thresholds. RF and LR generally achieved moderate accuracy, espe-
cially with smaller k-mer sizes, while LR faced challenges in computing accuracy for
k-mer sizes 13 and 15. In contrast, NB consistently delivered exceptional performance
across all k-mer sizes, with accuracy ranging from 0.8 to 1 for different alignment thresh-
olds, highlighting its proficiency (see Fig. 3, represented by solid lines). Regarding preci-
sion, recall, and F1-score, SVM displayed consistent performance across k-mer sizes and
thresholds, while RF and LR excelled with smaller k-mer sizes. NB consistently dem-
onstrated high precision, recall, and F1-score across various configurations, indicating
its accuracy in positive classifications. Conversely, XGBoost struggled to achieve high
precision and F1-score levels across different settings, revealing limitations in classifying
positive sequencing reads.

Considering the previously recommended k-mer size of 11 for the E. coli dataset and
the whole sequencing read length as a threshold for the total number of aligned bases
(threshold =90), NB yielded an accuracy value of 0.91, denoting that it correctly classi-
fied 91% of the sequencing reads in our dataset (see Fig. 5).

Table 3 Hyperparameter settings for machine learning models

ML models Hyperparameters

SVM C=1

RF n_estimators =100, min_sam-
ples_split=2, min_samples_
leaf=1

LR C=1, penalty =L2, solver=1Ibfgs

NB Alpha=0.1

XGBoost Max_depth =3, n_estima-

tors=300, learning rate=0.1
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Fig. 3 Accuracy results of different machine learning models for the £. coli simulated (dotted lines) and real
(solid lines) datasets using different k-mer sizes
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Fig. 4 ROC curve of different machine learning models for the E. coli simulated dataset using k=11

MAC-ErrorReads performance on S. aureus dataset

The second genome used in the training process is Staphylococcus aureus (S. aureus)
from GAGE [47], the genome size is 2903081 bp and using C=30X, and L=101 bp, the
total number of paired-end reads used to cover the genome is N < 862301. We trained
machine learning models using 400,000 correct reads labeled with 0 and 400,000 erro-
neous reads labeled with 1. We split the data into training (600,000 reads) and testing
(200,000 reads), and then employ a fivefold cross-validation scheme to further partition
the training data. We used k-mer size equals 15 to compute the TF_IDF feature values.
Table 9 shows the performance results of different algorithms for the S. aureus testing
dataset (200,000 reads). All machine learning models (SVM, RE, LR, NB, and XGBoost)
show excellent performance on the S. aureus dataset with a k-mer size of 15, achieving
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high accuracy and consistent precision, recall, and F1-score values. SVM, LR, and NB
stand out as they achieve perfect classification results, while RF and XGBoost are close
behind, with only a slight deviation from perfect scores. Table 9 also presents MCC
and ROC values for different machine learning models applied to the S. aureus dataset
with a k-mer size of 15. Overall, SVM, LR, and NB models demonstrate consistent and
strong performance in accurately classifying the S. aureus dataset (0.99 for both MCC
and ROC), while RF (MCC=0.92 and ROC=0.96) and XGBoost (MCC=0.92 and
ROC=0.95) exhibit slightly lower but still acceptable accuracy levels (see Fig. 6).

We utilized a real dataset from GAGE for the same genome to evaluate the effective-
ness of the S. aureus trained models on reads from real sequencing experiments. We
employed 1,294,104 sequencing paired-end reads from this project, where each read had
a length of 101 bases. For the correctly classified reads by different machine learning
models, we conducted different analyses by assembling the reads using Velvet assembler
that bypasses the error correction stage. The assembly results are evaluated by one of
the assembly evaluation tools called QUAST [48]. The assembly evaluation metrics used
to assess the quality of the assembled sequences, along with their values, are presented
in Table 10. We ran QUAST using default settings with the minimum contig length for
evaluating the assembly results at 500 bp. As stated in Table 11, the correctly classified
reads by SVM and LR have the best assembly results for the total number of resulted
contigs and N50 length. The NB and LR models correctly classified reads with the larg-
est contig length (20,317 bp). NB has the best NG50 and genome coverage (94.2%) and
the largest number of aligned bases to the reference genome (2,741,617 bp). All models
have fairly similar counts of mismatches and indels in all aligned bases in the assembly
results, with only slight variations.

We extended our analysis by evaluating the assembly results with/without applying
the error correction in real sequencing experiments. We then compared these assem-
bly results with those filtered by the NB machine learning model without error correc-
tion and with correcting the erroneously classified reads. This comparison allowed us to
assess the accuracy of correctly classified reads by the NB model (see Table 11).

First, we assembled the entire dataset without error correction. Next, we employed a
stand-alone error correction tool called Lighter [13] to correct the sequencing reads in
the S. aureus dataset and subsequently conducted the assembly after the error correc-
tion stage. We then utilized Lighter to correct the erroneously classified reads by the NB
machine learning model, combined them with the correctly classified ones by the same
model, and performed assembly. Finally, we evaluated the assembly results produced by
all these experiments with the results presented in Table 10 for the correctly classified
reads by the NB model since it has the largest total aligned length and coverage corre-
sponding to a S. aureus reference genome.

Table 11 provides a comprehensive comparison of assembly results for S. aureus reads
under various scenarios, encompassing error correction using the stand-alone Lighter
tool and classification by the NB machine learning model. Among these scenarios, the
NB model’s correctly classified reads yield the minimum number of assembled contigs,
while the largest contig size, N50, and NG50 lengths are achieved by the reads that are
corrected by Lighter, as well as those assembled without error correction, and the NB
model’s erroneously classified reads, which were subsequently corrected by Lighter and
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Table 9 Experimental results of different machine learning models for the S. aureus dataset (k= 15)

Metrics Accuracy Precision Recall F1-score MCC ROC
SVM 1 1 1 1 0.99 0.99
RF 0.96 0.96 0.96 0.96 092 0.96
LR 1 1 1 1 0.99 0.99
NB 1 1 1 1 0.99 0.99
XGBoost 0.95 0.95 0.95 0.95 0.92 0.95
ROC curve
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Fig.6 ROC curve of different machine learning models for the S. aureus dataset using k=15

integrated with the correctly classified ones. Notably, the NB model’s correctly classi-
fied reads demonstrate the highest genome fraction percentage and the maximum total
aligned length, signifying their extensive coverage of the S. aureus genome compared to
results from other approaches. Moreover, the assembly results for the NB model’s cor-
rectly classified reads indicate the absence of misassemblies or misassembled contigs
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and exhibit a low rate of mismatches per 100 kbp. These favorable outcomes suggest that
the NB model’s classification significantly reduces assembly errors.

The correctly classified reads by the MAC-ErrorReads NB model are further analyzed
and compared against various error correction tools, including Lighter, BFC, RECK-
ONER, Fiona, Karect, Pollux, as well as the machine learning-based error correction
tool CARE. It should be noted that these tools perform the error correction stage, while
MAC-ErrorReads does not correct errors; instead, it filters out erroneous reads, retain-
ing the correct ones for further downstream data analysis.

The correctly classified reads are benchmarked against those produced by different
error correction tools, and alignment statistics are computed, indicating the total num-
ber of reads mapped by each tool and the percentage of reads successfully aligned to
the reference genome (see Table 12). Tools like Lighter, BFEC, RECKONER, and Fiona
show similar alignment rates around 33-34%. Karect and Pollux exhibit higher align-
ment rates, with Pollux reaching around 37%, suggesting potentially better performance
in read alignment. MAC-ErrorReads stands out with an alignment rate of 38.69%, sig-
nificantly higher than most other tools, indicating strong performance in aligning reads.
Bowtie 2 generated these statistics, accounting for reads aligned once or multiple times.

The correct and false classified reads by the NB model for the S. aureus genome
undergo redundancy analysis to identify the duplicated reads within both sets. We
utilized the Dedupe script from the BBMap tool [49], revealing 7033 duplicate reads,
accounting for 1.48% of the classified reads across both positive and negative sets.

Table 10 Assembly evaluation results of S. aureus dataset for different machine learning models

Dataset NB correct SVM correct LR correct RF correct XGBoost correct
classified reads classified reads classified reads classified reads classified reads
of S. aureus of S. aureus of S. aureus of S. aureus of S. aureus

Metrics

# contigs 2911 925 933 1425 1431

Largest contig 20,317 19,471 20,317 10,556 10,556

N50 2373 4228 4128 2269 2250

NG50 4329 3874 3852 1952 1924

Genome fraction 94.206 92415 92483 85.761 85475

(%)

#misassemblies 0 0 0 0

#misassembled 0 0 0 0

contigs

Misassembled 0 0 0 0 0

contigs length

# local misas- 2 3 3 4 5

semblies

#mismatches per 2126 20.71 2133 25.64 2552

100 kbp

Total aligned 2,741,617 2,688,962 2,691,135 2,495,928 2,487,833

length

#mismatches 583 557 574 640 635

#indels 10 12 9 9 11
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Table 11 Comparison of assembly results with and without error correction of S. aureus reads,
including the NB model performance

Dataset S.aureusreads  S. aureus reads NB correct NB correct classified
corrected by classified reads + lighter for
lighter reads correcting erroneous

classified reads

Metrics

# contigs 3075 3086 2911 3084
Largest contig 22,555 22,555 20,317 22,555
N50 2952 2938 2373 2940
NG50 5832 5867 4329 5867
Genome fraction (%) 92.170 92515 94.206 92.490
#misassemblies 1 1 0 1
#misassembled contigs 1 1 0 1
Misassembled contigs 1826 1826 0 1826
length

# local misassemblies 3 3 2 3
#mismatches per 100 kbp 2442 25.26 21.26 24.49
Total aligned length 2,682,193 2,691,757 2,741,617 2,690,983
#mismatches 655 680 583 659
#indels 17 19 10 19

MAC-ErrorReads performance on Human Chromosome 14 dataset

The third genome used in the training process is Human Chromosome 14 (H. Chri4)
from GAGE, the genome size is 88289540 bp, and using C=30X, and L=101 bp, the
total number of paired-end reads used to cover the genome is N < 8828954. We trained
the NB machine learning model with k=11 using 500,000 correct reads labeled with
0 and 500,000 erroneous reads labeled with 1. We split the data into training (700,000
reads) and testing (300,000 reads). Subsequently, the training data is divided using a five-
fold cross-validation scheme. The NB model is chosen since it demonstrates consistent
and strong performance in the classification and assembly results of the previous experi-
ments. The NB model achieved the following performance metrics: accuracy (0.98),
precision (0.98), recall (0.98), and F1-score (0.98). Additionally, reported values for the
model include an MCC of 0.96 and an ROC of 0.98.

To evaluate the effectiveness of the H. Chr14 trained model on real sequencing data,
we utilized a real dataset from GAGE, targeting the same genome. Specifically, we
employed 1 Mbp paired-end sequencing reads (L =101 bp) from this project. The reads
correctly classified by the MAC-ErrorReads model were then aligned to the H. Chri4
reference genome using Bowtie 2, and alignment statistics were computed. Additionally,
we conducted a benchmark comparison with various error correction tools mentioned
previously (refer to Table 12). Notably, tools like Lighter, Karect, CARE, Pollux, and
MAC-ErrorReads demonstrated alignment rates exceeding 99%. BFC and RECKONER
achieved rates over 98%, while Fiona exhibited a slightly lower alignment rate of 95.78%.

The NB model’s correct and false classified reads for the H. Chr14 experience redun-
dancy analysis, revealing 110 duplicate reads, accounting for 0.17% of the classified reads
across both positive and negative sets.
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MAC-ErrorReads performance on Arabidopsis thaliana dataset

The MAC-ErrorReads is trained on the Chrl of Arabidopsis thaliana genome with Ref-
Seq accession NC_003070.9. The dataset size is 30,427,671 bp, and the total number of
paired-end reads used to cover this genome is N < 3651321, considering the C=30X,
L =250 bp. We trained the NB machine learning model with k=11using 200,000 cor-
rect reads labeled with 0 and 200,000 erroneous reads labeled with 1. The dataset set is
split into 300,000 reads for training and 100,000 reads for testing. Subsequently, a five-
fold cross-validation scheme is employed to further partition the training data. The NB
model achieved an accuracy of 0.99, precision of 0.99, recall of 0.98, F1-score of 0.99,
MCC of 0.98 and a ROC of 0.99. To assess the performance of the Arabidopsis thali-
ana Chrl trained model on real sequencing data from the same genome, we obtained
300,000 reads, each with a length of 250 bp from a sequencing run with accession num-
ber ERR2173372. The benchmarking results, comparing the performance with various
error correction tools, are presented in Table 12.

Overall, Karect, RECKONER, and MAC-ErrorReads showed good alignment rates of
91.80%, 91.78%, and 90.87%, respectively, while also producing reasonable numbers of
mapped reads to the reference genome. Pollux achieved a high alignment rate (92.62%)
despite having fewer mapped reads compared to the other tools, as it excludes a substan-
tial number of sequencing reads before initiating the error correction process.

The redundancy analysis of the correctly and falsely classified reads by the NB model
for Arabidopsis thaliana Chrl revealed a total of 991 duplicated reads, accounting for
4.66% of the classified reads across both positive and negative sets.

MAC-ErrorReads performance on Metriaclima zebra dataset
The MAC-ErrorReads is trained on Metriaclima zebra genome with RefSeq accession
GCF_000238955.4. The dataset size is 957.5Mbp, and the total number of paired-end

Table 12 Alignment statistics for various benchmarking error detection and correction tools

Tools S. aureus H.Chr14 Arabidopsis thaliana  Metriaclima zebra
Chri
Mapped Alignment Mapped Alignment Mapped Alignment Mapped Alignment
reads* rate (%) reads* rate (%) reads* rate (%) reads* rate (%)
Lighter 565,623 33.82 992,819  99.28 272,145 90.72 742,408 8249
BFC 562,978  33.66 089326 9893 272,221 90.74 741331 8237
RECK- 555,322 33.20 989,606  98.96 275,333 91.78 754974  83.67
ONER
Fiona 548,248 32.78 957,850  95.78 265,828 88.61 722217 80.59
Karect 588,395 35.18 991,623 99.16 275,393 91.80 753414 8371
Pollux 441,739 36.77 312,731 99.15 128,813 9262 297,605 9123
CARE** 541616 3238 990,305 99.03 272,150  90.72 744147 82.68
MAC- 540246  38.69 959,644  99.14 262,880  90.87 699,018  83.76
Error-
Reads***

*Bowtie 2 is utilized to generate these statistics, wherein the total number of mapped reads encompasses those aligned
only once as well as those aligned multiple times

**CARE relies on RF machine learning model for error correction

***MAC-ErrorReads is a filtration tool that classifies reads as either correct or erroneous but does not perform error
correction for the reads classified as erroneous
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reads used to cover this genome is N < 284396638, considering the C=30X, L=101 bp.
We trained the NB machine learning model with k=11 using 500,000 correct reads
labeled with 0 and 500,000 erroneous reads labeled with 1. The dataset set is split into
700,000 reads for training and 300,000 reads for testing, followed by the employment of
a fivefold cross-validation scheme to further partition the training data. The NB model
achieved an accuracy of 0.96, precision of 0.97, recall of 0.96, F1-score of 0.96, MCC of
0.93 and a ROC of 0.96. To assess the performance of the Metriaclima zebra trained
model on real sequencing data from the same genome, we obtained 900,000 reads, each
with a length of 101 bp from a sequencing run with accession number SRR077289. The
benchmarking results, comparing the performance with various error correction tools,
are presented in Table 12.

Overall, MAC-ErrorReads, Karect, and RECKONER exhibited good alignment rates
of 83.76%, 83.71% and 83.67%, respectively, while also generating reasonable numbers of
mapped reads to the reference genome. Pollux achieved a high alignment rate (91.23%)
despite having fewer mapped reads compared to the other tools, as it excludes a substan-
tial number of sequencing reads before initiating the error correction process.

The redundancy analysis of the correctly and falsely classified reads by the NB model
for Metriaclima zebra revealed a total of 29,392 duplicated reads, accounting for 22.82%
of the classified reads across both positive and negative sets.

Discussion

In this study, we introduced MAC-ErrorReads, a machine learning-assisted classifier
designed to address the challenge of distinguishing erroneous from accurate reads in
NGS datasets. MAC-ErrorReads converts the erroneous NGS read filtration process
into a robust binary classification problem, where reads are classified as either ‘1’ for
erroneous or ‘0 for correct. Five supervised machine learning algorithms NB, SVM, RF,
LR, and XGBoost were trained and tested using simulated and real data sets from the
E. coli, GAGE S. aureus, H. Chri4, Arabidopsis thaliana Chrl, and Metriaclima zebra
genomes. These algorithms were trained on a set of extracted features obtained through
the computation of TF_IDF values for the set of identified k-mers from the sequencing
data. The extracted features are computed without relying on expensive preprocessing
stages such as MSA or multiple k-mers hashing techniques. We provided a theoretical
limit on the number of reads used for a training process utilizing the Lander-Waterman
sequencing coverage equation. Various evaluation metrics, including accuracy, preci-
sion, recall, F1-score, MCC, and ROC are computed based on alignment scores and used
to assess the classification labels reported by the machine learning trained models.

For the simulated E. coli dataset, SVM consistently achieved a perfect score (1) for
accuracy, precision, recall, and F1-score across different values of k for TF_IDF features
computation. This indicates that SVM excelled in correctly classifying the sequencing
reads, regardless of the k-mer size used. Similar to SVM, RF and NB achieved very high
scores for all metrics across most k-mer sizes. A minor decrease in various evaluation
metrics is observed when a small k-mer size (7 and 9) is used, indicating that the TF_
IDF features with these specific k-mer sizes encounter difficulty discerning true positive
instances. LR and XGBoost faced difficulties in handling high k-mer sizes (13 and 15),
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indicating the importance of selecting the appropriate k-mer size for the given dataset
and the potential impact on different machine learning models’ performance. All models
applied to an E. coli simulated dataset with a k-mer size of 11 achieved a value of 0.99
for both MCC and ROC metrics. Overall, we recommend utilizing a k-mer size of 11 for
the E. coli dataset, which is expected to yield satisfactory performance outcomes for all
machine learning models.

We evaluated the effectiveness of the E. coli trained models on reads from real
sequencing experiments considering different k-mer sizes and alignment thresholds. The
accuracy results of SVM varies based on both k-mer size and the threshold for the num-
ber of aligned bases. Notably, it shows high accuracy (0.91-1) for k-mer sizes 13 and 15,
indicating its effectiveness in distinguishing true positive sequencing reads. For other
k-mer sizes, SVM achieves decent accuracy, though it drops slightly for k-mer size 9 at
lower thresholds. RF and LR generally show moderate accuracy outcomes, primarily for
smaller k-mer sizes. It is worth noting that LR experiences difficulty in computing accu-
racy for k-mer sizes 13 and 15. In contrast, NB delivers consistently exceptional perfor-
mance across all k-mer sizes, with accuracy ranging from 0.8 to 1, considering various
alignment thresholds. Conversely, XGBoost faces challenges in achieving satisfactory
accuracy results when compared to other models. Additionally, it fails to produce accu-
racy outcomes for k-mer sizes 13 and 15.

In terms of precision, recall, and Fl-score results, SVM exhibits consistent perfor-
mance across various k-mer sizes and thresholds. On the other hand, RF and LR dem-
onstrate favorable outcomes with smaller k-mer sizes as opposed to larger ones. Notably,
LR experienced issues providing results for k-mer sizes 13 and 15. Conversely, NB dem-
onstrates precision levels ranging from 0.88 to 1, as well as recall and F1-score levels
ranging from 0.9 to 1 across diverse k-mer sizes and thresholds. This achievement high-
lights NB proficiency in accurate positive classifications, particularly evident through
consistently high precision, recall, and F1l-score across all configurations. However,
XGBoost encounters difficulties in attaining high precision, and F1-score levels across
various k-mer sizes and thresholds, featuring its limitations in effectively classifying pos-
itive sequencing reads.

Considering the previously recommended k-mer size of 11 for the E. coli dataset and
the whole sequencing read length as a threshold for the total number of aligned bases
(threshold =90), NB yielded an accuracy value of 0.91, denoting that it correctly clas-
sified 91% of the sequencing reads in our dataset. This accuracy level highlights the NB
proficiency in differentiating between correct and erroneous reads. NB attained a preci-
sion metric of 1, which signifies that when our model designated a sequencing read as
erroneous, it was accurate 100% of the time. This is important in our context, as clas-
sifying accurate reads as erroneous could lead to data loss and erroneous conclusions.
NB high precision score demonstrates its ability to maintain a low rate of false positives.
The recall of the NB model was computed at 1, which signifies that our model effectively
identified 100% of the actual erroneous sequencing reads. A high recall value in this con-
text is vital, as it implies that NB model can capture a significant portion of erroneous
reads, which is crucial for downstream data analysis. The F1-score of NB model, a bal-
anced measure of precision and recall, was determined to be 0.95. This score signifies
that NB model manages to strike a harmonious balance between precision and recall,
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indicating that it performs well in making accurate classifications while also identifying a
substantial portion of erroneous reads.

For the S. aureus simulated dataset, all machine learning models (SVM, RE, LR, NB,
and XGBoost) show excellent performance with a k-mer size of 15, achieving high accu-
racy and consistent precision, recall, F1-score, MCC, and ROC values. SVM, LR, and
NB stand out as they achieve perfect classification results, while RF and XGBoost are
close behind, with only a slight deviation from perfect scores. We tested the efficiency
of the trained models by utilizing real sequencing reads from GAGE for the S. aureus
genome and evaluated the assembly results of the correct classified reads by all mod-
els. The correct classified reads by SVM, and LR has the best assembly results for the
minimum number of resulted contigs and the largest N50 length. The NB and LR mod-
els correctly classified reads with the largest contig length. NB has the best NG50 and
genome coverage and the largest number of aligned bases to the reference genome. All
models have fairly similar counts of mismatches and indels in all aligned bases in the
assembly results, with only slight variations.

We also presented a comprehensive comparison of assembly results for S. aureus reads
under different conditions, including error correction using the stand-alone Lighter tool
and classification by the NB machine learning model. The minimum number of assem-
bled contigs produced by the correctly classified reads by the NB model while the larg-
est contig size, the largest N50 and NG50 lengths are produced by the reads corrected
by Lighter as well as the reads assembled without error correction and the NB errone-
ously classified reads that were subsequently corrected by Lighter and combined with
the correctly classified reads by the same model. The NB correct classified reads exhibit
the highest genome fraction percentage and the largest total aligned length, indicat-
ing that they cover a larger portion of the S. aureus genome compared to the assembly
results produced by the other approaches. Further, the assembly results of the NB cor-
rect classified reads show no misassemblies or misassembled contigs and have a low rate
of mismatches per 100 kbp, which are positive outcomes, suggesting that the NB model’s
classification results help reducing the assembly errors. Generally, The NB correct classi-
fied reads demonstrate several advantages: they have a higher genome fraction percent-
age, lower mismatch rates, and a more extensive total aligned length compared to reads
corrected by the stand-alone error correction tool Lighter and reads assembled with-
out error correction. Additionally, they are free from misassemblies and misassembled
contigs. These results suggest that the NB model’s classification effectively identifies and
retains the most accurate reads, improving assembly quality and genomic coverage for S.
aureus.

The correctly classified reads from the MAC-ErrorReads NB model for the S. aureus
dataset are compared against reads produced by error correction tools such as Lighter,
BFC, RECKONER, Fiona, Karect, Pollux, and CARE. Unlike these tools that correct
errors, MAC-ErrorReads filters out errors, preserving accurate reads for further analysis.
Benchmarking these reads reveals that while Lighter, BFC, RECKONER, and Fiona show
alignment rates of around 33-34%, Karect, and Pollux exhibit higher rates, especially
Pollux at around 37%. Notably, MAC-ErrorReads stands out with an alignment rate of
38.69%, surpassing most tools. Additionally, redundancy analysis on correctly and falsely
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classified reads uncovers 7033 duplicate reads, constituting 1.48% of classified reads for
the S. aureus genome.

For the H. Chri4 simulated dataset, the NB model achieved an accuracy of 0.98, with
precision, recall, and F1-score also at 0.98. Additionally, it obtained an MCC of 0.96 and
a ROC of 0.98. Alignment statistics were computed for the correctly classified reads and
compared with various error correction tools. Notably, Lighter, Karect, CARE, Pollux,
and MAC-ErrorReads showed exceptional alignment rates of over 99%. BFC and RECK-
ONER achieved rates above 98%, while Fiona had a slightly lower rate of 95.78%. Fur-
thermore, a redundancy analysis of correctly and falsely classified reads by the NB model
identified 110 duplicate reads, comprising 0.17% of the total classified reads across both
positive and negative sets for H. Chri4.

For the Arabidopsis thaliana Chrl simulated dataset, The NB model achieved an accu-
racy of 0.98, precision of 0.99, recall of 0.96, F1-score of 0.98, MCC of 0.96 and a ROC
of 0.98. The alignment statistics indicated that Pollux, Karect, RECKONER, and MAC-
ErrorReads demonstrated good alignment rates of 92.62%, 91.80%, 91.78%, and 90.87%,
respectively. For the Metriaclima zebra simulated dataset, The NB model achieved an
accuracy of 0.99, precision of 0.99, recall of 0.98, F1-score of 0.99, MCC of 0.98 and
a ROC of 0.99. The alignment statistics revealed that the Pollux error correction tool
achieved a high alignment rate of 91.23%, despite having the lowest number of mapped
reads. MAC-ErrorReads, Karect, and RECKONER demonstrated good alignment rates
of 83.76%, 83.71%, and 83.67%, respectively, while also producing reasonable numbers of
mapped reads to the reference genome. The redundancy analysis of correctly and falsely
classified reads by the NB model revealed a total of 991 and 29,392 duplicated reads,
accounting for 4.66% and 22.82% of the classified reads across both positive and negative
sets for the Arabidopsis thaliana Chrl and Metriaclima zebra respectively.

The choice of k-mer size has a notable impact on the performance of the machine
learning models, with some models (SVM, NB) showing better performance at larger
k-mer sizes, while others (RF, LR, and XGBoost) may not be able to produce results at
these larger sizes. Upon calculating the TF _IDF, a vector is generated, its length deter-
mined by the count of distinct k-mers. As the k-mer size increases, the number of
unique k-mers grows, the vector’s size expands correspondingly, demanding a substan-
tial amount of RAM, which fails to compute the performance results for larger k-mer
sizes for some models. The findings highlight the importance of selecting appropriate
features (k-mers) for the dataset and the significance of using the right model for specific

configurations.

Conclusions

This study introduces MAC-ErrorReads, a machine learning-assisted classifier that
effectively addresses the challenge of distinguishing erroneous from accurate reads in
NGS datasets. Through extensive testing on both simulated and real datasets, we have
demonstrated the remarkable performance of MAC-ErrorReads, particularly the NB
model, which achieved high accuracy and precision in read classification. Applying
MAC-ErrorReads to real sequencing data from E. coli, S. aureus, H. Chr14, Arabidop-
sis thaliana Chrl and Metriaclima zebra yielded good performance results, with the
NB model consistently outperforming other algorithms. Furthermore, our mapping
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and assembly results analysis highlighted the benefits of correctly classified reads by
the NB model, including comparable alignment rates, enhanced genome coverage,
and reduced errors. By eliminating the need for expensive preprocessing stages and
offering robust classification capabilities, MAC-ErrorReads streamlines NGS data
analysis and enhances its quality. This research represents a significant step forward
in the field of genomics, leveraging the power of artificial intelligence and machine
learning to improve the accuracy and reliability of genomic analysis. The fusion of
genomics and artificial intelligence, as exemplified by MAC-ErrorReads, contributes
to the refinement of NGS data and opens up new possibilities for genetics, genom-
ics, and personalized medicine research. As genomics continues to play a pivotal role
in understanding genetic variations, gene expression patterns, and epigenetic modi-
fications, tools like MAC-ErrorReads hold the potential to revolutionize the NGS
data manipulation and interpretation. Future directions of this study include utiliz-
ing feature selection (Minimizers) and reduction stages, allowing the incorporation of
other additional features, such as the distribution of quality scores. Also, the group of
erroneously classified reads can be analyzed further by identifying potential contami-
nation of genetic material by microorganisms such as bacteria, viruses, and fungal
genomes during the sequencing experiments.
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