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Introduction
Over the course of evolution, many organisms and microorganisms have developed the 
ability to express different types of protein toxins (PT) as part of their defense mech-
anisms and adaptations to the environment [1]. These proteins can be found in ani-
mals [2] and poisonous plants [3–6], as well as in pathogenic bacteria [5, 6]. PTs have 
a wide range of molecular targets, which has allowed them to be extensively studied 
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as therapeutic candidates for the treatment of various diseases, generally, such as pain 
[7, 8], cancer [9–14], autoimmune diseases [15], cardiovascular diseases [16, 17], neu-
rodegenerative diseases [18], viral [14, 19] and bacterial [14] infections, among others 
Currently, there are different proposals to classify PTs, and one of these is their classifi-
cation into three main groups, (1) toxins that hinder or interfere with cellular processes 
through their enzymatic activity, (2) toxins that cause harm to cells by compromising 
the integrity of their membranes, and (3) toxins that interfere with the regular electrical 
functioning of the nervous system in an intoxicated organism [1]. However, the fact that 
PTs have a wide variety of molecular targets makes a more specific classification of these 
not entirely clear at present. In this regard, it has been reported that PTs can act on vari-
ous molecular targets among which we find the cell membrane [20–22], voltage-gated 
sodium channel [23], voltage-gated calcium channel [24, 25], voltage-gated potassium 
channel [26, 27], acetylcholine receptor [28, 29], G-protein coupled receptor [30], and 
bradykinin receptor [31], among many others.

In recent years, the study of protein toxins has increased due to the great potential 
they represent as therapeutic drugs. In this regard, various in vitro, in vivo [32], and in 
silico [33] methodologies have been evaluated for their study. Among the in silico meth-
odologies, the use of bioinformatics tools [34–37] and, more recently, machine learning 
(ML) [33], has gained greater relevance as it allows for the acceleration and reduction of 
costs of resources allocated to the search for PTs. Particularly, ML constitutes a robust 
and modern strategy for the discovery of pharmaceutical candidates [38, 39], with PTs 
being no exception in this context. Currently, there are several works based on machine 
learning and deep learning that generally, following a binary classification approach, 
allow discrimination between PTs and non-PTs. These tools are NTXpred [40], Yang 
and Li’s method [41], Jayaraman et al.’s method [42], Kumar et al.’s method [43], NNTox 
[44], TOXIFY [45], ClanTox [46], ToxClassifier [47], ToxinPred2 [33], SpiderP [48], BTX-
pred [49], ToxDL [50], ATSE [51], ToxIBTL [52], ToxinMI [53], Toxicity-vib [54], and 
CSM-Toxin [55], which have been of great utility in the field of PT study. These tools 
undoubtedly greatly aid in the discovery of new toxins; however, they follow a binary 
classification approach where the output only informs if a protein is a PT or not. Tak-
ing into account the wide variety of molecular targets that PTs act upon, it would be 
interesting to approach a more specific prediction method that would allow us to eluci-
date more specific cellular targets. Following this idea, for the first time in this work, the 
development of ML models for the multiple classification of 27 different classes of PTs 
with different modes of cellular action was evaluated.

Methods
Data sets

The amino acid sequences of toxins used in this work were obtained from the Universal 
Protein Resource (UniProt) [56]. These sequences were only selected based on the fol-
lowing criteria, (1) the sequence must be reviewed, (2) the sequence has at least one 
scientific publication demonstrating the respective PT activity, and (3) the sequence 
must be complete. In this regard, a certain number of PT sequences were identified 
considering the reported target for each of these. Below are the number of identified 
PT sequences (sn) with their respective cellular targets or mode of action in the cell: 
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acetylcholine receptor inhibiting toxin (sn = 493), blood coagulation cascade activat-
ing toxin (sn = 107), blood coagulation cascade inhibiting toxin (ns = 133), bradykinin 
receptor impairing toxin (sn = 35), calcium-activated potassium channel impairing toxin 
(sn = 72), cell adhesion impairing toxin (sn = 228), chloride channel impairing toxin 
(sn = 20), complement system impairing toxin (sn = 27), dermonecrotic toxin (sn = 216), 
enterotoxin (ns = 101), fibrinogenolytic toxin (sn = 102), fibrinolytic toxin (sn = 41), 
G-protein coupled acetylcholine receptor impairing toxin (sn = 29), G-protein coupled 
receptor impairing toxin (sn = 228), hemorrhagic toxin (sn = 62), hemostasis impair-
ing toxin (sn = 942), platelet aggregation activating toxin (sn = 74), platelet aggregation 
inhibiting toxin (sn = 350), potassium channel impairing toxin (sn = 664), proton-gated 
sodium channel impairing toxin (sn = 25), ryanodine-sensitive calcium-release chan-
nel impairing toxin (sn = 27), target cell cytoplasm (sn = 16), target cell membrane 
(sn = 418), voltage-gated calcium channel impairing toxin (sn = 247), voltage-gated chlo-
ride channel impairing toxin (sn = 18), voltage-gated potassium channel impairing toxin 
(sn = 508), and voltage-gated sodium channel impairing toxin (sn = 840) (Additional files 
1–8). On the other hand, 600 random amino acid sequences of different lengths were 
generated, which were considered non-PT.

Calculation of molecular descriptors and balancing of the data set

From all the sequences, the calculation of two types of molecular descriptors widely 
used in the development of predictive models from primary protein structures was car-
ried out: pseudo amino acid composition (PAAC, lamda = 5, weight = 0.05) [57], and 
dipeptide composition descriptors (DPC) [58]. Both molecular descriptors were com-
puted with the Python propy3 package (https://​pypi.​org/​proje​ct/​propy3/) was used for 
the calculation of these molecular descriptors.

Subsequently, the resulting data set was labeled for later balancing and evaluation with 
classification algorithms. Because the data set contains labeled classes (PT and non-PT) 
with an imbalanced numerical proportion, its balance was carried out through the syn-
thetic minority over-sampling technique (SMOTE). Imbalanced data sets can cause a 
bias in predictive models, and in this sense, SMOTE is a data preprocessing technique 
used to deal with the class imbalance problem in machine learning data sets. In this 
technique, synthetic examples of minority classes are generated. This is done by tak-
ing examples from minority classes and creating similar but slightly modified examples, 
"oversampling" the minority classes to balance the data set [59]. The Python imbalanced-
learn package (https://​pypi.​org/​proje​ct/​imbal​anced-​learn/) was used to balance the data 
set with SMOTE.

Training, cross‑validation, and testing

In this study, nine machine learning classification algorithms were evaluated: Random 
Forest (RF), Multi-layer Perceptron (MLP), eXtreme Gradient Boosting (XGBoost), 
Light Gradient Boosting Machine (LightGBM), Logistic Regression (LR), Naïve Bayes 
(NB), k-nearest neighbors (k-NN), and Quadratic Discriminant Analysis (QDA). Train-
ing with all the classifiers was conducted on 80% of the complete dataset, which under-
went tenfold cross-validation. The remaining 20% of the data (independent dataset) 
was used to evaluate the performance of the trained models. The mentioned analyses 

https://pypi.org/project/propy3/
https://pypi.org/project/imbalanced-learn/
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were carried out using the libraries scikit-learn (https://​pypi.​org/​proje​ct/​scikit-​learn/), 
XGBoost (https://​pypi.​org/​proje​ct/​xgboo​st/), and Microsoft LightGBM (https://​pypi.​
org/​proje​ct/​light​gbm/). In this study, we evaluated the StackingClassifier, which is a 
meta-ensembling technique that leverages the strengths of diverse base learners by 
stacking their predictions as input for a final estimator. This method effectively com-
bines multiple classification models, each of which may capture different patterns within 
the data. The justification for employing a StackingClassifier lies in its ability to blend 
various predictive models, potentially leading to better generalization on unseen data. 
By using predictions of base learners as features, the meta-learner can learn to correct 
the individual classifier mistakes, thereby improving overall accuracy. This approach is 
supported by empirical studies demonstrating its superiority over individual classifiers 
and even other ensemble methods when carefully implemented. The mean of the perfor-
mance measures used to evaluate the models in cases of multiple classifications, both in 
the training stage through cross-validation and in the testing stage, were the following:

In this research, we also assessed the effectiveness of the predictive models using 
the area under the curve (AUC) of the receiver operating characteristic (ROC) plot. A 
modern web application was developed using the Python 3.11 programming language 
(https://​www.​python.​org/) for making predictions of PT. The first version of the web 
application, named MultiToxPred 1.0, scores the outputs with a probability from 0 to 1. 
Figure 1 shows the working architecture used in this study.

Results
The tenfold cross-validation analysis on the training data showed that the RF, XGBoost, 
and LightGBM algorithms displayed the best performance in the classification of PTs 
using the PAAC molecular descriptor (Table 1). On the other hand, when evaluating the 
DPC molecular descriptor, it was observed that LightGBM again showed good perfor-
mance, as did the MLP and QDA algorithms (Table 2). The LR algorithm showed good 
performance with the use of DPC, however, low performance measures were obtained 
with PAAC and NB, with the latter algorithm having the worst performance with both 
evaluated descriptors (Tables 1 and 2). In the testing stage (Tables 3 and 4), in general, 
there was a consistent increase in the evaluated performance measures, which is indica-
tive that the models are efficient at predicting PTs on independent data sets.

Considering the performance of the best algorithms in this study, both in the 
training and testing stages, we proceeded to evaluate the development of predic-
tive models of PTs using an ensemble approach. In this direction, for the case of the 
PAAC molecular descriptor, an ensemble of RF and LightGBM was generated. For 

(1)Sensitivity (TPR) = TP/(TP + FN )

(2)Accuracy (ACC) = TP + TN/(TP + FP + FN + TN )

(3)Precision (PPV ) = TP/(TP + FP)

(4)F1 score (F1) = 2TP/(2TP + FP + FN )

https://pypi.org/project/scikit-learn/
https://pypi.org/project/xgboost/
https://pypi.org/project/lightgbm/
https://pypi.org/project/lightgbm/
https://www.python.org/
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Fig. 1  From the total dataset of amino acid sequences corresponding to different types of protein toxins 
with different modes of action in the cell (n = 27) and non-toxins (n = 1) randomly generated, the molecular 
descriptors PAAC and DPC were calculated. Subsequently, eight machine learning algorithms were evaluated, 
first on a training dataset (80%) which was subjected to tenfold cross-validation. Then, the generated models 
were evaluated on a test dataset (20%) (independent dataset). The final stage consisted of selecting the best 
predictive model for its incorporation into a web application called MultiToxPred 1.0

Table 1  Ten-fold cross-validation on the training dataset using the PAAC molecular descriptor

Algorithm ACC​ F1 PPV TPR AUC​

RF 0.760 0.753 0.750 0.758 0.97

MLP 0.745 0.731 0.732 0.744 0.98

XGBoost 0.754 0.749 0.748 0.752 0.98

LightGBM 0.754 0.750 0.749 0.752 0.98

LR 0.530 0.504 0.501 0.529 0.93

NB 0.451 0.414 0.447 0.450 0.90

k-NN 0.753 0.735 0.743 0.752 0.95

QDA 0.700 0.673 0.671 0.699 0.95
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the DPC molecular descriptor, three ensembles were evaluated: MLP + LightGBM, 
MLP + QDA, and LightGBM + QDA. It is important to note that, regardless of the 
descriptor evaluated, the ensemble-based strategy allowed for better performance 
measures compared to the individual algorithms, both in the training and testing 
stages (Table 5).

In the case of DPC, it was observed that these performance measures increased sig-
nificantly, to a degree > 0.8, which indicates the robustness of this approach using this 
molecular descriptor and the algorithms used in the ensemble technique (Table  5). 
In consequence, these results demonstrate that our predictive strategy constitutes 
a robust approach for the prediction of PTs, taking into account the complexity of 

Table 2  Ten-fold cross-validation on the training dataset using the DPC molecular descriptor

Algorithm ACC​ F1 PPV TPR AUC​

RF 0.774 0.767 0.765 0.773 0.97

MLP 0.791 0.782 0.784 0.789 0.98

XGBoost 0.780 0.776 0.775 0.779 0.98

LightGBM 0.781 0.777 0.777 0.780 0.98

LR 0.792 0.777 0.779 0.791 0.98

NB 0.675 0.649 0.686 0.674 0.95

k-NN 0.749 0.727 0.744 0.748 0.95

QDA 0.806 0.791 0.810 0.805 0.92

Table 3  Performance on the testing dataset using the PAAC molecular descriptor

Algorithm ACC​ F1 PPV TPR AUC​

RF 0.764 0.761 0.755 0.768 0.97

MLP 0.742 0.733 0.730 0.748 0.98

XGBoost 0.757 0.756 0.753 0.761 0.98

LightGBM 0.757 0.757 0.754 0.761 0.98

LR 0.525 0.506 0.497 0.532 0.94

NB 0.445 0.411 0.444 0.448 0.90

k-NN 0.753 0.741 0.751 0.759 0.96

QDA 0.701 0.678 0.674 0.704 0.95

Table 4  Performance on the testing dataset using the DPC molecular descriptor

Algorithm ACC​ F1 PPV TPR AUC​

RF 0.779 0.777 0.773 0.783 0.97

MLP 0.794 0.791 0.787 0.799 0.98

XGBoost 0.784 0.784 0.782 0.788 0.99

LightGBM 0.787 0.788 0.787 0.791 0.99

LR 0.793 0.781 0.783 0.797 0.98

NB 0.667 0.645 0.682 0.670 0.95

k-NN 0.745 0.730 0.754 0.752 0.95

QDA 0.814 0.802 0.826 0.818 0.93
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the study problem, which involves a high number of classes (27 in total). Of all the 
ensemble strategies evaluated, we noted that the resulting model from the LightGBM 
and QDA algorithms performed best during the cross-validation and testing phases 
(Table  5). In this direction, this model was selected for incorporation into a web 
application.

The web application developed in this study presents a modern and intuitive user 
interface, which allows carrying out PTs predictions. The results of the analyses can be 
downloaded in a csv file and/or can be selected and ranked in the application based on 
their respective probabilistic score, where scores greater than 0.5 indicate the probability 
that an unknown amino acid sequence introduced by the user corresponds to one of the 
27 proposed classes (PT type and non-PT) in this work. The application, named Multi-
ToxPred 1.0, is in its first version and is available for free use at https://​www.​bioch​emint​
elli.​com/​Multi​ToxPr​ed-​v1.

Discussion
Currently, proteins and peptides (PT) are being extensively studied due to their great 
potential as therapeutic drugs in the treatment of various diseases, including immuno-
logical conditions, metabolic disorders, and neurodegenerative diseases, among others 
[1, 2, 60, 61]. The diversity in chemical nature and the complexity of PT structures, which 
are often derived from varied natural sources, make the study of these biomolecules, in 
most cases, a laborious and costly task. This is reflected in the numerous in vitro and 
in vivo experimental trials needed to confirm their effectiveness and safety [32]. On the 
other hand, machine learning techniques represent a robust alternative to rapidly and 
cost-effectively approach the identification of the functionality of peptides and proteins. 
These methods can predict the properties and behavior of PT based solely on their pri-
mary sequence, which can expedite the drug development process [33].

As mentioned above, numerous studies focusing on the prediction of PT behavior 
have been conducted. However, to date, no approach has been evaluated for predicting 
the specific mode of action of these biomolecules within the cell. It is well-documented, 
for example, that PTs from venomous animals target ion channels, which are in turn 
classified into several types based on the ions they transport [62, 63]. Predicting a more 

Table 5  Ten-fold cross-validation on the training and testing datasets using the PAAC and DPC 
molecular descriptors via ensemble algorithms

CV: cross-validation, *: best performance measurements obtained

Ensemble algorithms ACC​ F1 PPV TPR AUC​

PAAC​

RF + LightGBM Training−CV 0.789 0.781 0.779 0.788 0.98

RF + LightGBM Testing 0.800 0.796 0.793 0.803 0.99

DPC

MLP + LightGBM Training−CV 0.813 0.801 0.801 0.812 0.99

MLP + LightGBM Testing 0.816 0.806 0.799 0.820 0.99

MLP + QDATraining−CV 0.831 0.817 0.822 0.830 0.99

MLP + QDATesting 0.844 0.837 0.843 0.847 0.99

LightGBM + QDATraining−CV 0.840* 0.827* 0.836* 0.840* 0.99*

LightGBM + QDATesting 0.846* 0.838* 0.847* 0.849* 0.99*

https://www.biochemintelli.com/MultiToxPred-v1
https://www.biochemintelli.com/MultiToxPred-v1
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specific mode of action would not only determine whether a protein or peptide is a toxin 
but would also allow the elucidation of its modes of action within the cell. In some cases, 
it may even reveal its molecular target. Certainly, this would have a significant impact 
on the field of PT study. Considering all the aspects mentioned above, the motivation 
of this study was focused on an "out of the box" approach. The present study allowed 
the development of robust strategies that facilitate the prediction of PT in numerous 
classes, using multiple classification techniques, in contrast to state-of-the-art methods 
and tools that are based solely on binary classification (PT or non-PT).

Both descriptors used in this study (PAAC and DPC), are widely used in most of the 
works that apply machine learning techniques for the prediction of the biological func-
tionality of peptides and proteins. In this work, we demonstrate that through the com-
bined use of the LightGBM and QDA algorithms, the best performance measures are 
obtained with DPC (Table 3). The DPC molecular descriptor is a technique used in bio-
informatics that is responsible for representing the properties of proteins or peptides. 
This descriptor is based on the idea that each dipeptide (a chain of two amino acids) 
has particular physicochemical properties and its frequency in the protein can provide 
significant information about its structure and function. In other words, DPC represents 
the frequency of each possible dipeptide in the total sequence of a protein, thus provid-
ing a global view of its composition and, potentially, its biological behavior. It is a tool 
widely used in the prediction of protein functionality, as it provides a general portrait of 
the molecular composition of the protein of interest [58]. The DPC has been assessed in 
various predictive toxin studies using machine learning techniques, proving its efficacy 
in this domain [40, 41, 43, 49]. This aligns, to a degree, with the findings of our study.

For the first time, we evaluated the development of a predictive model using an 
ensemble approach with LightGBM and QDA for PT predictions, which allowed us 
to obtain the best performance measurements (Table  5). The LightGBM is a gradient 
boosting-based machine learning algorithm that differs from other boosting algorithms 
in its ability to handle large data sets and its computational efficiency. It uses a leaf-
based tree growth approach instead of the traditional depth-based growth, allowing you 
to focus on the regions of greatest loss and improving model accuracy. These features 
make LightGBM particularly useful for tasks that require high efficiency and precision 
[64]. The QDA is a statistical classification technique used in supervised learning. This 
method is based on Bayesian inference and assumes that each class in the dataset has 
its own covariance matrix [65]. Both algorithms have also been used in the classifica-
tion of peptides and proteins, for example, LightGBM has been used in the prediction of 
anti-cancer peptides [66], protein structural class [67], protein–protein interactions [68], 
protein-ATP binding residues [69], and ion channels [70], among others. On the other 
hand, QDA has been used in the prediction of tumor T-cell antigens [71], antimicro-
bial peptides [72, 73], protein motifs [74], and protein subcellular location [75], among 
others.

Addressing the challenges inherent in predicting the specific mode of action of PTs in 
the cell using machine learning techniques will undoubtedly be an important focus for 
future research. One significant challenge is dealing with imbalanced data, as in many 
cases, the availability of labeled data for certain classes of PT is limited compared to oth-
ers. Oversampling methods could be useful, and in this work, we demonstrate that by 
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using SMOTE it is possible to obtain robust predictive models for predicting the molec-
ular targets of PTs. As demonstrated in this study, the SMOTE technique has been used 
for the augmentation of amino acid sequence data [76], and it is considered the most 
used oversampling technique due to its fast and good results [77]. However, the explo-
ration of other synthetic data generation techniques for protein and peptides, such as 
the use of adversarial neural networks [76, 78, 79], could be considered in future work 
to achieve the same purpose, which could significantly improve the performance of the 
predictive models.

We believe that this study serves as an initial springboard for the development of 
machine learning-based predictive tools to predict the specific functionalities of protein 
toxins. By leveraging sophisticated machine learning algorithms, it is possible to analyze 
vast amounts of biological data and obtain meaningful insights that would otherwise be 
too complex or time-consuming to obtain through traditional methods. In this direc-
tion, we believe that MultiToxPred 1.0 represents a novel tool that could be key for the 
study of PTs.

Conclusions
For the first time, this study demonstrated that using a multiple classification approach 
aided with SMOTE, it is possible to predict the mode of action of a PT in the cell. Of all 
the machine learning algorithms evaluated, the best performance was observed with the 
combination of LightGBM and QDA using the DPC molecular descriptor. The model 
generated with these two combined algorithms was selected for incorporation into the 
MultiToxPred 1.0 web application, a free resource that facilitates PT predictions. These 
results highlight the power of machine learning techniques in predicting the functional-
ity of PTs and suggest that MultiToxPred 1.0 may be an important tool in the discovery 
of these proteins as well as in the therapeutic area.
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