
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Dolezal et al. BMC Bioinformatics (2024) 25:134
https://doi.org/10.1186/s12859-024-05758-x

BMC Bioinformatics

Slideflow: deep learning for digital
histopathology with real‑time whole‑slide
visualization
James M. Dolezal1*, Sara Kochanny1, Emma Dyer1, Siddhi Ramesh1, Andrew Srisuwananukorn2, Matteo Sacco1,
Frederick M. Howard1, Anran Li1, Prajval Mohan3 and Alexander T. Pearson1* 

Abstract 

Deep learning methods have emerged as powerful tools for analyzing histopatho-
logical images, but current methods are often specialized for specific domains
and software environments, and few open-source options exist for deploying models
in an interactive interface. Experimenting with different deep learning approaches
typically requires switching software libraries and reprocessing data, reducing the feasi-
bility and practicality of experimenting with new architectures. We developed a flexible
deep learning library for histopathology called Slideflow, a package which supports
a broad array of deep learning methods for digital pathology and includes a fast
whole-slide interface for deploying trained models. Slideflow includes unique tools
for whole-slide image data processing, efficient stain normalization and augmenta-
tion, weakly-supervised whole-slide classification, uncertainty quantification, feature
generation, feature space analysis, and explainability. Whole-slide image processing
is highly optimized, enabling whole-slide tile extraction at 40x magnification in 2.5 s
per slide. The framework-agnostic data processing pipeline enables rapid experimenta-
tion with new methods built with either Tensorflow or PyTorch, and the graphical user
interface supports real-time visualization of slides, predictions, heatmaps, and feature
space characteristics on a variety of hardware devices, including ARM-based devices
such as the Raspberry Pi.

Keywords:  Digital pathology, Computational pathology, Software toolkit, Whole-slide
imaging, Explainable AI, Self-supervised learning

Background
Histopathology slides of patient tissue and tumor specimens serve many purposes and
are increasingly being captured and stored in digital formats. The advent of deep learn-
ing models for analyzing digital histopathology images has unlocked a new dimension
from which we can extract clinically meaningful information [1]. These models not only
accelerate and enhance pathology clinical workflows but also detect subtle morphologi-
cal features that escape the human eye, improving diagnostic efficiency and accuracy
[2, 3]. Furthermore, deep learning models allow genomic subtype classification directly

*Correspondence:
james@slideflow.dev; alexander.
pearson@bsd.uchicago.edu

1 Section of Hematology/
Oncology, Department
of Medicine, University
of Chicago Medical Center,
Chicago, IL, USA
2 Division of Hematology,
Department of Internal Medicine,
The Ohio State University
Comprehensive Cancer Center,
Columbus, OH, USA
3 Department of Computer
Science, University of Chicago,
Chicago, IL, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05758-x&domain=pdf

Page 2 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

from digital histopathology images [4–7], and they show promise as tools for patient risk
stratification [8], prognosis [9], and treatment selection [10]. Digital histopathology may
also increase accessibility of hematoxylin and eosin (H&E) and immunohistochemistry
staining in low-resource settings through virtual staining, and these tools offer the abil-
ity to boost clinical workflow efficiency and provide advanced diagnostics that may oth-
erwise be unattainable due to a limited number of trained pathologists or their absence
altogether [11]. Despite the far-reaching potential of deep learning applications in digital
histopathology, development complexity and access to computational resources remain
barriers to widespread adoption. There is a growing need for accessible and efficient
open-source software that functions as a platform to perform these analyses.

Efficient software design is crucial for deep learning research toolkits in digital his-
topathology. Model performance improves with the amount of training data provided
[12], but data storage requirements may impose practical limitations on dataset sizes
and experimental scope. Unified and efficient data storage can reduce data redundancy
and optimize the computational resources needed for training models. Computationally
efficient software can reduce data processing and storage requirements while shortening
training time, enabling groups with varying equipment capabilities to train their own
models or access pretrained models for novel research objectives.

Additionally, it is vital for deep learning models that aim to support clinical decision-
making to be transparent and interpretable [13]. Explaining how a model has reached its
decision and the level of certainty associated with a prediction can help build clinician
trust, which may help foster greater adoption of these tools into clinical practice. Soft-
ware that seamlessly integrates explainability and uncertainty quantification presents a
significant advantage in promoting the potential clinical utility of these deep learning
tools.

As computational tools continue to gain importance in biological sciences, it is essen-
tial to ensure their accessibility to researchers with diverse computational backgrounds.
This can be achieved through comprehensive documentation, intuitive code design, and
active project development. When creating analytical tools for clinical applications, it is
also important to consider that the target end-users may not possess extensive computa-
tional expertise. A graphical user interface (GUI) can offer an accessible entry point for
such users, facilitating the deployment of deep learning tools in clinical settings.

In the broader machine learning literature, there is an abundance of software librar-
ies to assist with developing fast and robust deep learning applications, decreasing bar-
riers to research entry, streamlining development workflows, and improving speed of
iteration and innovation. However, there are many processes unique to computational
pathology research that make direct utilization of generic deep learning libraries chal-
lenging, including whole-slide image processing, stain normalization, and pathology-
specific algorithms such as tissue segmentation, cell identification, and multiple-instance
learning. There is a need for accessible software libraries that provide access to com-
monly utilized computational pathology workflows that can serve as a foundation for
research and development.

At present, most computational pathology research papers either share code that is
custom written for the specific research application and not immediately generalizable

Page 3 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

to other datasets or research questions, or do not share code at all [14]. There are several
existing software libraries which seek to address this problem by providing a general-
izable toolkit for pathology artificial intelligence research. Some of these libraries have
not been updated in several years [15, 16], while others continue to see active devel-
opment and appear to have ongoing support and community utilization. TIAToolbox
is a robust, PyTorch-based computational pathology library that provides tools for
whole-slide image processing and stain normalization, tile-based classification, and
both tissue and nucleus segmentation [17]. TIAToolbox also offers a clean and well-
engineered code base and detailed, user-friendly documentation. Although not under
active development, CLAM is a popular PyTorch-based deep learning repository that
includes whole-slide image processing, feature extraction using a ResNet50 model pre-
trained on ImageNet, and attention-based multiple-instance learning [18]. PathML is a
PyTorch-based deep learning library which provides whole-slide image processing for
a variety of slide formats, model architectures for nucleus detection and weakly super-
vised tile-based classification, and detailed online documentation [19]. DeepPath is a
Tensorflow-based library which provides whole-slide image processing for SVS slides
and support for training Inception-v3 weakly supervised tile-based classification mod-
els [20]. Histolab is a whole-slide image preprocessing library for SVS slides designed to
assist with downstream deep learning tasks, and thus does not include tools for model
development [21]. Finally, MONAI is a PyTorch-based framework for deep learning in
healthcare imaging primarily designed for radiology images, but which has a pathology
working group seeking to expand support for pathology applications [22]. An interactive
user interface for flexible model deployment to whole-slide images, accessible by some-
one with limited or no programming experience, is not readily available in any of these
libraries.

Deep learning pathology research has seen tremendous advances over the past several
years. State-of-the-art methods now include self-supervised learning, multiple-instance
learning, generative adversarial networks, and uncertainty quantification. To maximize
relevance for researchers, libraries designed for computational pathology researchers
should provide highly flexible and efficient data processing pipelines, a design which
supports fast implementation of new algorithms, and detailed documentation that illus-
trate how the library can be expanded as new methods emerge. Designing a flexible soft-
ware platform that can grow and scale with a constantly evolving field is a challenging
task, but would offer numerous benefits for researchers such as reduced software devel-
opment time, easier access to state-of-the-art algorithms, and greater reproducibility.
We have thus sought to develop a deep learning framework engineered from the ground
up for flexibility, scalability, and ease of use, with an emphasis on both model develop-
ment and interactive whole-slide image model deployment.

Recognizing the limitations and unmet needs in current computational pathology
tools, we introduce Slideflow. Slideflow is a comprehensive Python package designed
to bridge these gaps, delivering an end-to-end suite of user-friendly tools for building,
testing, explaining, and deploying deep learning models for histopathology applications.
Slideflow aims to overcome challenges in computational efficiency, accessibility, and
interpretability while empowering researchers and clinicians to harness the full potential
of evolving deep learning approaches for digital histopathology.

Page 4 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

Implementation
Technical overview

Slideflow is a Python package providing a library of deep learning tools implemented
with both PyTorch and Tensorflow backends. It has been developed to provide an end-
to-end toolkit for building and deploying deep learning histopathology applications for
scientific research, including efficient data processing, model training, evaluation, uncer-
tainty quantification, explainability, and model deployment in a graphical user interface
(GUI). Slideflow includes a whole-slide user interface, Slideflow Studio, for generating
predictions and heatmaps for whole-slide images in real time. Slideflow is easy to deploy,
with distributions available on the Python Packaging Index (PyPI) and pre-built docker
containers on Docker Hub.

Whole‑slide image processing

Slideflow supports nine slide scanner vendors (Table 1) and includes two slide read-
ing backends – cuCIM [23], an efficient, GPU-accelerated slide reading framework for
TIFF and SVS slides, and VIPS [24], an OpenSlide-based framework which adds sup-
port for additional slide formats. The first step in processing whole-slide images (WSI)
for downstream deep learning applications is slide-level masking and filtering, a process
that determines which areas of the slide are relevant and which areas should be ignored.
Slides can be manually annotated with Regions of Interest (ROIs) using the provided
whole-slide visualization tool, Slideflow Studio, or using alternative programs such as
QuPath [25] or Aperio ImageScope [26]. Tissue detection can be performed with Otsu’s
thresholding [27], which masks areas of background. Pen marks and out-of-focus areas
can be masked with Gaussian blur filtering, as implemented by the scikit-image library
[28].1 Parameters for Otsu’s thresholding and Gaussian blur filtering are customizable,
with default values determined through empirical testing on slides with artifacts. Addi-
tionally, Slideflow includes an API for custom slide-level masking, with an example
demonstrating how to use this API to apply a DeepFocus [29] model for detection of
out-of-focus regions detailed in the online documentation [30].

Table 1  Slide scanner compatibility

Images from Philips and Olympus slide scanners must be exported from the scanner in TIFF format, as iSyntax and VSI files
are currently unsupported

Vendor File format

Aperio SVS

Philips TIFF

Mirax MRXS

Hamamatsu NDPI

Leica SCN

Ventana BIF, TIF

Trestle TIF

Sakura SVSLIDE

Olympus TIFF

1  Gaussian blur filtering by default is performed with σ = 3 and threshold = 0.02 at one-fourth the target magnification.

Page 5 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

After slide-level masking and filtering, WSIs are tiled into smaller sub-regions. A sche-
matic of data flow during tile extraction is shown in Fig. 1. Image tiles can be buffered
into binary TFRecord format, an efficient storage format that improves dataset itera-
tion speed compared to iterating directly from WSIs. Image data can be encoded using
either JPEG (lossy) or PNG (lossless) compression. Image tiles are extracted in a grid,
with optional overlap or jitter for data augmentation. During tile extraction, images tiles
can undergo an additional filtering step using either grayspace or whitespace filtering,
potentially identifying tiles with high background content that were not successfully
removed by Otsu’s thresholding. Grayspace filtering is performed by converting images
into the hue, saturation, value (HSV) spectrum, classifying pixels with saturation below
a given threshold2 as gray, and discarding the tile as background if the fraction of pixels
identified as gray exceeds a prespecified threshold.3 Whitespace filtering is performed
by calculating the brightness of each pixel (average of red, green, and blue channels),

Fig. 1  Schematic of data flow during whole-slide image tile extraction and image processing. a
Schematic of initial slide processing and grid preparation. Whole-slide images can be annotated with Regions
of Interest (ROI) to include only relevant areas of a slide for subsequent analysis. Optional slide filtering steps,
including Gaussian blur filtering and Otsu’s thresholding, may be applied at this step. The remaining areas
of the slide are sectioned into a grid in preparation for tile extraction. b Data flow during tile extraction. If
tile-level filtering is to be performed, such as whitespace or grayspace filtering, a low-magnification image
at the highest pyramidal layer is taken at the given location and used for background filtering. If the tile
passes filtering, the full-magnification image extracted, optionally resized to match a target micron size, stain
normalized, and converted into a PNG image, JPEG image, or Numpy array. Extracted tiles can be saved to
disk as individual files, or buffered into TFRecords for faster dataset reading. c Schematic of data flow when
reading from TFRecords. Image tiles are buffered in TFRecords with JPEG or PNG compression and stored
with slide and location metadata. During dataset iteration, data is decoded and converted to Tensors.
Augmentation, including random flipping/rotation, random JPEG compression, and random Gaussian
blur, can be applied at this step. If stain normalization was not performed during tile extraction, stain
normalization can be applied at this step when iterating through a TFRecord dataset in real-time. Images
are then standardized, and slide names are converted to ground-truth outcome labels using a provided CSV
annotations file or Pandas DataFrame

2  Default grayspace saturation filtering threshold is 0.05.
3  Default grayspace fraction threshold is 0.6.

Page 6 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

classifying pixels with brightness above a given threshold4 as white, and discarding the
tile as background if the proportion of pixels identified as white exceeds a prespecified
threshold. Default filtering thresholds were determined through empirical testing, as
previously described, and are user-customizable [31]. Tile-level background filtering is
performed at lower magnification for computational efficiency.

The effective optical magnification at which tiles are extracted can be determined by
either designating a pyramid level or a tile width in microns (Fig. 2). If a pyramid level
is used, image tiles are extracted at a specified pixel size. Not all slides have the same
optical magnifications available as pyramid layers, so this approach may require that
some slides are skipped (Additional file 1: Fig. 1). Furthermore, this approach restricts
the magnification levels that can be explored for downstream analysis to only what is
available in each slide. Alternatively, if a tile width is specified in microns, image tiles will
be extracted from the nearest higher-magnification pyramid layer and downsized to the
target micron width, allowing researchers to granularly specify effective optical magni-
fication. For this added flexibility, micron-based tile extraction is preferred. When using
cuCIM, images are resized using bilinear interpolation, and when using VIPS, images
are resized using Lanczos interpolation [32]. Tile extraction is heavily optimized and
multiprocessing accelerated, enabling whole-slide tile extraction at 40x magnification in
as little as 2.5 s per slide. Fast tile extraction enables researchers to quickly experiment
with different magnification levels.

Fig. 2  Magnification-based vs micron-based tile extraction. a Comparison between magnification-based
and micron-based tile extraction at 20x effective optical magnification. In this example, slide 1 has internal
pyramid images stored at 2.5x, 10x, 20x and 40x magnification. Slide 2 has images stored at 2.5x, 10x, and
40x. Magnification-based strategies extract tiles at a matching layer in the image pyramid for a target optical
magnification. In this example, Slide 2 is missing the 20x magnification layer, so tiles could not be extracted
at 20x magnification. In comparison, with micron-based tile extraction, image tiles would be extracted at
the 40x layer for Slide 2 and resized to an effective optical magnification of 20x. b Comparison between
magnification-based and micron-based tile extraction at 10x effective optical magnification. In this scenario,
the “10x” layers in Slide 1 and Slide 3 have slightly different effective optical magnifications – 10x and 10.5x
– due to slide scanner differences. With magnification-based tile extraction, image tiles extracted from Slide
1 and Slide 3 would have slightly different effective optical magnification. With micron-based tile extraction,
tiles would be extracted at the 10.5x magnification layer from Slide 3 and resized to match the same effective
optical magnification as Slide 1 (10x). This strategy ensures that all image tiles have the same effective optical
magnification

4  Default whitespace brightness filtering threshold is 230.

Page 7 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

All parameters needed to reproduce processed slide data are logged during tile
extraction, assisting with data lineage tracking and management. Visual summary
reports containing images of WSIs overlayed with tile masks and selected tiles
from each WSI are automatically generated after tiles have been extracted, allow-
ing researchers to quickly assess the quality of masking, filtering, and extracted
images. This step can identify potential dataset issues, such as out-of-focus slides,
suboptimal background or artifact removal, or low-quality ROIs. Slideflow Studio,
an interactive whole-slide graphical user interface (GUI) included with Slideflow,
can be used to preview slide masking, background filtering, and stain normaliza-
tion settings in real-time. Interactive visualization assists with rapid determination
of optimal slide processing parameters if further tuning of these settings is required.
Slideflow Studio is described in more detail in the “Tissue and cell segmentation”
section.

Stain normalization and augmentation

Digital hematoxylin and eosin (H&E) stain normalization, which is used to help
reduce biasing batch effects incurred by differences in staining color and intensity
among slides, can be applied to image tiles either during tile extraction or in real-
time during model training. Available stain normalization methods include Reinhard
[33], Macenko [34], and Vahadane [35], as well as a masked variant for Reinhard—
where normalization is only applied in non-white areas—and fast variants for both
Reinhard and Macenko normalizers, with the brightness standardization step disa-
bled. The Reinhard and Macenko normalizers have native Numpy/OpenCV, Tensor-
flow, and PyTorch implementations to improve computational efficiency and enable
GPU acceleration. Stain normalizers include several default reference fits and can be
optionally fit to user-defined images.

Real-time stain augmentation can be performed during training when using the
Reinhard or Macenko normalizers. Slideflow includes a novel stain augmentation
approach performed by dynamically randomizing the stain normalization target,
using a preset standard deviation around the normalization fit values. As the ran-
domized stain matrix targets are centered around normalized values, the result is a
combination of both normalization and augmentation. This approach differs from
the stain augmentation described by Tellez et al., in which authors performed stain
augmentation in the deconvoluted stain matrix space without normalization [36].

Additionally, Slideflow includes an option for using contextual information from
the corresponding WSI during Macenko stain normalization. With contextual nor-
malization, staining patterns across a slide are used to inform normalization of a
constituent image tile. The deconvoluted H&E channels for a given image tile are
normalized using the maximum H&E concentrations calculated from a context
image, rather than calculating these maximum concentrations from the image being
transformed. When this option is used, the context image is a thumbnail of the WSI,
with background and areas outside ROIs removed to prevent pen marks and other
artifacts from interfering with stain deconvolution. Contextual normalization is not
recommended when artifact removal is suboptimal or ROIs are unavailable.

Page 8 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

Training weakly‑supervised, tile‑based models

Slideflow includes several tools for training deep learning classification, regression, and
time-to-event models for WSIs. Weakly-supervised, tile-based models use a deep learn-
ing image classifier to generate predictions for all tiles in a slide, and the final slide-level
prediction is calculated by averaging tile predictions (Fig. 3). Although this method may
be limited with highly heterogeneous tumors or when salient morphological features are
sparse, it has proven to be an effective approach for a variety of biological applications [6,
37–39]. In addition to averaging, Slideflow supports calculating slide- and patient-level
predictions using a variety of aggregation functions, as well as arbitrary user-defined
functions.

Slideflow includes dataset organization tools to easily support the standard train,
validate, test paradigm used for biomarker development. A held-out test set is first
designated, either manually or using one of several tools for dataset splitting. Several
approaches can be used for separating the remaining dataset into a training and vali-
dation splits, including fixed splitting, bootstrap, k-fold cross-validation, and site-pre-
served k-fold cross-validation [40].

Model architecture, loss function, and training hyperparameters are then configured;
a list of included pre-configured model architectures is provided in Additional file 1:
Table 1. Slideflow also supports custom models and loss functions using either Tensor-
flow or PyTorch. Models can be trained to single categorical, multi-categorical, continu-
ous, or time-to-event outcomes. Multi-modal models can also be trained with additional
arbitrary input, such as clinical variables, using late multimodal fusion via concatenation
at the post-convolutional layer. Hyperparameters can be optionally tuned using either
grid-search sweeps or Bayesian hyperparameter optimization, which uses the SMAC3
[41] package. Hyperparameter search spaces can be easily customized, and several pre-
configured search spaces are provided.

Fig. 3  Summary of approach for tile-based deep learning models. a Image tiles are extracted from
whole-slide images after any slide processing and buffered into TFRecords. During training, tiles are read from
TFRecords, augmented, stain normalized, standardized, and batched. In this weakly-supervised approach,
models are trained using ground-truth labels for each tile determined from the label of the corresponding
slide. b When evaluating a tile-based model, image tiles do not need to be buffered into TFRecords. Image
tiles can be extracted from slides, processed and stain normalized, and predictions are generated for each tile
from a slide. The final slide-level prediction is the average prediction from all tiles. Tile-level predictions can be
visualized as a heatmap

Page 9 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

During training, images can undergo augmentation to broaden the training domain
and promote generalizability (Fig. 1C). Images can undergo random cardinal rotation
and random horizontal or vertical flipping, random JPEG compression,5 and random
Gaussian blur,6 and stain augmentation. When using Tensorflow, images are standard-
ized to a mean of 0 and standard deviation of 1, and when using PyTorch, images are
standardized to a range of 0–1.

By default, mini-batch balancing is used to ensure equal representation of all slides in
each batch and equal representation of all classes (Additional file 1: Fig. 2). Throughout
training, slides and classes will be oversampled to enable this balancing. This mini-batch
balancing can be customized or disabled. During training, one epoch is defined as the
total number of image tiles available in the training dataset divided by the batch size.
The user can specify the interval at which validation checks are performed in the middle
of an epoch. Early stopping can be configured to trigger when the exponential moving
average of either loss or accuracy plateaus, or models can be trained for a prespecified
number of epochs. Training can be distributed across multiple GPUs for computational
efficiency. Training progress is monitored locally using Tensorboard [42] or remotely
using Neptune.ai [43].

Three pretrained classification models, trained on thyroid cancer (BRAF-RAS gene
expression score), breast cancer (Estrogen Receptor [ER]-positive vs. ER-negative), and
lung cancer (adenocarcinoma vs. squamous cell carcinoma), have been made available
on Hugging Face [44–46].

Evaluating weakly‑supervised tile‑based models

After training, performance metrics will be automatically calculated from the valida-
tion dataset at the tile-, slide- and patient-levels, including accuracy, area under receiver
operator curve (AUROC), and average precision (AP). Slide-level predictions are calcu-
lated by averaging the one-hot predictions for all tiles from a slide, and patient-level pre-
dictions are calculated by averaging all tile-level predictions across all slides from a given
patient. Tile-, slide-, and patient-level predictions are saved during both training and
evaluation, allowing the researcher to calculate custom metrics if desired. Saved models
can also be applied to held-out test sets, calculating test-set metrics, or to single slides
for inference.

Predictive heatmaps are generated by overlying tile-level predictions onto a slide and
can also be generated for either a single slide or multiple slides. Heatmap calculation is
accelerated by parallelized tile extraction with multiprocessing. Heatmaps can be ren-
dered and exported as images or interactively viewed with real-time navigation in Slide-
flow Studio, the whole-slide GUI.

Uncertainty quantification

Estimation of confidence and uncertainty is essential for medical AI applications, as reli-
able uncertainty quantification can facilitate clinical decision-making and potentially
improve patient safety [47, 48]. Slideflow enables uncertainty estimation using the Monte

5  10% chance of compression at a random quality level between 50–100%
6  50% chance of Gaussian blur with sigma between 0.5–2.0.

Page 10 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

Carlo dropout paradigm [49]. With this approach, models are built with dropout layers
enabled during both training and inference. During inference, a single image undergoes
multiple forward passes in the network, with the resulting distribution representing the
final prediction (mean) and uncertainty (standard deviation). Tile-level uncertainty can
be translated into slide-level uncertainty and used for subsequent confidence thresh-
olding, using our previously described uncertainty thresholding algorithm [31]. Briefly,
from a given set of validation predictions, an optimal uncertainty threshold is deter-
mined, below which predictions are more likely to be correct compared to predictions
with higher uncertainty. Predictions with uncertainty above this threshold are then dis-
carded. This thresholding is performed first at the tile level and then at the slide level.
Thresholds are determined for a given training dataset using nested cross-validation, to
prevent data leakage. This uncertainty estimation and confidence thresholding approach
improves accuracy for high-confidence predictions and guards against domain shift.

Image features and feature space analysis

Converting images into feature vectors provides an avenue for feature space analysis and
more advanced, whole-slide classification models such as multiple-instance learning
(MIL). Three feature generation methods are provided for processing image tiles into
numerical vectors: pretrained networks, finetuned classifiers, and self-supervised learn-
ing (Fig. 4). For all methods, features can be calculated for single image tiles, a single
slide, or image tiles read from TFRecords.

Several pretrained networks can be used for converting images into feature vec-
tors. Slideflow includes an API for calculating layer activations at any arbitrary neu-
ral network layer for models pretrained on ImageNet, by specifying an architecture
name and layer name. If multiple layers are specified, activations at each layer will be
calculated and concatenated. An API is also included for easily generating features
using the pretrained, pathology-specific CTransPath [50] and RetCCL [51] net-
works. Finetuned classifiers trained with Slideflow can also be used for feature gen-
eration, calculating activations at any arbitrary neural network layer. Finally, an API
is included for easily training the self-supervised learning model SimCLR, providing
another avenue for feature generation through contrastive pretraining.

Once features are calculated for a dataset of image tiles, several tools are provided
for flexible dimensionality reduction and feature space visualization using UMAP
[52]. UMAP plots can be quickly generated and labeled with outcomes, clinical var-
iables, and suspected confounders such as site. Corresponding image tiles can be
overlaid onto the UMAP plots to aid in interpretability, resulting in visualizations
we refer to as mosaic maps. Mosaic maps are generated by separating a given UMAP
projection into a grid (default 50 × 50), and for each grid space, plotting the cor-
responding image tile for any of the points in the grid space. Tile selection within a
grid space can either be random (default), or the tile nearest to the centroid for that
grid space can be chosen. Mosaic maps can be viewed alongside labeled UMAPs,
providing insights into the relationship between morphologic image features, the
outcome of interest, and other relevant clinical factors. This process can also help
identify potential sources of confounding and bias. Mosaic maps can be exported as
a high-resolution figure or viewed interactively with Slideflow Studio.

Page 11 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

Weakly‑supervised multiple‑instance learning

Tile-based whole-slide classification models may not be well-suited for datasets
where relevant histopathological features are expected to be sparse or heterogenous
in a slide, or when pathologist-annotated regions of interest are unavailable. Atten-
tion-based multiple-instance learning (MIL) models provide an avenue for weakly-
supervised whole-slide classification that is theoretically still robust when relevant
features are sparse or regions of interest are unavailable [53]. These models generate
predictions from bags of image tile feature vectors, and models will learn to ignore
uninformative image tiles through attention weighting. The performance of these
models is in part dependent upon the quality of features calculated from image tiles.

Three types of MIL models can be trained in Slideflow, including traditional MIL
[54], attention-based MIL [55], and clustering-constrained attention-based MIL
(CLAM) [18]. An API is provided for fast conversion of image tiles into feature vec-
tors and training of MIL models from these generated features. Training is executed
using the FastAI framework [56], including options for either cosine annealing
learning rate scheduling or one-cycle learning rate scheduling [57]. For CLAM, an
option is provided to use the originally published training loop instead of the FastAI
trainer, if desired. Trained MIL models can be used to generate attention heatmaps
for WSIs, highlighting areas of the slide weighted with high attention. As with pre-
dictive heatmaps for tile-based classification models, attention heatmaps can be
generated and exported as high-resolution images.

Generative adversarial networks

A growing body of evidence is showing the potential utility of Generative Adversarial
Networks (GANs) for histopathological applications. GANs can reproduce realistic

Fig. 4  Feature generation methods. a Trained classifiers can be converted into feature generators
by specifying a neural network layer and calculating activations at the given layer. b Several pretrained
models can be used as feature generators, including non-pathology pretrained models (e.g. ImageNet), or
pathology-specific pretrained models (e.g. CTransPath). c Self-supervised contrastive learning (SimCLR) can
be used to train a feature generator without requiring ground-truth labels for classification. d Features can be
calculated from a model trained using self-supervised learning

Page 12 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

synthetic histology images that have been used for training augmentation, stain and
color normalization, image enhancement, and explainability. Slideflow includes an API
for training and using StyleGAN2 [58] and StyleGAN3 [59] with optional class condi-
tioning from image tiles saved in TFRecords. Model architectures, training paradigms,
and configuration options are all equivalent to their original implementations. The API
provides a method for training these GANs from preprocessed images already stored
in TFRecords, without requiring additional data processing or alternative formatting,
and additionally provides an interface for calculating predictions from generated images
using a trained classifier.

For class-conditional GANs, several tools are provided for generating images from
intermediate classes using feature space embedding interpolation. To generate an image
in between two classes, we calculate the associated class embedding for each class, and
then perform a linear interpolation to achieve an intermediate embedding. These inter-
mediate embeddings can be used for class or layer blending applications [60]. Images
generated from trained GANs can be exported as raw PNG or JPG images, saved in
TFRecord format, or visualized in real-time using Slideflow Studio.

Three pretrained conditional GANs, trained on thyroid cancer (conditioned on BRAF-
like vs. RAS-like gene expression), breast cancer (conditioned on Estrogen Receptor
[ER]-positive vs. ER-negative), and lung cancer (conditioned on adenocarcinoma vs.
squamous cell carcinoma), have been made available on Hugging Face [61–63].

Model explainability

Explainable artificial intelligence (XAI) approaches are an increasingly important com-
ponent of medical imaging research. These techniques can provide insights into what
image features models have learned, support biological plausibility of model predictions,
and improve model trust [13]. Slideflow includes four methods for model explainabil-
ity: heatmaps, mosaic maps, gradient-based pixel attribution (saliency maps), and condi-
tional generative adversarial networks (cGANs).

Heatmaps, including both predictive and attention heatmaps, provide an avenue for
quickly assessing the areas of a WSI relevant to the final prediction. Described above,
heatmaps can be calculated for a single slide or a dataset of multiple slides, and either
exported as a high-resolution figure or interactively viewed.

Mosaic maps provide a tool for feature space exploration at arbitrary neural network
layers. With pathologist interpretation, they can highlight morphologic associations
between outcome variables and offer insights into the spatial relationship of image fea-
tures among classes.

Gradient-based pixel attribution approaches highlight the pixels in an image that were
relevant for a given neural network model prediction. These attribution heatmaps, or
saliency maps, can be calculated through a variety of provided methods, including Grad-
CAM [64], vanilla gradients [65], integrated gradients (and variations thereof) [66], and
XRAI [67]. Saliency maps can be displayed as raw heatmaps or as overlays onto the asso-
ciated image. Utility functions are included for rapid comparison between different sali-
ency map methods. Saliency maps can also be interactively viewed for WSIs in real-time
using Slideflow Studio.

Page 13 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

cGANs offer a dataset-level explainability approach for trained neural networks mod-
els, using the paradigm we have recently described [60]. The synthetic histology gener-
ated by cGANs can illustrate morphologic features associated with outcome classes and
can provide insights into the importance of larger histopathological features not amena-
ble to localization with saliency maps, such as differences in architecture, stroma, col-
loid, and staining patterns.

Tissue and cell segmentation

Slideflow also provides tools for building and using tissue and cell segmentation models.
Binary and multiclass tissue segmentation models can be trained from labeled regions
of interest using a variety of architectures, including U-Net, DeepLabV3, FPN, and oth-
ers, as implemented by Iakubovskii [68]. During training, whole-slide thumbnails and
paired regions-of-interest masks at a user-defined microns-per-pixel magnification are
augmented with random cropping, flipping, and cardinal rotation. Once trained, tis-
sue segmentation models can be deployed for generating regions of interest or used for
slide-level masking and quality control, via either a programmatic interface or Slideflow
Studio. A pretrained tumor identification tissue segmentation model, trained on 8,122
slides and paired pathologist-annotated regions of interest from The Cancer Genome
Atlas [69], is available on Hugging Face [70]. Example tumor regions of interest gener-
ated from this model on an external dataset of head and neck cancer whole-slide images
from the University of Chicago is shown in Additional file 1: Fig. 3.

Whole-slide cell identification and segmentation is performed using Cellpose [71].
Both pretrained and user-trained models can be used to generate cell segmentation
masks and centroids using either a programmatic interface or Slideflow Studio. Cell
diameter is configured in microns, rather than pixels, to improve generalizability across
slides with different magnifications. Cell segmentation is applied to whole-slide images
in tile-wise fashion, with segmentation masks stitched together to form a whole-slide
mask. Masks and centroids can be used to guide tile extraction, so that each extracted
tile represents a single detected cell/nucleus, or be exported in NumPy format for down-
stream use and further analysis.

Whole‑slide visualization with slideflow studio

Slideflow includes a visualization tool, Slideflow Studio, for interactively viewing WSIs,
focal predictions, heatmaps, saliency, uncertainty, and mosaic maps. Slide imaging data
is read using either cuCIM or VIPS, accelerated with multiprocessing, and rendered
using OpenGL. Slide processing settings, such as Otsu’s thresholding, grayspace filter-
ing, stain normalization, etc., can be previewed in real-time to assist with fast determi-
nation of optimal slide processing parameters (Additional file 1: Fig. 4). ROI annotations
can be loaded, edited, and added with a lasso selection tool.

Once a model is loaded, right-clicking anywhere on the slide will reveal a preview win-
dow showing an image tile extracted at this location, before and after stain normalization
(if applicable) (Fig. 5). Saliency maps generated through gradient-based pixel attribution
can also be displayed as a heatmap or as an overlay on the extracted image tile. Tile-level
predictions and uncertainty are shown in the control panel.

Page 14 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

Whole-slide predictive heatmaps can be calculated, customized, and displayed for
slides once a model is loaded. A “low memory” mode can be enabled in Performance
Settings, reducing memory consumption at the cost of slower heatmap calculation. Final
slide-level predictions (and uncertainty, if applicable) will be shown in the control panel
after the heatmap is calculated.

Mosaic maps can also be interactively viewed in Slideflow Studio (Additional file 1:
Fig. 5). Compared with a static figure, this interface permits closer inspection of image
tiles at higher resolution through interactive zoom and enables dynamic modification
of the mosaic grid size. A popup window in the bottom-right corner shows the user the
corresponding UMAP plot, with a red box indicating the current section of the plot in
view. Hovering over an image tile will show a larger section from the corresponding slide
at that tile location, revealing the surrounding histologic context.

Programmatic interface

Slideflow can be installed via the Python Packaging Index (PyPI), and pre-built Docker
containers are available for easier dependency management.

Once installed, the first step to using Slideflow is creating a Project to facilitate organi-
zation of raw data, processed data, saved models, and experimental results. Projects are
created and loaded using the slideflow.Project class. Locations of whole-slide images,
pathologist ROI annotations, and processed TFRecords are defined through a dataset
configuration JSON file associated with the Project. Ground truth patient- and slide-
level diagnoses and clinical outcomes can be provided either via a CSV file or a Pan-
das DataFrame. Several example preconfigured projects for lung cancer, breast cancer,
and thyroid cancer are provided for testing and functionality exploration; when used,

Fig. 5  Real-time predictions and saliency maps from whole-slide images. Slideflow Studio provides an
interface for generating both whole-slide and focal tile predictions. Right clicking on an area of the screen
extracts a tile at the given location, showing the tile before and after stain normalization (if applicable).
Gradient-based pixel attribution methods can be used to render saliency maps for the given image, which
can be shown as a heatmap (shown here) or as an overlay (not shown)

Page 15 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

whole-slide images and associated clinical annotations will be automatically downloaded
from public repositories.

Most functions—such as training classification models, self-supervised learning,
feature generation, or GAN training—require processed image tiles extracted from
whole-slide images at a given magnification and pixel resolution. Data organization and
processing is supervised by the slideflow.Dataset class, an instance of which can be gen-
erated by using the Project.dataset() method and specifying the desired magnification
and target pixel size. Clinical annotations associated with a Project are automatically
passed to the dataset and can be used for dataset filtering. Datasets can be easily split
into training, test, and validation subsets with Dataset.split(). Whole-slide image pro-
cessing and tile extraction is performed using the Dataset.extract_tiles() method, with
generated TFRecords automatically organized and stored according to the Project data-
set configuration. Once tiles are extracted, a tensorflow.data.Dataset or torch.utils.data.
DataLoader that dynamically reads and processes imaging data from TFRecords can be
easily created using the Dataset.tensorflow() and Dataset.torch() methods, respectively.

Classification models are configured using slideflow.ModelParams, a class which
defines the model architecture and training hyperparameters. To train a model, use Pro-
ject.train(), providing a ModelParams object, a training and validation Dataset, and the
column name that contains the ground-truth labels in the clinical annotations. Held-out
test sets can be assessed using Project.evaluate(), and predictions can be generated for
slides with Project.predict().

The online documentation includes further details about training, including step-by-
step tutorials, instructions for the use of custom models and loss functions, and training
strongly-supervised models with ROI labels. The documentation also contains further
descriptions of the programmatic interface for Project configuration dataset manage-
ment, multiple-instance learning, feature space analysis, generative adversarial net-
works, and segmentation [30].

Supported hardware and software environments

Slideflow is a Python package that requires Python 3.7 or greater, and either Tensorflow
or PyTorch. Some features, such as GANs and tissue segmentation, require PyTorch.
Model training requires a Linux-based operating system, such as Ubuntu or RHEL/Cen-
tOS, and is greatly accelerated with a dedicated GPU. Trained models can be deployed
using the interactive interface on a variety of operating systems and hardware environ-
ments. Testing of this user interface has been performed on Linux-based systems, Win-
dows, macOS (Intel and Apple chip), and ARM-based devices such as the Raspberry
Pi and Jetson Nano. A dedicated GPU is recommended, but not required, for model
deployment.

Software development processes

Slideflow has been engineered according to industry software quality standards. Source
code adheres to PEP 8 style guidelines [72], supported through integrated pylint [73]
checking. Functions and classes include Google-style docstrings [74] for documentation,
along with type annotations leveraging mypy [75].

Page 16 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

The public GitHub repository serves as the platform for issue tracking, feature
requests, and community contributions. Pull requests require approval before merging
into the master branch, which triggers continuous integration testing on GitHub Actions
including flake8 linting. Slideflow additionally includes an integrated test suite, with both
unit tests and functional tests covering core data processing, whole-slide image process-
ing, TFRecord manipulation, stain normalization, model training, heatmap and mosaic
map generation, and feature space analysis. The online documentation is built from the
repository using Sphinx, leveraging code documentation to ensure it stays current with
ongoing development work.

Altogether, these processes promote stability, continuity, transparency, and reliabil-
ity as new capabilities are added, facilitating long-term maintainability across future
releases.

Results
The variety of tools offered by Slideflow have been utilized for many diverse research
objectives, including gene expression prediction [6], prognostication [76], uncertainty
quantification [31], identification of bias and batch effects [40], drug response predic-
tion [77], and generation of synthetic histology for model explainability [60]. In order to
illustrate some of these tools on a real dataset, we will present results on a benchmark
dataset for Human Papilloma Virus (HPV) status prediction in head and neck squamous
cell carcinoma. The training/validation dataset is comprised of 262 patients (151 HPV-
negative, 111 HPV-positive) from the University of Chicago, and the held-out external
dataset is comprised of 459 patients (407 HPV-negative, 52 HPV-positive) across 26 sites
from The Cancer Genome Atlas (TCGA). All patients had one associated WSI.

Slide processing

Pathologists annotated ROIs encircling areas of tumor for all slides, except in cases
where the entire sample was determined to be tumor. Otsu and Gaussian blur filter-
ing were explored for this dataset. In some cases, Otsu’s thresholding highlighted pen
marks as foreground tissue, so both background filtering methods were used in addi-
tion to ROIs for all slides. Image tiles were extracted at 299 pixels and seven micron
sizes ranging from 76 μm (40x magnification) to 1208 μm (2.5x). Using the cuCIM
backend, tile extraction speed ranged from 614 to 2091 tiles/second (0.38–25 slides/
second) (Fig. 6, A and B). Tile extraction was also performed using VIPS for compari-
son, with tile extraction speed ranging between 198 and 1300 tiles per second (0.24–
11.5 slides/second). Otsu’s thresholding added 0.30 ± 0.12 s per slide, and Gaussian
blur filtering added 0.50 ± 0.93 s per slide. Tile extraction with cuCIM was 1.6–3.3
times faster than VIPS (Fig. 6A, B). Example pages from the associated tile extraction
PDF reports are shown in Additional file 1: Figs. 6 and 7. TFRecord buffering permit-
ted dataset iteration at 11,453 images/second using Tensorflow and 6,784 images/sec-
ond using PyTorch. Buffered dataset sizes are shown in Fig. 6C.

Experimentation with tile-based background filtering was performed for com-
parison but not used for downstream analysis (Fig. 7). Otsu’s thresholding identified
6.4% ± 8.2% more background tiles than grayspace filtering. Image tiles removed by
Otsu’s thresholding but not grayspace filtering typically included edge tiles or images

Page 17 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

with heterogenous background content, such as fat or stroma (Fig. 7B). With rare
exception, all image tiles removed by Otsu’s thresholding were also removed with
grayspace filtering. For 85.2% of slides, there was a < 5% difference in background
identified by whitespace filtering and grayspace filtering. In 12.6% of cases, grayspace

Fig. 6  Whole-slide image processing speed and dataset sizes/ a Median time required to extract tiles
from WSIs using each of the two available slide processing backends. b Average tile extraction speed from
WSIs, using each slide processing backend. c Size of the full training dataset as raw slides and in buffered
TFRecords, at each assessed magnification size. Image tiles were stored in TFRecords using JPEG compression
with 100% quality. Benchmarks were performed using an AMD Threadripper 3960X

Fig. 7  Comparison between background filtering methods. a Comparison between slide background
filtering methods. An example whole-slide image with large pen mark artifact is shown, with associated
background filtering masks applied. Black areas indicate masked background. With Otsu’s thresholding alone,
the pen mark is identified as foreground, and several parts of the tissue area are erroneously removed as
background. Gaussian blur filtering removes the pen mark, but some smaller areas of background near edges
are not removed. Performing Gaussian blur first, followed by Otsu’s thresholding, results in the most accurate
background identification and removes the pen mark. b Example images identified as background using
Otsu’s thresholding, but not when using grayspace filtering. c Example images identified as background
using grayspace filtering, but not when using whitespace filtering

Page 18 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

filtering removed a median of 10.2% more background than whitespace filtering
(Fig. 7C), and in 2.2% of cases, whitespace filtering failed to remove any background
tiles.

Three stain normalization methods with several variations were compared, as shown
in Fig. 8. The fast variants of the Reinhard methods produced similar results to the
standard Reinhard variants, with slight differences in perceived brightness. The masked
and unmasked Reinhard variants yielded similar images in most contexts, but with the
unmasked variants producing pink-tinted background for image tiles containing high
background content. Compared with standard Macenko normalization, context-aware
Macenko normalization generally resulted in images with higher perceived contrast but
occasionally washed out fine details in bright areas, such as areas containing fat (Addi-
tional file 1: Fig. 8). Macenko stain augmentation yielded realistic, artifact-free images
with diverse staining hues (Additional file 1: Fig. 9).

Computational efficiency was compared between methods using both Tensorflow and
PyTorch, with results shown in Fig. 9. Removal of the brightness standardization step
improved peak stain normalization speed by 272% for the Reinhard normalizer and 51%
for the Macenko normalizer when using Tensorflow, and 26% and 24% for Reinhard and
Macenko normalizers when using PyTorch. Reinhard normalizers exhibited superior
computational performance when processed on the GPU, and Macenko normalizers
were faster when processed on CPU. The utility of the Vahadane algorithm is limited by
long processing times, and could not be used for real-time normalization. Based on a

Fig. 8  Comparison between stain normalization methods. Four image tiles from whole-slide images
with different staining patterns are shown before and after stain normalization. Three stain normalizers are
compared: Reinhard, Macenko, and Vahadane. The Reinhard normalizer has a standard and fast variant (with
brightness standardization disabled), and a masked and unmasked variant. Similarly, the Macenko also has a
standard and fast variant

Page 19 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

combination of qualitative assessment and computational efficiency, the standard Mac-
enko stain normalization strategy was chosen for subsequent analyses. Real-time stain
augmentation was used during model training.

Weakly‑supervised tile‑based classification

Weakly-supervised, binary classification models were trained on the institutional dataset
of 262 slides to predict HPV status using three-fold cross-validation and the Tensorflow
backend. As a first step, models were trained on the first cross-fold at seven magnifi-
cation levels between 2.5x and 40x using the Xception architecture and a single set of
hyperparameters (Fig. 10). The best performance was seen at 6.6X (tile micron width
of 453), so this magnification level was used for subsequent analysis. Hyperparameters
were tuned on the first cross-fold with Bayesian hyperparameter optimization using the
“shallow” search space configuration, a maximum of 50 iterations, and 5 replicate mod-
els trained for each hyperparameter combination. Average training time for each model
was 2 min 11 s. Ten models were trained using the best performing hyperparameter

Fig. 9  Real-time stain normalization benchmarks. Stain normalization speed was assessed for each
normalization method and device type (CPU, GPU) using both Tensorflow and PyTorch. a Benchmark
results using PyTorch. b Benchmark results using Tensorflow. All benchmarks were obtained using an AMD
Threadripper 3960X CPU and A100 40 GB GPU

Fig. 10  Tile magnification optimization. Image tiles were extracted from slides in the training dataset at
seven magnification sizes, ranging from 2.5x (tile width 1208 microns) to 40x (tile width 76 microns). Using
the first training cross-fold, ten replicate models were trained at each magnification size using random weight
initialization. a Area Under Receiver Operator Curve (AUROC) for models trained at varying magnifications. b
Average Precision (AP) for models trained at varying magnifications

Page 20 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

combination and compared with ten models trained using the starting hyperparam-
eters. AUROC was not improved using the optimized hyperparameters (0.808 vs. 0.803,
P = 0.11), so the initial hyperparameters were used for subsequent analysis (Additional
file 1: Table 2). AUROC across the three cross-folds was 0.80, 0.84, and 0.78, with AP
of 0.79, 0.83, and 0.77 (Fig. 11). Dropout-based uncertainty quantification was used for
confidence threshold determination. A final model was then trained across the full data-
set using the previously determined optimal hyperparameters and the Tensorflow back-
end. When validated on the external test set comprised of 459 slides from TCGA, the
model resulted in an AUROC of 0.87 and AP of 0.80. Using uncertainty quantification
and confidence thresholding, 89.5% of slides had high-confidence predictions, with an
AUROC of 0.88 within high-confidence predictions. Using prespecified prediction and
uncertainty thresholds determined from cross-validation, the final model had a test-set
accuracy of 90.2%, sensitivity of 77.0%, and specificity of 92.0% within high-confidence
predictions.

After the final model was trained and evaluated on the external test set, a post-hoc
analysis was performed to assess the impact of stain augmentation on model perfor-
mance. Ten replicate models were trained with and without stain augmentation on the
full University of Chicago training dataset and then evaluated on the TCGA external test
set. This post-hoc analysis demonstrated that stain augmentation resulted in a small but
statistically significant improvement in AUROC on the test set, from 0.871 ± 0.008 to
0.882 ± 0.014 (P = 0.021, one-sided t-test).

Multiple‑instance learning

In order to train multiple-instance learning (MIL) models, image tiles were first
extracted from whole-slide images at 6.6X magnification (453 μm width) and normalized
with Macenko normalization. Pathologist-annotated ROIs were not used for MIL exper-
iments. Image features were then calculated for all extracted image tiles using the pre-
trained model CTransPath [50]. MIL models were built using the CLAM single-branch
architecture [18] and trained using a single set of default hyperparameters (Additional

Fig. 11  Area Under Receiver Operator Curve (AUROC) for cross-validation and the held-out test set.
a AUROC for the three models trained in cross-validation on the single institution, University of Chicago
dataset. b After cross-validation, a final model was trained on the full University of Chicago dataset. This
model was then evaluated on the held-out test set from The Cancer Genome Atlas (TCGA). AUROC for this
test set evaluation is shown

Page 21 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

file 1: Table 3). Models were trained for a total of 20 epochs. Three-fold cross-validation
AUROC for the MIL models was 0.77, 0.78, and 0.79. A final model was trained on the
full University of Chicago dataset without validation, and then tested on the TCGA test
set. On this held-out test set, the final model had an AUROC of 0.81 and AP of 0.77.

Feature space analysis

Features for the weakly supervised tile-based model were generated and visualized for
both datasets using the included feature generation interface. Features are generated
through calculation of post-convolutional layer activations for all image tiles, and the
resulting feature space is visualized through UMAP dimensionality reduction. UMAP
plots of the TCGA and University of Chicago feature spaces show good class separa-
tion between HPV-negative and HPV-positive images for both the training and test data
(Fig. 12, A and B). The mosaic map for the University of Chicago feature space high-
lights known biologically-relevant image features associated with HPV status (Fig. 12E).
Area 1, enriched for HPV-positive images, shows image tiles with tightly packed cells
with scant cytoplasm and surrounding inflammation. Area 3, enriched primarily with
HPV-negative images, shows heavy keratinization along with pleomorphic cells with
increased cytoplasm. Findings in both of these areas are consistent with known histo-
pathological associations [78, 79]. Area 2, an intermediate zone with both HPV-positive
and HPV-negative images, shows image tiles with keratinization, inflammation, and cells
with varying cytoplasmic content. Together, this feature space analysis supports the bio-
logical plausibility of model predictions.

Features from CTransPath, which were used for training the multiple-instance learn-
ing model, were generated and visualized using the included feature generation inter-
face. Separation between HPV-negative and HPV-positive image tiles on the University
of Chicago training dataset using CTransPath features is less clear than when using fea-
tures from the tile-based model (Fig. 12C). On the test dataset from TCGA, there is no
clear separation between HPV-positive and HPV-negative image tiles with this visualiza-
tion (Fig. 12D). This poorer separation between HPV-positive and HPV-negative images
in the feature space may help partially explain the discrepancy in performance between
the tile-based and MIL models.

Explainability

Heatmaps of model predictions were generated from the final tile-based model at an
average rate of 22.1 ± 4.2 s per slide. Example heatmaps of predictions and uncertainty
are shown in Fig. 13. In general, areas with low uncertainty and strong predictions for
negative HPV status demonstrated high keratinization and cells with pleomorphic
nuclei. Low-uncertainty areas with strongly positive HPV status predictions tended to
show tightly packed cells with monotonous nuclei and surrounding inflammatory infil-
trate. Both of these observations are consistent with known histopathological associa-
tions with HPV status [78, 79]. Attention heatmaps were also generated using the final
MIL model, as shown in Additional file 1: Fig. 10. Areas with strong, high-confidence
predictions from the tile-based model were generally also weighted with high attention

Page 22 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

Fig. 12  Feature space visualization for the tile-based and multiple-instance learning models. a
UMAP plot of post-convolutional layer activations, calculated using the final trained model, for all images in
the University of Chicago training dataset. b Same as (a), but calculated for the TCGA test set. c UMAP plot
of CTransPath features for all images in the University of Chicago training dataset. d Same as (c), calculated
for the TCGA test set. e Mosaic map generated from the UMAP plot shown in (a). Three areas are magnified
for closer inspection. Area 1 is enriched for HPV-positive images, Area 2 is in a zone of transition between
HPV-positive and HPV-negative images, and Area 3 is enriched with HPV-negative images. Image tiles are
shown using Macenko stain normalization

Page 23 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

from the MIL model. A screenshot of the whole-slide user interface with a loaded heat-
map is shown in Fig. 14.

Saliency maps were generated for an example correctly predicted HPV-negative
image tile using vanilla gradients, three variations on integrated gradients, and XRAI
(Fig. 15A). For this example, all saliency maps highlight the section of the image tile with
heavy keratinization, a histopathological factor known to be associated with HPV nega-
tivity. Finally, a conditional generative adversarial network (cGAN) was trained on the
institutional dataset, conditioned on HPV status, to provide generative explanations for
the trained classifier through synthetic histology [60]. The StyleGAN2 architecture was

Fig. 13  Prediction and uncertainty heatmaps on an example slide in the external test set. Heatmaps
of HPV predictions and uncertainty were generated from the final tile-based model for a randomly selected
slide from the test set. Two areas are shown with magnified display. Area 1 is a location with intermediate
predictions and high uncertainty, showing mostly stroma and out-of-focus cells in the top-right corner. Area
2 is a location with strong HPV-negative predictions and low uncertainty, showing heavy keratinization and
pleomorphic nuclei

Fig. 14  Interface for viewing and navigating whole-slide heatmaps. Slideflow Studio includes an
interface for generating whole-slide predictions and heatmaps, as shown in this figure. Heatmaps can be
viewed interactively and exported as both PNG images and Numpy arrays. Heatmap color and display
options are customized in another tab of the interface (not shown)

Page 24 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

used, using default hyperparameters from the original implementation [58]. Training
was stopped after 15 million images due to divergence with further training. Training
took 38 h on four A100 GPUs. Visualizations generated with this method highlighted
differences in keratinization and nuclear pleomorphism, which is increased in the syn-
thetic HPV-negative images, and inflammatory infiltrate, increased in synthetic HPV-
positive images (Fig. 15B). These differences are consistent with known pathologic
associations with HPV status, further supporting the biological plausibility of learned
image features [78, 79].

Hardware deployment

The above experiments and benchmarks were performed on a Linux-based workstation
with an AMD Threadripper 3960X CPU and NVIDIA A100 40 GB GPU. A breakdown
of the total time required to train and evaluate a classification model on this hardware
is provided in Additional file 1: Fig. 11. To assess the feasibility of using the whole-slide
graphical interface as a deployable tool for WSI analysis, Slideflow Studio was deployed
and tested on various Linux workstations, a Windows 10 desktop (with dedicated GPU),
an Intel MacBook Pro, an M2 MacBook Pro, a Raspberry Pi 4 (4 GB), and a Jetson Orin
Nano. All devices ran Slideflow Studio with usable performance and successfully gener-
ated predictions for WSIs. GPU acceleration for model training is only available on sys-
tems with a dedicated GPU.

Discussion
Slideflow represents a noteworthy advancement in computational pathology deep
learning software, characterized by its versatility, user-friendliness, and a comprehen-
sive array of algorithmic approaches ready for immediate implementation. Among
its enhancements over existing tools, Slideflow offers optimized whole-slide image

Fig. 15  Example of model explanations using saliency maps and generative adversarial networks.
a Various gradient-based pixel attribution methods with APIs available in Slideflow were used to generate
saliency maps for an example HPV-negative image. b A class-conditional GAN based on the StyleGAN2
architecture was trained using Slideflow to generate synthetic histology images belonging to HPV-negative
and HPV-positive negative classes, visually highlighting morphologic differences between classes

Page 25 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

processing, enabling tile extraction at 40x magnification in as little as 2.5 s per slide.
Image tile diameter for tile extraction is defined in microns, rather than pixels, to
improve standardization across slide scanners with variable optical magnifications.
The platform’s data storage format is cross-compatible between both Tensorflow and
PyTorch, facilitating versatile experimentation with algorithms from either framework.
Slideflow also includes out-of-the-box support for more diverse functions, such as self-
supervised learning, generative adversarial networks, segmentation, and highly flexible
feature extraction, all utilizing the same unified data storage and streamlined IO pipe-
lines. Included uncertainty quantification and explainability techniques can assist with
developing more robust and clinically trustworthy models, and the graphical user inter-
face provides a practical and accessible framework for testing model deployment in a
prospective setting. Designed with an intuitive interface that supports easy customiza-
tion, Slideflow serves as an ideal foundation for researchers with diverse objectives, from
trainees with limited programming experience to advanced software developers inte-
grating new methodologies.

Slideflow has been under active development for over 5 years by a dedicated team at
University of Chicago and partner institutions. The developers are committed to ongo-
ing long-term support, with plans for regular updates and new releases. Typically a
major feature release is targeted quarterly, while minor bug fix and maintenance ver-
sions release as needed in between.

Looking ahead, priorities for future development include integration of multi-omics
data into multiple-instance learning model training, expanding cell segmentation and
classification capabilities, streamlining human-in-the-loop refinement of tissue and cell
annotations, augmenting the graphical interface to support no-code model building,
and integration of a pretrained model zoo. This roadmap focuses both on capabilities to
empower more impactful biomedical research, as well as further improving accessibil-
ity and ease-of-use for diverse research teams. With a strong foundation already estab-
lished, Slideflow is well-positioned to continue advancements as a community platform
promoting broader adoption of novel AI tools for computational pathology.

Despite its advantages, Slideflow has several notable limitations. Although data pro-
cessed in Slideflow is cross-compatible between Tensorflow and PyTorch and many
functions can be performed using either deep learning backend, some functions have
specific backend requirements. For example, multiple-instance learning and segmenta-
tion functions both require PyTorch. There are also several deep learning tasks that have
not yet been included in Slideflow, such as the building and analysis of nuclei graphs
with graph neural networks (GNNs). Our goal with this library has been to provide a
strong foundation upon which new features and additional functionality can be easily
built, and we anticipate extending functionality to include GNNs in a future update.

Conclusions
Slideflow is a flexible, end-to-end deep learning toolkit for digital pathology with com-
putationally efficient whole-slide image processing, data storage cross-compatible with
Tensorflow and PyTorch, efficient GPU-accelerated stain normalization, and a GUI to
support deployment of trained deep learning models. Slideflow includes a variety of
digital pathology deep learning methods to support a wide range of research objectives

Page 26 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

without switching software environments or reprocessing data. The software is well doc-
umented and has been built to support researchers with a range of programming experi-
ence in the development of novel deep learning applications for digital histopathology.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​024-​05758-x.

Additional file 1. Supplementary Figures 1–11 and Supplementary Tables 1–3.

Acknowledgements
Not applicable.

Author contributions
J.M.D., E.D., and S.R. wrote the main manuscript text. J.M.D. and A.S. prepared figures. J.M.D., S.K., E.D., A.S., M.S., F.M.H., A.L.,
and P.M. contributed to software development. A.T.P. provided overarching guidance, mentorship, and additional clinical
insights. All authors reviewed the manuscript.

Funding
This work was funded by NIH grant K12-CA13916013 (JMD), and effort support was also provided via the following
grants: NIH R56-DE030958 (ATP), DoD Breakthrough Cancer Research program BC211095 (ATP), Wellcome Leap Q4Bio
(ATP), EU Horizon Programme 2021-SC1-BHC (ATP), NIH grant UE5-EB035490 (ATP), NIH grant R01- R01CA276652 (ATP),
DoE/NCI Innovative Methodologies and New Data for Predictive Oncology Model Evaluation (IMPROVE) project IAA
(ATP), the SU2C Maverick Award Grant (ATP), and grants from ECOG Research and Education Foundation (AS).

Availability of data and materials
Slideflow and Slideflow Studio are available at https://​github.​com/​james​dolez​al/​slide​flow, via the Python Package Index
(PyPI), and Docker Hub (https://​hub.​docker.​com/r/​james​dolez​al/​slide​flow). Slideflow is licensed with GNU General
Public License v3.0. The whole-slide image dataset from The Cancer Genome Atlas (TCGA) head and neck squamous cell
carcinoma project are publicly available at https://​portal.​gdc.​cancer.​gov/​proje​cts/​TCGA-​HNSC. The training datasets from
University of Chicago analyzed during the current study are not publicly available due to patient privacy obligations,
but are available from the corresponding author on reasonable request. Data can only be shared for non-commercial
academic purposes and will require institutional permission and a data use agreement.

Availability and requirements
Project name: Slideflow. Project home page: https://​github.​com/​james​dolez​al/​slide​flow. Operating system(s): Platform
independent. Programming language: Python. Other requirements: Python 3.8 or higher. License: GNU GPL-3.0. Any
restrictions to use by non-academics: License needed for commercial use.

Declarations

Ethics approval and consent to participate
The experimental protocol and data collection plan for the University of Chicago dataset was reviewed and approved
by the Biological Sciences Division / University of Chicago Medical Center Institutional Review Board (IRB #20-0238).
Requirement of informed consent was waived by the Biological Sciences Division / University of Chicago Medical Center
Institutional Review Board. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication
Not applicable.

Competing interests
ATP reports personal fees from Prelude Therapeutics Advisory Board, personal fees from Elevar Advisory Board, personal
fees from AbbVie consulting, and personal fees from Ayala Advisory Board, all outside of submitted work. ATP reports
stock options ownership in Privo Therapeutics. All remaining authors report no competing interests.

Received: 17 April 2023 Accepted: 20 March 2024

References
	1.	 van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat Med. 2021;27(5):775–

84. https://​doi.​org/​10.​1038/​s41591-​021-​01343-4.
	2.	 Campanella G, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide

images. Nat Med. 2019;25(8):1301–9. https://​doi.​org/​10.​1038/​s41591-​019-​0508-1.
	3.	 Raciti P, et al. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of

core needle biopsies. Mod Pathol. 2020;33(10):2058–66. https://​doi.​org/​10.​1038/​s41379-​020-​0551-y.

https://doi.org/10.1186/s12859-024-05758-x
https://github.com/jamesdolezal/slideflow
https://hub.docker.com/r/jamesdolezal/slideflow
https://portal.gdc.cancer.gov/projects/TCGA-HNSC
https://github.com/jamesdolezal/slideflow
https://doi.org/10.1038/s41591-021-01343-4
https://doi.org/10.1038/s41591-019-0508-1
https://doi.org/10.1038/s41379-020-0551-y

Page 27 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

	4.	 Fu Y, et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat
Cancer. 2020;1(8):800–10. https://​doi.​org/​10.​1038/​s43018-​020-​0085-8.

	5.	 Schmauch B, et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat
Commun. 2020;11(1):1. https://​doi.​org/​10.​1038/​s41467-​020-​17678-4.

	6.	 Dolezal JM, et al. Deep learning prediction of BRAF-RAS gene expression signature identifies noninvasive follicular
thyroid neoplasms with papillary-like nuclear features. Mod Pathol. 2021;34(5):862–74. https://​doi.​org/​10.​1038/​
s41379-​020-​00724-3.

	7.	 Kather JN, et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Cancer.
2020;1(8):789–99. https://​doi.​org/​10.​1038/​s43018-​020-​0087-6.

	8.	 Boehm KM, et al. Multimodal data integration using machine learning improves risk stratification of high-grade
serous ovarian cancer. Nat Cancer. 2022;3(6):723–33. https://​doi.​org/​10.​1038/​s43018-​022-​00388-9.

	9.	 Cheerla A, Gevaert O. Deep learning with multimodal representation for pancancer prognosis prediction. Bioinfor-
matics. 2019;35(14):i446–54. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btz342.

	10.	 Swanson K, Wu E, Zhang A, Alizadeh AA, Zou J. From patterns to patients: advances in clinical machine learning for
cancer diagnosis, prognosis, and treatment. Cell. 2023. https://​doi.​org/​10.​1016/j.​cell.​2023.​01.​035.

	11.	 Bai B, Yang X, Li Y, Zhang Y, Pillar N, Ozcan A. Deep learning-enabled virtual histological staining of biological sam-
ples. Light Sci Appl. 2023;12(1):1. https://​doi.​org/​10.​1038/​s41377-​023-​01104-7.

	12.	 Echle A, et al. Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning. Gastroen-
terology. 2020;159(4):1406-1416.e11. https://​doi.​org/​10.​1053/j.​gastro.​2020.​06.​021.

	13.	 van der Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA. Explainable artificial intelligence (XAI) in deep learning-
based medical image analysis. Med Image Anal. 2022;79: 102470. https://​doi.​org/​10.​1016/j.​media.​2022.​102470.

	14.	 Hamilton DG, Hong K, Fraser H, Rowhani-Farid A, Fidler F, Page MJ. Prevalence and predictors of data and code
sharing in the medical and health sciences: systematic review with meta-analysis of individual participant data. BMJ.
2023;382: e075767. https://​doi.​org/​10.​1136/​bmj-​2023-​075767.

	15.	 Berman AG, Orchard WR, Gehrung M, Markowetz F. PathML: a unified framework for whole-slide image analysis with
deep learning. MedRxiv. 2021. https://​doi.​org/​10.​1101/​2021.​07.​07.​21260​138.

	16.	 Muñoz-Aguirre M, Ntasis VF, Rojas S, Guigó R. PyHIST: a histological image segmentation tool. PLoS Comput Biol.
2020;16(10): e1008349. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10083​49.

	17.	 Pocock J, et al. TIAToolbox as an end-to-end library for advanced tissue image analytics. Commun Med. 2022;2(1):1.
https://​doi.​org/​10.​1038/​s43856-​022-​00186-5.

	18.	 Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-efficient and weakly supervised com-
putational pathology on whole-slide images. Nat Biomed Eng. 2021;5(6):555–70. https://​doi.​org/​10.​1038/​
s41551-​020-​00682-w.

	19.	 Rosenthal J, et al. Building tools for machine learning and artificial intelligence in cancer research: best practices and
a case study with the PathML toolkit for computational pathology. Mol Cancer Res. 2022;20(2):2. https://​doi.​org/​10.​
1158/​1541-​7786.​MCR-​21-​0665.

	20.	 Coudray N, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images
using deep learning. Nat Med. 2018;24(10):10. https://​doi.​org/​10.​1038/​s41591-​018-​0177-5.

	21.	 Marcolini A, Bussola N, Arbitrio E, Amgad M, Jurman G, Furlanello C. histolab: a Python library for reproducible digital
pathology preprocessing with automated testing. SoftwareX. 2022;20:101237. https://​doi.​org/​10.​1016/j.​softx.​2022.​
101237.

	22.	 Cardoso MJ et al. MONAI: an open-source framework for deep learning in healthcare; 2022. arXiv: https://​doi.​org/​10.​
48550/​arXiv.​2211.​02701.

	23.	 Lee G, Bae G, Zaitlen B, Kirkham J, Choudhury R. cuCIM—a GPU image I/O and processing library. 2021. Zenodo.
https://​doi.​org/​10.​25080/​majora-​1b6fd​038-​022.

	24.	 Martinez K, Cupitt JRG. VIPS - a highly tuned image processing software architecture. IEEE Int Conf Image Process.
2005;2:2–574.

	25.	 Bankhead P, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878.
https://​doi.​org/​10.​1038/​s41598-​017-​17204-5.

	26.	 Aperio ImageScope. 2023. Available: https://​www.​leica​biosy​stems.​com/​digit​al-​patho​logy/​manage/​aperio-​image​
scope/.

	27.	 Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.
https://​doi.​org/​10.​1109/​TSMC.​1979.​43100​76.

	28.	 van der Walt S, et al. scikit-image: image processing in Python. PeerJ. 2014;2: e453. https://​doi.​org/​10.​7717/​peerj.​453.
	29.	 Senaras C, Niazi MKK, Lozanski G, Gurcan MN. DeepFocus: detection of out-of-focus regions in whole slide digital

images using deep learning. PLoS ONE. 2018;13(10): e0205387. https://​doi.​org/​10.​1371/​journ​al.​pone.​02053​87.
	30.	 Dolezal JM. Slideflow documentation; 2023. https://​slide​flow.​dev.
	31.	 Dolezal JM, et al. Uncertainty-informed deep learning models enable high-confidence predictions for digital histo-

pathology. Nat Commun. 2022;13(1):6572. https://​doi.​org/​10.​1038/​s41467-​022-​34025-x.
	32.	 Duchon CE. Lanczos filtering in one and two dimensions. J Appl Meteorol Climatol. 1979;18(8):1016–22. https://​doi.​

org/​10.​1175/​1520-​0450(1979)​018%​3c1016:​LFIOAT%​3e2.0.​CO;2.
	33.	 Reinhard E, Adhikhmin M, Gooch B, Shirley P. Color transfer between images. IEEE Comput Graph Appl.

2001;21(5):34–41. https://​doi.​org/​10.​1109/​38.​946629.
	34.	 Macenko M et al. A method for normalizing histology slides for quantitative analysis; 2009, vol. 9, p. 1110. https://​doi.​

org/​10.​1109/​ISBI.​2009.​51932​50.
	35.	 Vahadane A, et al. Structure-preserving color normalization and sparse stain separation for histological images. IEEE

Trans Med Imaging. 2016;35(8):1962–71. https://​doi.​org/​10.​1109/​TMI.​2016.​25296​65.
	36.	 Tellez D, et al. Whole-slide mitosis detection in h&e breast histology using PHH3 as a reference to train distilled stain-

invariant convolutional networks. IEEE Trans Med Imaging. 2018. https://​doi.​org/​10.​1109/​TMI.​2018.​28201​99.

https://doi.org/10.1038/s43018-020-0085-8
https://doi.org/10.1038/s41467-020-17678-4
https://doi.org/10.1038/s41379-020-00724-3
https://doi.org/10.1038/s41379-020-00724-3
https://doi.org/10.1038/s43018-020-0087-6
https://doi.org/10.1038/s43018-022-00388-9
https://doi.org/10.1093/bioinformatics/btz342
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.1038/s41377-023-01104-7
https://doi.org/10.1053/j.gastro.2020.06.021
https://doi.org/10.1016/j.media.2022.102470
https://doi.org/10.1136/bmj-2023-075767
https://doi.org/10.1101/2021.07.07.21260138
https://doi.org/10.1371/journal.pcbi.1008349
https://doi.org/10.1038/s43856-022-00186-5
https://doi.org/10.1038/s41551-020-00682-w
https://doi.org/10.1038/s41551-020-00682-w
https://doi.org/10.1158/1541-7786.MCR-21-0665
https://doi.org/10.1158/1541-7786.MCR-21-0665
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1016/j.softx.2022.101237
https://doi.org/10.1016/j.softx.2022.101237
https://doi.org/10.48550/arXiv.2211.02701
https://doi.org/10.48550/arXiv.2211.02701
https://doi.org/10.25080/majora-1b6fd038-022
https://doi.org/10.1038/s41598-017-17204-5
https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope/.
https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope/.
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.7717/peerj.453
https://doi.org/10.1371/journal.pone.0205387
https://slideflow.dev
https://doi.org/10.1038/s41467-022-34025-x
https://doi.org/10.1175/1520-0450(1979)018%3c1016:LFIOAT%3e2.0.CO;2
https://doi.org/10.1175/1520-0450(1979)018%3c1016:LFIOAT%3e2.0.CO;2
https://doi.org/10.1109/38.946629
https://doi.org/10.1109/ISBI.2009.5193250
https://doi.org/10.1109/ISBI.2009.5193250
https://doi.org/10.1109/TMI.2016.2529665
https://doi.org/10.1109/TMI.2018.2820199

Page 28 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134

	37.	 Krause J, et al. Deep learning detects genetic alterations in cancer histology generated by adversarial networks. J
Pathol. 2021;254(1):70–9. https://​doi.​org/​10.​1002/​path.​5638.

	38.	 Laleh NG, et al. Benchmarking artificial intelligence methods for end-to-end computational pathology. Biorxiv. 2021.
https://​doi.​org/​10.​1101/​2021.​08.​09.​455633.

	39.	 Kather JN, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.
Nat Med. 2019;25(7):1054–6. https://​doi.​org/​10.​1038/​s41591-​019-​0462-y.

	40.	 Howard FM, et al. The impact of site-specific digital histology signatures on deep learning model accuracy and bias.
Nat Commun. 2021;12(1):4423. https://​doi.​org/​10.​1038/​s41467-​021-​24698-1.

	41.	 Lindauer M et al. “SMAC3: a versatile bayesian optimization package for hyperparameter optimization; 2021. https://​
doi.​org/​10.​48550/​ARXIV.​2109.​09831.

	42.	 Abadi M et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems; 2016.
	43.	 neptune.ai. neptune.ai: experiment tracking and model registry; 2022. https://neptune.ai.
	44.	 Dolezal, JM. lung-adeno-squam-v1 (Revision dade98a). Hugging Face. 2022. https://​doi.​org/​10.​57967/​hf/​0089.
	45.	 Dolezal, JM. breast-er-v1 (Revision 17bd7fd). Hugging Face. 2023. https://​doi.​org/​10.​57967/​hf/​1500.
	46.	 Dolezal, JM. thyroid-brs-v1 (Revision 17d17d8). Hugging Face. 2023. https://​doi.​org/​10.​57967/​hf/​1499.
	47.	 Begoli E, Bhattacharya T, Kusnezov D. The need for uncertainty quantification in machine-assisted medical decision

making. Nat Mach Intell. 2019;1(1):20–3. https://​doi.​org/​10.​1038/​s42256-​018-​0004-1.
	48.	 Kompa B, Snoek J, Beam AL. Second opinion needed: communicating uncertainty in medical machine learning. Npj

Digit Med. 2021;4(1):4. https://​doi.​org/​10.​1038/​s41746-​020-​00367-3.
	49.	 Gal Y, Ghahramani Z, Dropout as a bayesian approximation: representing model uncertainty in deep learning. In:

Proceedings of the 33rd international conference on machine learning, PMLR; 2016. p. 1050–1059. Accessed 28 Mar
2023. https://​proce​edings.​mlr.​press/​v48/​gal16.​html.

	50.	 Wang X, et al. Transformer-based unsupervised contrastive learning for histopathological image classification. Med
Image Anal. 2022;81: 102559. https://​doi.​org/​10.​1016/j.​media.​2022.​102559.

	51.	 Wang X, et al. RetCCL: clustering-guided contrastive learning for whole-slide image retrieval. Med Image Anal.
2023;83: 102645. https://​doi.​org/​10.​1016/j.​media.​2022.​102645.

	52.	 McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction; 2018.
arXiv: https://​doi.​org/​10.​48550/​ARXIV.​1802.​03426.

	53.	 Gadermayr M, Tschuchnig ME. Multiple instance learning for digital pathology: a review on the state-of-the-art.
Limit Future Potential. 2022. https://​doi.​org/​10.​48550/​arXiv.​2206.​04425.

	54.	 Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning. In: Dy J, Krause A, editors. Proceed-
ings of the 35th international conference on machine learning. Proceedings of machine learning research, vol. 80.
PMLR; 2018, pp. 2127–2136. https://​proce​edings.​mlr.​press/​v80/​ilse1​8a.​html.

	55.	 Shao Z et al. “TransMIL: transformer based correlated multiple instance learning for whole slide image classication.
In: Neural information processing systems; 2021.

	56.	 Howard J, Gugger S. fastai: a layered API for deep learning; 2020. CoRR https://​arxiv.​org/​abs/​2002.​04688.
	57.	 Smith LN. A disciplined approach to neural network hyper-parameters: part 1—learning rate, batch size, momen-

tum, and weight decay; 2018. CoRR http://​arxiv.​org/​abs/​1803.​09820.
	58.	 Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of StyleGAN. In:

Proceedings. CVPR; 2020.
	59.	 Karras T et al. Alias-free generative adversarial networks; 2021. arXiv. https://​doi.​org/​10.​48550/​ARXIV.​2106.​12423.
	60.	 Dolezal JM et al. Deep learning generates synthetic cancer histology for explainability and education; 2022. arXiv:

https://​doi.​org/​10.​48550/​ARXIV.​2211.​06522.
	61.	 Dolezal JM. breast-er-gan-v1 (Revision db36196). Hugging Face. 2023. https://​doi.​org/​10.​57967/​hf/​1503.
	62.	 Dolezal JM. lung-adeno-squam-gan-v1 (Revision 7e0ea0b). Hugging Face. 2023. https://​doi.​org/​10.​57967/​hf/​1502.
	63.	 Dolezal JM. thyroid-brs-gan-v1 (Revision 2d73248). Hugging Face. 2023. https://​doi.​org/​10.​57967/​hf/​1501.
	64.	 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks

via gradient-based localization. Int J Comput Vis. 2019;128(2):336–59. https://​doi.​org/​10.​1007/​s11263-​019-​01228-7.
	65.	 Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models

and saliency maps; 2014.
	66.	 Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks; 2017. CoRR, vol. abs/1703.01365. http://​arxiv.​

org/​abs/​1703.​01365.
	67.	 Kapishnikov A, Bolukbasi T, Viégas FB, Terry M. Segment integrated gradients: better attributions through regions;

2019. CoRR, vol. abs/1906.02825. http://​arxiv.​org/​abs/​1906.​02825.
	68.	 Iakubovskii P. “Segmentation Models Pytorch,” GitHub repository. GitHub; 2019. https://​github.​com/​qubvel/​segme​

ntati​on_​models.​pytor​ch.
	69.	 Weinstein JN, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20. https://​

doi.​org/​10.​1038/​ng.​2764.
	70.	 Dolezal JM. tumor-segmentation-v1 (Revision 666fa9d). Hugging Face. 2023. https://​doi.​org/​10.​57967/​hf/​1504.
	71.	 Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Meth-

ods. 2021;18(1):100–6. https://​doi.​org/​10.​1038/​s41592-​020-​01018-x.
	72.	 van Rossum G, Warsaw B, Coghlan N. “Style Guide for Python Code,” PEP 8, 2001. https://​www.​python.​org/​dev/​peps/​

pep-​0008/.
	73.	 “Pylint-code analysis for Python.” https://​www.​pylint.​org/.
	74.	 “Google Python Style Guide.” https://​google.​github.​io/​style​guide/​pygui​de.​html.
	75.	 “Mypy-optional static typing for Python.” http://​mypy-​lang.​org/.
	76.	 Howard FM, et al. Multimodal prediction of breast cancer recurrence assays and risk of recurrence. Biorxiv. 2022.

https://​doi.​org/​10.​1101/​2022.​07.​07.​499039.
	77.	 Partin A, et al. Data augmentation and multimodal learning for predicting drug response in patient-derived xeno-

grafts from gene expressions and histology images. Front Med. 2023. https://​doi.​org/​10.​3389/​fmed.​2023.​10589​19.

https://doi.org/10.1002/path.5638
https://doi.org/10.1101/2021.08.09.455633
https://doi.org/10.1038/s41591-019-0462-y
https://doi.org/10.1038/s41467-021-24698-1
https://doi.org/10.48550/ARXIV.2109.09831
https://doi.org/10.48550/ARXIV.2109.09831
https://doi.org/10.57967/hf/0089
https://doi.org/10.57967/hf/1500
https://doi.org/10.57967/hf/1499
https://doi.org/10.1038/s42256-018-0004-1
https://doi.org/10.1038/s41746-020-00367-3
https://proceedings.mlr.press/v48/gal16.html.
https://doi.org/10.1016/j.media.2022.102559
https://doi.org/10.1016/j.media.2022.102645
https://doi.org/10.48550/ARXIV.1802.03426
https://doi.org/10.48550/arXiv.2206.04425
https://proceedings.mlr.press/v80/ilse18a.html.
https://arxiv.org/abs/2002.04688.
http://arxiv.org/abs/1803.09820.
https://doi.org/10.48550/ARXIV.2106.12423
https://doi.org/10.48550/ARXIV.2211.06522
https://doi.org/10.57967/hf/1503
https://doi.org/10.57967/hf/1502
https://doi.org/10.57967/hf/1501
https://doi.org/10.1007/s11263-019-01228-7
http://arxiv.org/abs/1703.01365.
http://arxiv.org/abs/1703.01365.
http://arxiv.org/abs/1906.02825.
https://github.com/qubvel/segmentation_models.pytorch.
https://github.com/qubvel/segmentation_models.pytorch.
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/ng.2764
https://doi.org/10.57967/hf/1504
https://doi.org/10.1038/s41592-020-01018-x
https://www.python.org/dev/peps/pep-0008/.
https://www.python.org/dev/peps/pep-0008/.
https://www.pylint.org/.
https://google.github.io/styleguide/pyguide.html.
http://mypy-lang.org/.
https://doi.org/10.1101/2022.07.07.499039
https://doi.org/10.3389/fmed.2023.1058919

Page 29 of 29Dolezal et al. BMC Bioinformatics (2024) 25:134 	

	78.	 Hennessey PT, Westra WH, Califano JA. Human papillomavirus and head and neck squamous cell carcinoma: recent
evidence and clinical implications. J Dent Res. 2009;88(4):300–6. https://​doi.​org/​10.​1177/​00220​34509​333371.

	79.	 Xavier SD, Bussoloti Filho I, Lancellotti CLP. Prevalence of histological findings of human papillomavirus (HPV) in oral
and oropharyngeal squamous cell carcinoma biopsies: preliminary study. Braz J Otorhinolaryngol. 2005;71(4):510–4.
https://​doi.​org/​10.​1016/​s1808-​8694(15)​31208-8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1177/0022034509333371
https://doi.org/10.1016/s1808-8694(15)31208-8

	Slideflow: deep learning for digital histopathology with real-time whole-slide visualization
	Abstract
	Background
	Implementation
	Technical overview
	Whole-slide image processing
	Stain normalization and augmentation
	Training weakly-supervised, tile-based models
	Evaluating weakly-supervised tile-based models
	Uncertainty quantification
	Image features and feature space analysis
	Weakly-supervised multiple-instance learning
	Generative adversarial networks
	Model explainability
	Tissue and cell segmentation
	Whole-slide visualization with slideflow studio
	Programmatic interface
	Supported hardware and software environments
	Software development processes

	Results
	Slide processing
	Weakly-supervised tile-based classification
	Multiple-instance learning
	Feature space analysis
	Explainability
	Hardware deployment

	Discussion
	Conclusions
	Acknowledgements
	References

