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Abstract 

Background:  N6-methyladenosine (m6A) is the most prevalent post-transcriptional 
modification in eukaryotic cells that plays a crucial role in regulating various biologi-
cal processes, and dysregulation of m6A status is involved in multiple human diseases 
including cancer contexts. A number of prediction frameworks have been proposed 
for high-accuracy identification of putative m6A sites, however, none have targeted 
for direct prediction of tissue-conserved m6A modified residues from non-conserved 
ones at base-resolution level.

Results:  We report here m6A-TCPred, a computational tool for predicting tissue-con-
served m6A residues using m6A profiling data from 23 human tissues. By taking advan-
tage of the traditional sequence-based characteristics and additional genome-derived 
information, m6A-TCPred successfully captured distinct patterns between potentially 
tissue-conserved m6A modifications and non-conserved ones, with an average AUROC 
of 0.871 and 0.879 tested on cross-validation and independent datasets, respectively.

Conclusion:  Our results have been integrated into an online platform: a database 
holding 268,115 high confidence m6A sites with their conserved information across 23 
human tissues; and a web server to predict the conserved status of user-provided m6A 
collections. The web interface of m6A-TCPred is freely accessible at: www.​rnamd.​org/​
m6ATC​Pred.
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Introduction
In recent years, the field of RNA modification has gained significant prominence, with 
its origins dating back to the groundbreaking proposal in 2008. To date, over 300 dis-
tinct RNA modifications have been identified, with more than 170 of them undergoing 
extensive investigation [1, 2]. These modifications exert profound influences on RNA 
molecules, impacting their structural conformation, stability, and functional attributes. 
Notably, the N6-methyladenosine (m6A) modification has garnered substantial attention 
due to its prevalence within mRNA and its pivotal role in various biological pathways.
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m6A modification stands out as the most prevalent and comprehensively studied post-
transcriptional modification within mRNA, almost across the entire transcriptome. This 
prevalence is particularly pronounced in higher eukaryotic organisms. The significance 
of m6A modification extends to its far-reaching impact on diverse aspects of biologi-
cal development, spanning hematopoietic development [3], reproductive processes [4], 
central nervous system functioning [5] and the regulation of cancer pathways [6]. Con-
sequently, the precise identification of m6A methylation sites has become increasingly 
imperative in the realm of biological research.

Currently, researchers mainly employ two high-throughput sequencing tech-
niques to profile the m6A sites: MeRIP-seq and miCLIP-seq. MeRIP-seq capitalizes on 
m6A-specific antibodies to immune-precipitate small RNA fragments following splicing 
and reverse transcription. Subsequently, the cDNA fragments are sequenced, unveiling 
the location and extent of m6A enrichment [7]. Besides MeRIP-seq, miCLIP-seq utilizes 
UV light-induced cross-linking to introduce specific mutational features, which enables 
the precise identification of the m6A residues in RNA molecules [8]. Nonetheless, the 
reliability of both methods has been tested extensively, revealing susceptibility to multi-
ple influencing factors, leading to occasional inaccuracies and instability. These factors 
include antibody specificity, domain fusion, and various statistical approaches aimed at 
mitigating technical noise [9–11]. Beyond these technical concerns, the considerable 
labor, material, and time costs further intensify the challenges faced by researchers.

To address these challenges, computational databases [12–17] and in silicon efforts 
[18–25] focusing on various biological domains have been developed. For m6A RNA 
methylation, tools like SRAMP [26] and iRNA toolkits [27–29] were established, drawing 
on a variety of sequence-derived data. The WHISTLE [30], emerged as a high-precision 
predictor, pioneering the integration of domain knowledge and genomic features into 
m6A prediction frameworks. More recently, deep learning-based methodologies have 
also demonstrated their prowess in m6A detection [31–33].While these advancements 
have significantly enhanced in silico identification of modified residues. To date, no 
research has been made to predict conserved m6A sites across multiple human tissues, 
despite their established biological significance [34–36]. The ConsRM [37] firstly quanti-
fied the conservation degree of base-resolution m6A sites between human and mouse 
transcriptomes. The evolutionary conservation in influenza was researched through 
potential m6A sites based on DRACH motif [38].

The identification of tissue-conserved m6A sites assumes paramount importance due 
to their resistance to interference from extraneous factors and their inherent stability, 
rendering them invaluable indicators for quantifying m6A expression levels. Moreover, 
most existing prediction tools are predominantly based on sequence information and 
do not incorporate annotations regarding potential post-transcriptional regulatory func-
tions, which are instrumental in elucidating functional consequences. Therefore, the effi-
cacy of these predictors remains subject to limitations.

Here, we present m6A-TCPred, a web server to predict tissue-conserved m6A sites in 
human. By learning and testing the m6A datasets identified from 23 human tissues, the 
newly integrated framework m6A-TCPred (see Fig. 1) provides a high-accuracy mapping 
of tissue-conserved human m6A sites (an average value of AUROC 0.879). Additionally, 
our results have been integrated into an online platform: a database to hold 268,115 high 
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confidence m6A sites with their conserved information across 23 human tissues; and a 
web server to predict the conserved status of user-uploaded m6A datasets. The m6A-
TCPred is freely accessible at: www.​rnamd.​org/​m6ATC​Pred.

Materials and methods
Training and testing dataset

m6A-TCPred was proposed to predict the tissue-conserved m6A methylation sites. 
The entire datasets were all high-confidence experimentally validated m6A sites (iden-
tified in at least two independent studies) collected from m6A-Atlas database [39]. To 
comprehensively expand the prediction range, a total of 268,115 base-resolution m6A 
sites were first filtered from m6A-Atlas (with record time > 2). Next, by checking with 
m6A-containing regions identified from 23 different tissue contexts, we defined the m6A 
sites simultaneously appeared in all tissue contexts as tissue-conserved m6A sites (data-
set P), while the m6A sites appeared in less than 30% of tissue contexts as tissue-specific 
m6A sites (dataset N). Importantly, the m6A sites that did not appear in any tissue con-
text were excluded to avoid potential bias. Totally, the dataset P contains 10,424 m6A 
sites, while dataset N includes 54,949 m6A sites across 23 human tissues. To maximize 
the use of dataset P, the dataset N was further split into 10 sub-datasets and then devel-
oped into 10 models in 1:1 Positive-to-Negative ratio with positive datasets to achieve 
average performance. For performance evaluation, 80% of the dataset was randomly 
selected as training data, while the rest of 20% was used for independent testing. Please 
refer to Additional file  1 for the detailed dataset collected to develop the prediction 
framework.

Feature extraction

Sequence-derived features. Encoding approaches based on sequence information have 
been broadly applied and achieved good performance in prediction [40–42]. Our new 
model also adopted the encoding strategy consisting of two parts: Chemical Properties 
of nucleotides (NCP) and Electron–Ion Interaction Pseudopotential (EIIP).

The first encoding was originally employed in the prediction of DNA sequence 
splicing site and its efficiency has been confirmed in RNA modification prediction 
[43, 44]. It depends on the structural differences of chemical properties from ring 
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Fig. 1  The framework of m6A-TCPred. The entire datasets from 23 human tissue were further classified 
into conserved and normal datasets. The model constructed on the genomic and sequence features were 
trained and evaluated through cross validation and independent testing. The model was further illustrated by 
interpretation and gene ontology enrichment

http://www.rnamd.org/m6ATCPred
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structure, functional groups and hydrogen bonds. Specifically, one ring structure 
exists between cytosine and uracil, as well as two ring structures between adenine 
and guanine. Adenine and cytosine have amino groups, while ketone group is car-
ried between guanine and uracil. Guanine and cytosine, connected by three hydrogen 
bonds, have stronger binding ability than adenine and cytosine with two hydrogen 
bonds. As a result of these three structural chemical properties, the encoding of i-th 
nucleotide of given sequence S will be conducted as Vector Si = (Xi,Yi,Zi):

Therefore, A, C, G and U can be encoded by vectors (1,1,1), (0,1,0), (1,0,0) and 
(0,0,1) respectively.

The Electron–Ion Interaction Pseudopotential (EIIP) was calculated from the delo-
calized electrons energy from amino acids and nucleotides [45]. This encoding strat-
egy was originally used in the DNA sequences to locate exons and gradually promoted 
to RNA sequences field [46]. In EIIP method, each nucleotide in RNA sequence was 
standing for a numeric value to represents its EIIP energy. Specifically, the EIIP for 
nucleotide A, G, C, U is 0.1260, 0.0806, 0.1340 and 0.1335, respectively.

Genome-derived features. To capture the distinct characteristics of tissue-conserved 
m6A sites across human tissues, we extracted 54 additional genomic features from 
m6ALogisticModel package (generation R code in Additional file  5). These features 
were selected to accurately represent the topological attributes of the modified res-
idues.1–15 are dummy variable features that indicate whether the tissue-conserved 
m6A sites are located within specific transcriptome regions with unique topological 
properties. All genomic features were generated using the R/Bioconductor package 
and the hg19 TxDb transcriptome annotation package [47]. In addition, only the pri-
mary (longest) transcript of each gene was kept to avoid ambiguities arising from 
transcript isoforms and extract transcriptional sub-regions [48]. Features 16–19 pro-
vide actual valued information on the relative transcript region position, including 
3’UTR, 5’UTR, and the whole transcriptome. Sites falling outside these regions are 
assigned a value of zero. Features 20–27 detail the length of the transcript region con-
taining the modification site, with a value of zero for sites not belonging to the region. 
Features 28–31 describe the distance between the adenine site and the splicing junc-
tion 5’end or 3’end. The distance to the closest tissue-conserved m6A site in the train-
ing data is calculated to quantify the clustering effect of conserved m6A sites. Features 
32 and 33 provide the evolutionary conservation score of the conserved adenosine 
site and its flanking regions, calculated using Phast-Cons score [49] to assess the con-
servation level of potential nucleotide sequences. The RNA structure surrounding the 
conserved adenine site is included in features 34–35, predicted using the RNAfold 
Vienna RNA package [50]. Features 36–43 illustrate the structural function of m6A 
regulatory binding complexes, including readers, writers, and erasers. Features 44–48 
encompass genomic properties of genes or transcripts containing conserved m6A 
sites. Features 49–51 indicate the z-score of GC content, while features 52–54 pro-
vide omics information, such as microRNA target sites. Detailed information of each 
genomic feature can be found in Table S1 in Additional file 3.

(1)Xi =
1 if Si ∈ {A,G}
0 if Si ∈ {C ,U} , Yi =

1 if Si ∈ {A,C}
0 if Si ∈ {G,U} , Zi =

1 if Si ∈ {A,U}
0 if Si ∈ {C ,G}
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Machine learning approach used for prediction of tissue‑conserved m6A site

The Support Vector Machine (SVM) approach is a data-driven machine learning algo-
rithm widely utilized for classification tasks. Notably, SVM outperforms artificial neural 
networks in scenarios involving extensive genomic data, yielding lower error rates [51]. 
This technique has been previously applied to identify biomarkers from gene expression 
data, explore protein interactions [52], pinpoint therapeutic cancer targets, and achieve 
genome-wide recognition using diverse high-throughput datasets [53].In this research, the 
prediction model was constructed on R studio interface of LIBSVM [54], with radial basis 
function serving as kernel. The other parameters were employed by default.

Performance evaluation of tissue‑conserved m6A site prediction

To comprehensively evaluate the performance of our predictor, the SVM classifier was 
examined through fivefold cross-validation on training datasets and tested from 10 inde-
pendent testing datasets.

To comprehensively evaluate the prediction model performance, five metrics were intro-
duced as the indicators to examine the reliability. Receiver Operating Characteristic (ROC) 
curve (sensitivity against 1-specificity) and Area Under ROC Curve (AUROC) are the pri-
mary performance evaluation indicators. The other four metrics, Sensitivity (Sn), Specific-
ity (Sp), Matthew’s Correlation Coefficient (MCC) and Overall Accuracy (ACC) were also 
employed to quantify and test the model reliability. The entire process was conducted in R 
language.

where the TP, TN, FP and FN respectively represent true positive; true negative; false 
positive and false negative.

Website construction

The predictor website platform is based on Hyper Text Markup Language (HTML), Cas-
cading Style Sheets (CSS) and Hypertext Preprocessor (PHP), as well as the MySQL tables 
for metadata storage.

(2)Sn =
TP

TP + FN

(3)Sp =
TN

TN + FP

(4)MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )

(5)ACC =
TP + TN

TP + TN + FP + FN
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Results
Determine the best machine learning sequence strategy and algorithm 

for tissue‑conserved m6A site prediction

Although the sequence encoding strategy has already achieved a little reliability in 
prediction. In order to achieve the best classifier to construct the m6A-TCPred, 
we combined it with genomic features and tested its performances under different 
sequence encoding strategies and classifiers on independent dataset (see Table 1). The 
highest AUROC score is 0.669 when the encoding strategy adopts NCP + EIIP under 
SVM classifier, representing the best performance among all sequence encoding and 
algorithm.

Performance evaluation of tissue‑conserved m6A predictor by benchmark 

and independent testing

All the features are normalized and converted into numerical matrix between 0 and 1. 
The final tissue-conserved m6A prediction model was constructed based on combina-
tion of sequence and genomic features.

To comprehensively evaluate the model, ten independent datasets were randomly 
extracted from negative datasets and integrated with the positive data for average 
performance evaluation. The prediction model achieved the average value of AUROC 
0.879, as well as AUROC 0.871 of fivefold cross-validation (Table 2), suggesting reli-
ability in model distinguishment.

Table 1  Performance evaluation of tissue-conserved m6A sites of using different sequence strategy 
and algorithms

The SVM (support vector machine) represent binary classification method. NB refers to the naïve bayes classification 
method. GLM (generalized linear model) is linear regression model. The following sequence encoding strategy, NCP refers to 
the nucleotide chemical property [43]. ND is nucleotide density [55]. EIIP refers to electron–ion interaction pseudopotential 
(EIIP) [45]. PseKNC refers to Pseudo K-tuple nucleotide composition [56]

Sequence Strategy Algorithm Independent Testing

Sn Sp ACC​ MCC AUROC

NCP + ND SVM 0.598 0.589 0.593 0.187 0.628

NB 0.655 0.465 0.560 0.123 0.585

GLM 0.587 0.581 0.584 0.169 0.621

NCP + EIIP SVM 0.624 0.614 0.619 0.239 0.669

NB 0.707 0.469 0.585 0.186 0.636

GLM 0.604 0.619 0.612 0.224 0.660

EIIP + PseKNC SVM 0.641 0.600 0.620 0.240 0.663

NB 0.921 0.188 0.555 0.162 0.635

GLM 0.604 0.606 0.605 0.210 0.648

Table 2  Prediction performance using cross validation and independent test dataset

Model Testing method Sn Sp ACC​ MCC AUC​

m6A-TCPred Cross-validation 0.795 0.789 0.792 0.584 0.871

Independent testing 0.806 0.796 0.801 0.603 0.879
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Feature ranking and functional characterization of tissue‑conserved m6A sites

The feature ranking illustrates the performance efficiency of all features when model 
processing, which points out the contribution of various features to identifying tis-
sue-conserved m6A sites. The Fig. 2A listed the top 15 most effective features in pre-
dicting tissue-conserved m6A sites, from which we can observed that exon regions 
may have strong associations in distinguishing tissue-conserved m6A sites from non-
conserved ones, especially for long exon regions (> 400  bp). Additionally, feature 
selection was performed. When using the top 24 genomic features, the model exhib-
ited the best performance with an AUROC of 0.89. As more features were added, the 
model performance slightly decreased, ranging between AUROC of 0.87 and 0.88 
(Figure S1 in Additional file 4). Taken together, this result indicated that feature over-
fitting has only very limited impact on model performance.

Fig. 2  Model interpretation. A The top 15 of most contributing features. Features are output based on 
machine learning model recognition capabilities. B Gene enrichment analysis of the tissue-conserved m6A 
sites. BP is the biological process; CC is cell component and MF represents molecular function. The gene 
identification is obtained by using R package RMAnno. Gene ontology analysis is conducted by R package 
ClusterProfiler [59]
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We further examined the biological characterization of the tissue-conserved m6A 
sites. Specifically, over 260,000 m6A sites were extracted and more than 10,000 of them 
identified as conserved m6A sites in human tissue for examining their putative func-
tional relevance with Gene Ontology (GO) Enrichment Analysis. In Fig. 2B, we present 
the top five enriched items in biological pathways, cellular composition, and molecular 
functions, respectively. Many of these enriched items have previously been confirmed to 
have strong associations with m6A methylation. Among them, most of them have been 
studied in several research. For histone modification, the consumption of H3K36me3 
has been proved to decrease the abundance of m6A sites [57]. For transcription factor, 
the m6A-mediated regulation of JUN and JUNB TFs are critical in gene regulation net-
work [58]. A more comprehensive list of the results from the Gene Ontology analysis is 
available in Additional file 2 (Fig. 2).

Additionally, to further explore the molecular features of tissue-conserved m6A sites 
from normal ones, we conducted the motif analysis for both of them. The result (Figure 
S2 in Additional file  4) showed that the sequences of tissue-conserved m6A sites and 
normal m6A sites follow the pattern of DRACH motif. Meanwhile, no significant dif-
ferences were observed between tissue-conserved and non-conserved m6A sites, which 
was consistent with our finding that sequence-based information alone cannot effec-
tively used for classification.

Web server implementation

To enhance the practicality and accessibility of our prediction model, we have developed 
a user-friendly web server, which is accessible at http://​www.​rnamd.​org/​m6ATC​Pred. 
Figure 3A exhibits all m6A site datasets incorporated in our model. The selection menus 
provide users with the flexibility to filter conserved, non-conserved sites, or examine the 
tissue counts for each site. Detailed information for each site is easily accessible by click-
ing on the respective ID (see Fig. 3B). Figure 3C illustrates the functionality of our web 
server, it allows users to upload their m6A coordinates, while the possibility of input data 

Fig. 3  The database and web server of m6A-TCPred. A The database exhibited the information of all m6A 
sites. The user can select conserved, non-conserved sites and tissue counts or search according to their own 
needs. B The detailed information of one m6A site. C The web server allows users to submit their own m6A 
coordinates. The m6A-TCPred will predict conservative probability of each site

http://www.rnamd.org/m6ATCPred
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is evaluated, and each related site is classified into conserved/non-conserved. The free 
download function is also available.

Conclusion
m6A methylation stands as one of the most pivotal RNA modifications, with its substan-
tial abundance in mRNA and integral role in biological processes garnering significant 
attention. Despite this, the precise identification and localization of conserved m6A 
sites in human tissues has remained a largely unexplored domain, primarily due to lim-
itations associated with experimental methodologies. In response to these challenges, 
our research has developed m6A-TCPred, a computational predictor that integrates 
sequence feature information and genomic features. In contrast to existing predictors, 
our model excels in the accurate identification of tissue-conserved m6A sites and their 
discrimination from non-conserved sites across multiple human tissues. Meanwhile, 
regrading whether tissue-conserved sites are influenced by housekeeping gene, we eval-
uated the model performance by adjusting datasets that does not contain housekeeping 
gene. Our result (Table S2 in Additional file 3) showed there is no significant difference 
compared with original AUROC. Therefore, the m6A-TCPred didn’t have any bias on 
housekeeping gene.

Our research findings are exciting and the achievements are mainly concentrated on 
three aspects. Firstly, the m6A-TCPred is a high-accuracy predictor, demonstrating the 
high efficiency in predicting tissue-conserved m6A sites. Through fivefold cross-valida-
tion and independent testing, our model achieves an impressive AUROC score of 0.879, 
surpassing the previous limitations associated with sequence encoding. To ensure the 
broad accessibility of our research, we have integrated the entire model into a user-
friendly website. This resource is open to all, enabling individuals to submit genome 
coordinate files and use our predictor for tissue-conserved m6A site predictions. We 
anticipate that this tool will serve as a powerful resource for researchers delving into the 
intricacies of conserved m6A sites in human tissue. Secondly, the model ranking and GO 
analysis provides biological characterizations of tissue-conserved m6A sites. It identified 
the potential functional regions with high probability of conserved m6A sites. The GO 
analysis provides a connection between conserved m6A sites and biological functions 
and some of the content has been mentioned in relevant research. Thirdly, the whole 
dataset and its relevant annotations were integrated into a website, which is the first col-
lection about tissue-conserved m6A sites.

It is essential to acknowledge certain limitations. The presence of bias in our train-
ing datasets, stemming from inherent limitations in experimental techniques, may influ-
ence the model’s performance. Further, sample size constraints might not capture the 
full spectrum of potential outcomes. As we continue our research, we remain commit-
ted to improving the model’s reliability with the incorporation of the latest sequencing 
data. Additionally, we recognize that the accuracy of our predictions is contingent on 
the availability of additional information, such as RNA secondary structure, free energy, 
RNA type, and more.

Abbreviations
m6A	� N6-methyladenosine
NCP	� Nucleotide chemical property
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ACC​	� Overall accuracy
AUROC	� Area under the ROC curve
GO	� Gene ontology
BP	� Biological process
CC	� Cell component
MF	� Molecular function
HTML	� Hyper text markup language
CSS	� Cascading style sheets
PHP	� Hypertext preprocessor
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