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Abstract 

Background:  Joint analysis of multiple phenotypes in studies of biological systems 
such as Genome-Wide Association Studies is critical to revealing the functional interac-
tions between various traits and genetic variants, but growth of data in dimensional-
ity has become a very challenging problem in the widespread use of joint analysis. 
To handle the excessiveness of variables, we consider the sliced inverse regression 
(SIR) method. Specifically, we propose a novel SIR-based association test that is robust 
and powerful in testing the association between multiple predictors and multiple 
outcomes.

Results:  We conduct simulation studies in both low- and high-dimensional settings 
with various numbers of Single-Nucleotide Polymorphisms and consider the correla-
tion structure of traits. Simulation results show that the proposed method outperforms 
the existing methods. We also successfully apply our method to the genetic associa-
tion study of ADNI dataset. Both the simulation studies and real data analysis show 
that the SIR-based association test is valid and achieves a higher efficiency compared 
with its competitors.

Conclusion:  Several scenarios with low- and high-dimensional responses and geno-
types are considered in this paper. Our SIR-based method controls the estimated type I 
error at the pre-specified level α.

Keywords:  Sliced inverse regression, Sufficient dimension reduction, Dimension 
reduction

Introduction
In recent biomedical research, Genome-Wide Association Studies (GWAS) often 
requires the simultaneous consideration of multiple phenotypes. It has been shown 
that jointly analyzing the multiple phenotypes together can increase statistical power to 
detect genetic variants [1, 2]. Introducing more information through the joint analysis 
will benefit revealing the complex relationship that may be undiscovered by the single 
phenotype analysis [3]. Meanwhile, the progressive improvements in data collection 
techniques have made it possible to measure more types of high-dimensional data on 
the same subject.
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So far, the common strategies used to detect genetic associations in the joint analysis 
of multiple phenotypes can be roughly classified into several categories, such as regres-
sion model-based methods, nonparametric association methods, and p value correction 
methods. The regression model-based methods mainly exploit multivariate regression 
models [4–6], generalized estimating equations (GEEs), and mixed effects models [7–9]. 
As functional regression models perform well in most cases, Chui et al. [10] extended 
them to meta-analysis of pleiotropy traits, and Wang et  al. [11] developed multivari-
ate functional linear models and hypothesis testing procedure to test the association 
between multiple quantitative traits and multiple genetic variants in one genetic region. 
As a representative of the nonparametric association method, Zhang et al. [12] tested 
any hybrid of dichotomous, ordinal, and quantitative traits based on a generalization of 
Kendall’s tau. Zhu et al. [13] extend their method to accommodate covariates and pro-
posed a nonparametric covariate-adjusted association test. Among the representative p 
value correction methods, one approach is Fisher’s combined method [14], which inte-
grated the results from standard univariate analysis p value, and has been extended to 
dependent univariate test. Another approach called the minimum of the p value (Minp) 
method [15] has been applied to independent test studies to improve power when a 
SNP affects only a very small number of multiple phenotypes, but it is less powerful for 
denser signals. Sluis et al. [16] proposed the TATES method, which has good power in 
the presence of very few association signals but can lose its dominance otherwise.

Nevertheless, these methods focus only on the low-dimensional or moderate numbers 
of phenotypes. To this end, several dimension reduction methods, including principal 
component (PC) analysis, have been developed to reduce the high dimensionality of the 
phenotypes. Liu and Li [2] proposed the PC-based tests to take the high dimensional 
phenotypes into account and proved how to combine PCs together to achieve better 
power. But in fact, the PC-based tests consider only a single SNP, which makes it impos-
sible to directly extend these tests to study the association between high dimensional 
phenotypes and multiple genotypes. Actually, with the development of next-generation 
sequencing technologies, recent GWAS usually collects high-dimensional SNPs and 
phenotypes. The implementation of association study often encounters other difficulties 
associated with the extremely high computational burden.

As another attempt to cope with the excessiveness of variables, Cook [17] introduced 
the idea of sufficient dimension reduction (SDR), which assumes that the response vari-
able relates to only a few linear combinations of the many covariates. In this paper, we 
intend to reduce the dimension of the multivariate phenotype y without loss of informa-
tion about the multiple genotypes g based on the idea of SDR, where the dimension of 
y could be large. To this end, we use the sliced inverse regression (SIR) proposed by Li 
[18] to seek the effective dimension-reduction (e.d.r) direction and propose a SIR-based 
testing method for genetic association with multiple phenotypes. Different from the 
principal component analysis, the motivation behind the SIR is to preserve regression 
information during carrying out dimension reduction of multivariate phenotype, so that 
the resulting variates capture important features of the regression relationship between 
the multivariate phenotypes and multiple phenotypes. The simulation studies illustrate 
that the type  I error rates of our proposed tests are well-controlled and that the power 
is robust and powerful. We also apply the proposed SIR-based test to a real dataset, the 
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, and successively identify 
the new genetic variants.

Methods
SIR‑based association test of multiple phenotypes

Data structure and linear regression

Suppose that data are collected from a population-based sequencing study with n inde-
pendent individuals. For each individual, we observe q disease phenotypes and geno-
types at k SNPs. Let the phenotype vector and genotype vector be y = (y1, . . . , yq)

T and 
g = (g1, . . . , gk)

T , respectively. Then, the observations of genotypes and trait measure-
ments for n individuals are denoted as an n× k matrix G = (g1, . . . , gn)

T and an n× q 
matrix Y = (y1, . . . , yn)

T , respectively. Here, notations of g i and yi refer to the instances 
of g and y for i-th individual ( i = 1, . . . , n ). In this study, the q could be large, so detect-
ing disease-associated genetic variants with large q is very challenging. In addition, the 
effects of the correlation between phenotypes and the direction of genetic effects should 
be considered. For brevity, we focus on the most popular continuous phenotypes only 
and consider a multivariate linear regression model with large q.

To describe the relationship between the phenotype y and the genotype g , we propose 
the following linear model:

where B = (βT
1 . . . ,βT

k )
T is a k × q matrix of the regression coefficients, 

β j = (βj1, . . . ,βjq) is a q-dimensional row vector of regression coefficients for the j-th 
SNP, which represents the effects of the j-th SNP on q phenotypes, and ε is the q-dimen-
sional error vector with zero mean and true covariance matrix, which is often unknown. 
Here, the intercepts are omitted with y being properly centered. We can rewrite the 
above model in the following matrix form:

where E = (ε1, . . . , εn)T is the n× q error matrix with εi being the q-dimensional error 
vector for i-th individual.

Our primary interest lies in testing whether the genetic markers g are associated with 
the traits y . To address this problem, two strategies are commonly considered. Firstly, test-
ing the effects of the j-th SNP on q phenotypes is equivalent to testing the null hypothesis 
H0 : β j = 0 against the alternative hypothesis H1 that at least one element of β j is not 

equal to zero. In this case, the Wald-type statistic T1 = β̂ j Cov(β̂ j)
−1

β̂
T

j  is adopted, 

where β̂ j is the maximum likelihood estimator (MLE) of β j and Cov(β̂ j) is its covariance 
matrix. The test statistic T1 has q degrees of freedom. When q is large and heterogeneous 
effects exist, especially when a variant only affects a subset of traits, the test statistic may 
be less powerful due to the large degrees of freedom. Furthermore, conducting the associa-
tion study with multiple tests often results in a significant loss of statistical power due to a 
large number of comparisons. The second strategy involves considering the association 
between all k SNPs and q phenotoypes, which is equivalent to testing the null hypothesis 

(1)y = B
T g + ε,

(2)Y = GB+ E,
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H0 : B1 = 0 . The Wald-type statistic can be rewritten as T2 = B̂1

[
Cov(B̂1)

]−1
B̂
T
1  , where 

B̂1 is the MLE of B1 = (β11, . . . ,β1q ,β21, . . . ,β2q , . . . ,βk1, . . . ,βkq) . The test statistic T2 
has kq degrees of freedom and the implementation of the association study with high-
dimensional phenotypes often encounters other difficulties concerning the extremely high 
computational burden. Since both T1 and T2 have their own disadvantages for large degrees 
of freedom, a common solution is to reduce the dimensionality of responses and/or pre-
dictors. In the following subsections, we present a SIR-based dimension reduction of y and 
test procedures with reduced phenotypes y.

SIR‑based dimension reduction of y

As the dimension of phenotype y is very large, it is highly desirable that interesting fea-
tures of high-dimensional data are retrievable from low-dimensional projections. PCA 
is perhaps the most well-known method for reducing dimensionality. But since the pro-
cedure is carried out without using the predictor variable, certain interesting regression 
variables may be lost in the reduction process and hardly capture important features of 
the regression relationship between response variables and predictors. Another attempt 
to cope with the excessiveness of variables is the SDR approach, which assumes that only 
a few linear combinations of original variables are sufficient to reveal the information 
within them without changing their explanatory effect on the response variable. Iden-
tifying these linear combinations is the goal of dimension reduction. To this end, many 
authors have utilized the so-called sliced inverse regression (SIR) method proposed by 
[18], which focuses on the inverse regression method by reversing the relation between 
the response and predictor variables to benefit from the response variable being, usually, 
of lower dimension than predictor vector. Here, we adopt the SIR method to reduce the 
dimension of the multivariate response y without loss of information about the multiple 
genotypes g.

To better understand the SIR method, we consider the following forward regression 
model:

where S1, . . . , Sd are unknown e.d.r directions, d is the number of dimensions one 
want to achieve, ǫ is independent of y , and f is an arbitrary unknown function on Rd+1 . 
When the model  (3) holds, the q-dimensional y can be projected onto the d-dimen-
sional subspace with d ≪ q , so that interesting features of the high-dimensional y are 
compressed by low-dimensional projections. If g is statistically independent of y when 
STmy,m = 1, . . . , d , are given, it is sufficient to focus only on the d reduced variables 
STmy ’s for studying the relationship between g and y . At this point, the column space of a 
q × d matrix S = (S1, . . . , Sd) becomes a SDR subspace.

To reduce the dimension as much as possible, we are often interested in the SDR 
subspace with the smallest dimension. Under mild conditions  [17, 19], the intersec-
tion of all SDR subspaces is still an SDR subspace, and the smallest SDR subspace 
is called the central subspace. For notational simplicity, in the following, we assume 
the central subspace to be estimated is spanned by a q × d0 basis matrix, denoted by 

(3)g = f (ST1 y, S
T
2 y, . . . , S

T
d y, ǫ),
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S0 =
(
S1, . . . , Sd0

)
 . If we further assume that y has been standardized to z , under a 

linearity condition that E(z | ST0 z) is linear in ST0 z , it is guaranteed that the E(z | g) 
belong to the space spaned by S1, . . . , Sd0 [18, 20]. Then, we can estimate the central 
subspace by applying a principal component analysis to the random vector E(z | g) , 
following the approach proposed by [18]. Equivalently, we can derive a basis of central 
subspace by solving

the solution of which is formed by the d0 leading eigenvectors of Cov[E(z | g)] , where 
Cov[E(z | g)]=E

[
E(z | g)E(z | g)T

]
 and tr(·) represents the sum of the eigenvalues of the 

matrix Cov[E(z | g)].
In this study, our concern is focused on testing the association between marker genes 

and multiple traits. However, under the null hypothesis, the traits and genes are independ-

ent. In this case, Cov[E(z | g)] = E
[
(E(z | g)− E[E(z | g)])(E(z | g)− E[E(z | g)])T

]
= 0 , 

and the estimation of Cov[E(z | g)] will be very small and close to 0 in actual situations, 
then it becomes challenging to directly apply the PCA on the Cov[E(z | g)] by following 
the SIR method suggested by [18]. Fortunately, we see the relation between Cov[E(z | g)] 
and E[Cov(z | g)] as

Alternatively, by applying the eigenvalue decomposition of E[Cov(z | g)] , we can deter-
mine the standardized e.d.r. directions which are the eigenvectors associated with the d0 
smallest eigenvalues. This procedure equivalently derives a basis of central subspace by 
solving

the solution of which is formed by the d0 leading eigenvectors of E[Cov(z | g)].
In the following, we give a detailed estimation procedure utilizing the SIR scheme 

based on the observed data ( g i, yi ), i = 1, . . . , n : 

(a)	 Standardize yi by an affine transformation to get zi = �̂
−1/2
yy (yi − y) , ( i = 1, . . . , n ), 

where �̂yy and y are the sample covariance matrix and sample mean of y1, . . . , yn , 
respectively.

(b)	 Divide the range of g into the H slices, I1, . . . , IH ; let the proportion of the g i ’s fall-
ing into the h-th slice be p̂h ( h = 1, . . . ,H ), that is, p̂h=(1/n)

∑n
i=1 δh

(
g i
)
 , where 

δh

(
g i
)
 takes the value 0 or 1 depending on whether g i falls into the h-th slice Ih or 

not.
(c)	 Within each slice, compute the sample covariance of the zi’s, denoted by 

v̂h (h = 1, . . . ,H) , that is, v̂h =
(
1/np̂h

)∑
g i∈Ih

ziz
T
i .

(d)	 Conduct a (weighted) principal component analysis for the data v̂h (h = 1, . . . ,H) : 
firstly, form the weighted mean value Ê =

∑H
h=1 p̂hv̂h ; next, find the eigenvalues 

and the eigenvectors for Ê.

(4)arg max
S
T
0 S0=Id0

tr
(
S
T
0 Cov[E(z | g)]S0

)
,

(5)E[Cov(z | g)] = Cov(z)− Cov[E(z | g)] = I − Cov[E(z | g)].

(6)arg min
S
T
0 S0=Id0

tr
(
S
T
0 E[Cov(z | g)]S0

)
,
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(e)	 Let η̂m (m = 1, . . . , d0) be the m smallest eigenvectors. By transforming back to the 
original scale, output Ŝm = η̂m�̂

−1/2
yy (m = 1, . . . , d0) which are in the e.d.r. space.

When dividing the range of g , the most natural choice is to divide it into H = 3k slices, 
considering the fact that each locus of the k SNPs takes values in {0, 1, 2} . However, if the 
dimension of genotypes is very high, then such a straightforward implementation, while 
theoretically possible, is intractable in practice. This is because there will be many empty 
slices due to a massive number of slices and the limited sample size, making it impossible 
to calculate the covariance in those empty slices. For this reason, we adopt an alternative 
way of dividing the range of g and grouping individuals, following the approach men-
tioned in [21]. Specifically, we first estimate the genetic relatedness matrix to measure 
genetic similarity among individuals and divide the range of g in terms of that similarity. 
Next, we merge adjacent slices so that the number of individuals in each slice is not less 
than 5. Then, we calculate the conditional covariance of each slice according to the esti-
mation procedure for E[Cov(z | g)] , which is described above.

SIR‑based association test with reduced phenotypes

After estimating the d0 standardized e.d.r directions, the q-dimensional y can be projected 
onto the d0-dimensional central subspace with d0 ≪ q . Then, the predictor variable g is 
related to only d0 linear combinations, ST1 y, . . . , S

T
d0
y , and it is sufficient to focus only on 

them. According to [17, 18], it is fair to say that one-component model ( d0 = 1 ) has pre-
vailed, therefore, for the sake of simplicity, only case of d0 = 1 is considered in this paper.

Consequently, the large dimensional phenotype yi (i = 1, . . . , n) can be transformed 
into ỹi ∈ R without loss of information on the corresponding genotype g i . At this point, 
we can investigate the relationship between phenotype y and genotype g in the following 
form:

where Ẽ = (ε̃1, . . . , ε̃n)T is an n× 1 error vector with ε̃i being the error term for i-th 
individual, Ỹ = (ỹ1, . . . , ỹn)

T is an n× 1 vector of the traits, β̃ is a regression coefficient 
vector.

We aim to test whether the set of genetic markers is associated with phenotype after 
dimension reduction. This is equivalent to testing the null hypothesis H0 : β̃ = 0 against 
the alternative hypothesis H1 that at least one element of β̃ is not equal to zero. In this 

case, Wald-type statistic T̃ =

(
̂̃
β

)T[
Cov(

̂̃
β)

]−1(̂̃
β

)
 no longer follows the chi-square 

distribution under the null hypothesis, where ̂̃β is the MLE of β̃ and Cov(̂̃β) is its covari-
ance matrix. We use a permutation procedure to establish the null distribution of T̃  . The 
permutation is done by randomly assigning the genotypes while keeping the phenotypes 
for each individual. For each permuted data set, we use (7) to calculate T̃  as we have 
done by using the original data set. We repeat this procedure 1000 times to generate the 
distribution of T̃  under the null hypothesis of no association between multiple geno-
types and the phenotypes. This testing strategy, in the sense that it is about all coeffi-
cients, can be seen as a global test.

(7)Ỹ = Gβ̃ + Ẽ,
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In addition to this, it is also possible to focus on the association of the single SNP 
after dimension reduction. To this end, we apply Bonferroni correction to adjust for 
multiple testing involving k markers, which is equivalent to testing the null hypoth-
esis H0 : β̃k = 0 against Ha : β̃k �= 0 . The model for this case is

where β̃k is a regression coefficient and ε̃i is an error term for i-th individual. The test 

statistic T̃ 2
k = ˆ̃

β
2
k /Var

(
ˆ̃
βk

)
 also does not follow the chi-square distribution under the 

null hypothesis, where ˆ̃βk is the MLE of β̃k and Var( ˆ̃βk) is its variance. To carry out the 
association test, we apply the permutation procedure to estimate the distribution of T̃k.

Simulation studies
We conduct a series of simulation studies to evaluate the numerical performance 
of the proposed association tests in comparison with eight other PC-based compet-
ing tests, such as PCA1, PCFisher, PCMinp, PCLC, Wald, WI, VC, and PCAQ [2]. 
In these PC-based tests, the PCA1 indicates using only the first principal compo-
nent, the PCFisher can be viewed as a nonlinear combination of the PC p values, the 
PCMinp uses the minimum PC p value as a testing statistic, and other tests aim at 
constructing the linear or quadratic combinations of PCs weighted by the functions 
of eigenvalues.

We simulate the genotype g i = (gi1, . . . , gik)
T  for the i-th individual at k SNPs, 

where the genotype of each SNP is sampled from a uniform distribution with a minor 
allele frequency (MAF=p) between 0.3 and 0.5 under the assumption of Hardy-
Weinberg equilibrium. That is, paa = (1− p)2 , pAa = 2p(1− p) , and pAA = p2 . The 
q-dimensional phenotype yi of the i-th individual is generated from the model (1), 
where εi follows N (0,�) with �lm = ρ

|l−m| for 1 ≤ l,m ≤ q , and ρ is the correlation 
coefficient between phenotypes. Note that the simulated data under the null hypoth-
esis of β = 0 can be used to calculate type I errors, whereas the data under the alter-
native hypothesis saying that β contains at least one nonzero element can be used 
to calculate powers for each method. Hereafter, this global test mentioned above is 
expressed as SIR in this study. Alternatively, based on the model (8), we can also per-
form the association test for each SNP separately, and adjust the test for all the SNPs 
through multiple testing procedure, named SIR-S.

In the simulation studies, we consider three scenarios: Scenario 1 is for the low-
dimensional phenotype (q = 5 and 10) and low-dimensional genotype (k = 5 and 
10); Scenario 2 is for the high-dimensional phenotype (q = 50 and 100) but low-
dimensional genotype (k = 10); Scenario 3 is for both high-dimensional phenotype 
(q = 50 and 100) and genotype (k = 40 and 100). We set the nominal level of signifi-
cance α = 0.05 . Since the PC-based methods focus on the association test of single 
marker, here we apply Bonferroni correction to adjust for multiple testing involving 
k markers. In each scenario, we increase the correlation coefficient of phenotype in 
a series of ρ = 0, 0.2, 0.5, 0.7. For each scenario, we generate 100,000 and 1000 simu-
lated data sets for type I error evaluation and for power calculation, respectively.

(8)ỹi = gik β̃k + ε̃i, i = 1, . . . , n,
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Scenario 1: low‑dimensional phenotype and low‑dimensional genotype

In this scenario, the dimension of phenotype is set to be q = 5 and 10, and the number 
of SNPs is set to be k = 5 and 10. We compare the power of each method in terms of 
the signal direction, signal strength, and the correlation structure among phenotypes. 
To this end, we consider different values of effect vector for each phenotype, specifically 
four cases for this scenario: Case 1 is for k = 5 , q = 5 ; Case 2 is for k = 5 , q = 10 ; Case 3 
is for k = 10 , q = 5 ; Case 4 is for k = 10 , q = 10 . Here, we let most β j ’s be zeros except 
for β3 and β4 being nonzeros. The effect vector of the third SNP β3 on each phenotype 
is positive, except for Case 4, where its direction is mixed. The value of β4 is given such 
that the fourth SNP is only associated with the second trait in all settings. The detailed 
setting of effect vectors is shown in Table 1.

From the results summarized in Table 2, it is apparent to see that the estimated type 
I error values of both SIR and SIR-S methods for different values of q, k, and ρ are very 
close to the true error level of α = 0.05 and the two methods have the well-controlled 
empirical type I error rates in most cases. For further comparisons, we also make the 
PC-based tests as additional baseline methods. Table  2 clearly shows that all the PC-
based methods retain the empirical type I errors very well at the significance level in 
most cases. Notice that the type I error rate of the VC method has slightly conservative 
with the empirical type I error of 0.04237 when we set k = 10 and q = 5 . Overall, the 
SIR and SIR-S methods can accurately control the empirical type I errors at the nominal 
level.

We further compare the empirical powers of the proposed tests with the existing PC-
based methods. For each setup, we generate n = 1000 and 2000 samples. The powers 
are calculated by the proportion of p values less than the significance level. We take the 
signal direction, signal strength, and the correlation structure among traits into account. 
Figures 1 and 2 show the powers of the ten comparative methods for different settings. 
We can see that the powers of the SIR and SIR-S methods are close to 1 and other PC-
based methods are more powerless than the two methods in the case of k = 5 . In a nut-
shell, with the same number of genotypes, if the dimension q is equal to 5, the powers 
of PC-based methods will decrease as the correlation coefficient increases, but if the 
dimension q is equal to 10, the power increases contrarily. However, the proposed meth-
ods still have much higher power than the other alternative methods. Different from the 

Table 1  Low-dimensional setting of effect vectors in Scenario 1

∗ The default value of other effect vectors β j ’s are 0

Case 1 k=5, q=5 β3 = (1.10, 1.10, 1.10, 1.10, 1.10)

β4 = (0.00, 0.02, 0.00, 0.00, 0.00)

Case 2 k=5, q=10 β3 = (1.10, 1.10, 1.10, 1.10, 1.10, 0.00, 0.00, 0.00, 0.00, 0.00)

β4 = (0.00, 0.02, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)

Case 3 k=10, q=5 β3 = (1.10, 1.10, 1.10, 1.10, 1.10)

β4 = (0.00, 0.02, 0.00, 0.00, 0.00)

Case 4 k=10, q=10 β3 = (1.10,−1.10, 1.10,−1.10, 1.10, 0.00, 0.00, 0.00, 0.00, 0.00)

β4 = (0.00, 0.02, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
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case of k = 5 , we can see that the powers of the SIR and SIR-S methods decrease as the 
dimension of genotype k increases. The PCFisher, Wald, and VC have comparable per-
formances to the proposed tests when the effect vectors are in a mixed direction for a 
strong phenotypic correlation. From Figs. 1 and 2, we know that both the SIR and SIR-S 
methods are sensitive to the direction of the signal. The increase in sample size has little 
effect on the power of all methods.

Scenario 2: high‑dimensional phenotype and low‑dimensional genotype

To further show the performance of the proposed methods in the case of high-dimen-
sional phenotype, we carry out additional simulations to compare our SIR and SIR-S 
methods with the other eight methods. Since Scenario 1 shows the sample size has little 
effect on the power for all methods, in this simulation, we only generate n=1000 indi-
viduals with different correlation structures of traits. The datasets are generated simi-
larly to Scenario 1 except for the effect vectors. We consider three cases for this scenario: 
Case 1 is for k = 10 , q = 50 ; Case 2 is for k = 10 , q = 50 ; Case 3 is for k = 10 , q = 100 . 
The effect vector of the third SNP β3 on the first five phenotypes is positive in Case 
1 and Case 3, while the effect vectors in Case 2 have mixed directions. The setting of 

Fig. 1  The evolution of power along with the varying correlation ρ in the case of n = 1000
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Fig. 2  The evolution of power along with the varying correlation ρ in case of n = 2000

Table 3  The setting of effect vectors in Scenario 2

∗ The default value of other effect vectors β j ’s are 0

Case 1 k = 10, q = 50 β3 = c(1.10, 1.10, 1.10, 1.10, 1.10, 0.00, 0.00, . . . , 0.00)

β4 = c(0.00, 0.02, 0.00, 0.00, . . . , 0.00)

Case 2 k = 10, q = 50 β3 = c(1.10,−1.10, 1.10,−1.10, 1.10, 0.00, 0.00, . . . , 0.00)

β4 = c(0.00, 0.02, 0.00, 0.00, . . . , 0.00)

Case 3 k = 10, q = 100 β3 = c(1.10, 1.10, 1.10, 1.10, 1.10, 0.00, 0.00, . . . , 0.00)

β4 = c(0.00, 0.02, 0.00, 0.00, . . . , 0.00)

Table 4  Empirical type I errors based on 100,000 replicates in Scenario 2

k q ρ SIR SIR-S PCA1 PCFisher PCMinp PCLC Wald WI VC PCAQ

10 50 0.0 0.05215 0.05168 0.04962 0.05175 0.05183 0.05304 0.05054 0.05344 0.05214 0.05038

0.2 0.05167 0.05267 0.04782 0.04539 0.05264 0.05016 0.05163 0.04984 0.04993 0.05087

0.5 0.05102 0.05196 0.04935 0.05023 0.04863 0.05127 0.04846 0.04887 0.05062 0.05090

0.7 0.04985 0.05227 0.04935 0.04768 0.04996 0.05023 0.04963 0.04778 0.05123 0.05176

10 100 0.0 0.05015 0.05167 0.04916 0.05224 0.04985 0.04843 0.04908 0.05239 0.05105 0.05137

0.2 0.05103 0.05070 0.05262 0.05143 0.04998 0.04765 0.05325 0.05008 0.04964 0.05661

0.5 0.05234 0.05165 0.05305 0.04816 0.04623 0.04332 0.05233 0.05173 0.05141 0.05122

0.7 0.05004 0.05296 0.05203 0.04984 0.04843 0.04793 0.04878 0.05013 0.05127 0.05027
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the different effect vectors is shown in Table 3. Table 4 summarizes the empirical type 
I errors of these methods for the association analysis. It is clear that all methods can 
control the empirical type I error well in most cases. Then, we compare the powers of 
our methods with the PC-based methods. When q = 50 , we have two cases and set 
the effects of the third SNP on the first five traits to be positive and mixed directions, 
respectively. In all cases, the fourth SNP is only associated with the second trait.

Simulation results for power comparisons are shown in Fig. 3. Figure 3 shows that the 
powers of our SIR and SIR-S methods decrease when the effect vectors are in mixed 
directions for the high-dimensional phenotypes. However, effect vectors in mixed direc-
tions do not affect the power of the PC-based methods. From these observations, we 
can see that our SIR and SIR-S methods are sensitive to the direction of effect vector 
for high-dimensional phenotypes. Clearly, the powers of all methods are affected by the 
dimensional increase of the phenotype to a certain degree. Compare to Scenario 1, the 
powers of both the SIR and SIR-S methods are somewhat decreased, but still, our meth-
ods outperform the competing methods in most cases.

Fig. 3  The evolution of power along with the varying correlation ρ in Scenario 2
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Scenario 3: high‑dimensional phenotype and high‑dimensional genotype

We conduct additional simulations to compare the performance of our proposed tests 
with existing PC-based methods for both high-dimensional phenotype and genotype. 
From Scenario 2, we know that when effect vectors are in mixed directions, the powers 
of our proposed methods decrease in a high-dimensional phenotype setting. For a fair 
comparison with the PC-based methods, in this simulation, we consider the effect vector 
of the third SNP β3 on the first five phenotypes to be of mixed directions. Specifically, 
we consider high-dimensional phenotype and genotype with four cases: Case 1 is for 
k = 40 , q = 50 ; Case 2 is for k = 40 , q = 100 ; Case 3 is for k = 100 , q = 50 ; Case 4 is for 
k = 100 , q = 100 . Table 5 shows the setting of different effect vectors. The datasets are 
generated similarly to Scenario 1, but here the number of SNPs is k = 40 or 100.

Table 6 summarizes the simulation results for type I error estimates. It clearly shows 
that all methods can retain the empirical type I errors very well at the significance level.

Figure  4 presents the simulation results of power comparisons for all settings. The 
powers of our SIR and SIR-S methods are reduced as the dimensions of both genes and 
phenotypes increase. Nevertheless, the powers of the proposed methods are still slightly 
higher than the PC-based methods.

Scenario 4: simulation based on a real genotype data

In this section, we perform additional simulations to evaluate the performance of our SIR 
and SIR-S procedures on a more realistically simulated data, and compare with the other 
eight methods based on a real genotype data from the Genetic Analysis Workshop 17 
(GAW17). The genotype data of 697 unrelated individuals are extracted from the sequence 
alignment files provided by the 1000 Genomes Project for their pilot3 study (http://​www.​
1000g​enomes.​org), in which we choose the TG gene as a candidate gene. The TG gene has 
146 SNPs which encodes the thyroglobulin, one of the largest proteins in the human body, 
and mutation of the TG gene may cause hypothyroidism and autoimmune disorders [22].

In this simulation, the 100 dimensional phenotypes of the 697 individuals are generated 
from the model (1). To focus on the main points, six SNPs are selected as the causal variants. 
Specifically, the three SNPs, 20-th, 60-th, 100-th, are chosen to be far away and the others, 
4-th, 6-th, 8-th, are chosen to be clustered. To consider the fact that the causal SNPs affect the 
disease in different directions, we set the effect vector of the each SNP β j on the first five phe-
notypes to be of mixed directions, while the rest of them are set to be 0 . We generate 100,000 
simulated data sets for type I error evaluation and 1000 data sets for power comparison.

Table 5  The setting of effect vectors in Scenario 3

∗ The default value of other effect vectors β j ’s are 0

Case 1 k = 40, q = 50 β3 = c(1.10,−1.10, 1.10,−1.10, 1.10, 0.00, 0.00, . . . , 0.00)

β4 = c(0.00, 0.02, 0.00, 0.00, . . . , 0.00)

Case 2 k = 40, q = 100 β3 = c(1.10,−1.10, 1.10,−1.10, 1.10, 0.00, 0.00, . . . , 0.00)

β4 = c(0.00, 0.02, 0.00, 0.00, . . . , 0.00)

Case 3 k = 100, q = 50 β3 = c(1.10,−1.10, 1.10,−1.10, 1.10, 0.00, 0.00, . . . , 0.00)

β4 = c(0.00, 0.02, 0.00, 0.00, . . . , 0.00)

Case 4 k = 100, q = 100 β3 = c(1.10,−1.10, 1.10,−1.10, 1.10, 0.00, 0.00, . . . , 0.00)

β4 = c(0.00, 0.02, 0.00, 0.00, . . . , 0.00)

http://www.1000genomes.org
http://www.1000genomes.org
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Table 7 lists the empirical type I errors of the ten methods of the association analysis 
for TG gene at the nominal level of 0.05. From Table 7, it is apparent to see that all the 

Fig. 4  The evolution of power along with the varying correlation ρ in Scenario 3

Table 7  Empirical type I errors of the TG gene based on 100,000 replicates in Scenario 4

ρ SIR SIR-S PCA1 PCFisher PCMinp PCLC Wald WI VC PCAQ

0.0 0.05001 0.05145 0.04510 0.04409 0.05040 0.05265 0.04551 0.04849 0.04776 0.05165

0.2 0.04998 0.05145 0.05017 0.04764 0.05044 0.04652 0.05135 0.05205 0.04657 0.05528

0.5 0.04985 0.05036 0.05648 0.04879 0.04966 0.05106 0.04667 0.05503 0.04986 0.05663

0.7 0.05113 0.04958 0.04989 0.04782 0.04661 0.05144 0.04876 0.05523 0.04975 0.05356

Table 8  Empirical powers of the TG gene based on 1000 replicates in Scenario 4

ρ SIR SIR-S PCA1 PCFisher PCMinp PCLC Wald WI VC PCAQ

0.0 0.397 0.161 0.281 0.195 0.191 0.074 0.096 0.104 0.119 0.096

0.2 0.385 0.167 0.049 0.117 0.155 0.121 0.152 0.055 0.147 0.099

0.5 0.395 0.158 0.058 0.292 0.297 0.055 0.210 0.062 0.276 0.165

0.7 0.481 0.172 0.056 0.441 0.303 0.082 0.475 0.051 0.478 0.364
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methods control the empirical type I errors of the TG gene very well. Table 8 shows the 
power comparison results of the ten methods for different settings. It clearly shows that 
all methods are robust to the proportion of the causal variants, and the SIR and SIR-S 
methods provide more power than the other methods in most cases.

Application to the sequencing data from ADNI
We analyze the ADNI1 and ADNI2 datasets from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) study. The ADNI seeks to develop biomarkers of the disease 
and advance the understanding of AD (Alzheimer’s disease) pathophysiology, so as to 
improve diagnostic methods for early detection of AD and improve the clinical trial 
design. Additional goals are examining the rate of progress for both mild cognitive 
impairment and Alzheimer’s disease, as well as building a large repository of clinical and 
imaging data. ADNI is a study that assesses the effects of genetic variants on AD and 
various AD-related outcomes, including 3D brain imaging and cognitive measurements 
[23]. Proteolytic fragments of amyloid and post-translational modification of tau species 
in Cerebrospinal fluid (CSF) as well as cerebral amyloid deposition are important bio-
markers for AD [24, 25].

A total of 800 subjects are included in the data, with 200 normal controls, 400 mild 
cognitive impairment (MCI), and 200 mild AD. We are interested in the association 
between genetic variants and five outcomes, including the hippocampus, entorhinal, 
amyloid beta (Aβ42 ), tau, and phosphorylated tau (ptau181 ) levels. It has been reported 
that the AOPE gene is related to AD and its associated outcomes [26]. Therefore, as 
in [27], SNP rs769449 in gene AOPE is selected in our study. We also include 15 SNPs 
around rs769449 in our study: 8 SNPs on the left of rs769449 and 7 SNPs on the right, 
respectively. The SNPs rs8106922, rs1160985, and rs394819 are located in an intronic 
region of gene TOMM40, while other SNPs rs1081101, rs405509, and rs769449 are in 
the gene APOE, and rs445925 in gene APOC1. In the preprocessing step, we exclude the 
subjects which missing outcomes and genetic variants. After quality control, a total of 
453 subjects are available in our study.

We conduct an association study to identify genetic factors influencing the five out-
comes. All the aforementioned methods are performed with the nominal level of sig-
nificance α = 0.05 . Since the PC-based methods focus on the association test of a 
single marker, here we apply Bonferroni correction to adjust for multiple testing 
involving 16 markers ( αBonferroni = 0.05/16 = 0.0031 ). Four SNPs are detected by SIR 
method, including kgp8001324 ( p = 2.3× 10−2 ), rs405509 ( p = 5.3× 10−3 ), rs769449 
( p = 1.1× 10−3 ), and rs445925 ( p = 4.4 × 10−2 ). Among them, two SNPs rs405509 
and rs769449 are in the gene APOE, and rs445925 in the gene APOC1. Note that APOE 
and TOMM40 are well-known genes associated with AD [28]. In particular, the SNPs 
kgp8001324, rs405509, and rs769449 are detected by our SIR method and other com-
parative methods, justifying the effectiveness of the proposed method. Meanwhile, the 
SNP rs445925 in gene APOC1 can be detected only by the SIR method, and APOC1 
gene is reported to be a genetic risk factor for dementia and cognitive impairment in 
the elderly and it has a significant impact on hippocampal volumes [29]. The p value of 
PCLC for detecting SNP kgp8001324 ( p = 7.31× 10−5 ) is more significant than the SIR. 
As for SNP rs405509 in the gene APOE, the p value of PC5 is 3× 10−3 similar to the SIR 



Page 18 of 21Sun et al. BMC Bioinformatics          (2024) 25:144 

methods. The SNP rs769449 ( p = 1.01× 10−4 ) in the gene APOE is also detected by 
PC5.

The SNPs rs769449, rs405509, and kgp8001324 are detected by the SIR method as 
well as several comparative methods, which verifies the fact that these SNPs are associ-
ated with AD. In a nutshell, the SIR and PC5 methods, which detect four SNPs, per-
form better than other methods, but only the SIR method can detect one important SNP 
rs445925. In short, the SIR detects most SNPs across all cases, further confirming the 
advantages of the proposed method. We summarize a subset of the detected SNPs in 
Table 9.

Discussion
With the rapid development of next-generation sequence technologies, millions of SNPs 
and outcomes are usually collected in recent GWAS, and the high dimensionality of 
data has become a great challenge to statistical analysis. Furthermore, considering the 
complex correlations between multiple traits will be beneficial in revealing more latent 
information. In contrast to univariate analysis, multivariate analysis can exploit the cor-
relations among phenotypes to improve power, in which a flexible framework is strongly 
essential for testing the association between multiple predictors and multiple outcomes.

In this paper, we proposed a novel SIR-based association test that enables the analysis 
of multiple traits while taking into account the similarity between one or more traits to 
facilitate information borrowing. First, this procedure could preserve important infor-
mation about the original regression between responses y and predictors g during car-
rying out the dimension reduction. To this end, we divided the range of g according to 
genotype similarity and estimated the genetic relatedness matrix to measure genetic 
similarity between individuals during dimension reduction of phenotype y for the pro-
posed method. Then, we assigned the individuals with similar genotypes to the same 

Table 9  Comparison results of p value for detected SNPs by all methods using five traits

Method Number of detected SNPs SNP p value

 SIR 4 kgp8001324 2.30e−02

rs405509 5.30e−03

rs769449 1.10e−03

rs445925 4.40e−02

PC1 1 rs 8106922 3.00e−03

PC5 4 rs394819 2.00e−03

rs405509 3.00e−03

rs769449 1.01e−04

kgp21335103 3.00e−03

 PCFisher 2 rs769449 5.99e−04

kgp21335103 5.03e−04

PCLC 1 kgp8001324 7.31e−05

PCMin 1 kgp2187574 8.11e−04

VC 1 kgp8001324 2.00e−03

WI 1 kgp2187574 4.01e−04

Wald 1 kgp2187574 8.82e−04

PCAQ 1 rs769449 2.02e−04
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group, followed by conducting reduction steps, which significantly improved the com-
puting speed. Second, several scenarios with low- and high-dimensional responses and 
genotypes were considered in our simulations. Our numerical studies illustrate that the 
powers of the SIR and SIR-S methods decrease as the genotype dimension k increases in 
low-dimensional phenotypes setting, where the PC-based methods exhibit comparable 
performances to our proposed method. In the high-dimensional phenotypes setting, we 
found that the direction of the effect vector has mixed direction, and the powers of pro-
posed methods were reduced but with little effect on the PC-based methods. Finally, we 
conducted real-data analysis with five outcomes. Among several methods, the important 
SNP rs445925 in gene APOC1, which has a significant impact on hippocampal volumes, 
was detected only by our SIR-based method. Unlike the other methods, the SIR-based 
method also detected most SNPs across all cases. The analysis of ADNI data has shown 
that the proposed method can reveal biologically meaningful genetic markers with rea-
sonable prediction accuracy and stability, providing suggestions for further clinical or 
epidemiological research. Through real-data analysis, we further confirmed that our 
method is more conducive to understanding the underlying genetic architecture in the 
multiple phenotype studies.

Note that our method cannot be applied to GWAS data in that the model (7) is not 
suitable to it. Although we can test each SNP one by one based on the model (8) to per-
form GWAS by adjusting for multiple testing theoretically, the procedure of SIR-based 
dimension reduction of phenotype needs to merge adjacent slices based on the genetic 
relatedness matrix which is estimated through the empirical correlation between two 
individuals. Therefore, it becomes increasingly challenging to guarantee gene similarity 
when there are more SNPs.

Conclusion
There are still some problems not be worked out, which will be investigated in our 
upcoming research. Here, we adopted the SIR-based method to estimate the central sub-
space, but other methods such as the sliced average variance estimation (SAVE) [30] and 
the directional regression (DR) [31] are also worth trying in the future. In addition, this 
paper only considered the case of one component d0 = 1 , but correlation analysis with 
multiple components can be similarly considered. We hope that the proposed methods 
can help in the search for genetic variants of complex diseases, and stimulate further 
interest and research in developing statistical methods for the analysis of next-genera-
tion sequence data.
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