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Abstract 

Deep learning methods have emerged as powerful tools for analyzing histopatho-
logical images, but current methods are often specialized for specific domains 
and software environments, and few open-source options exist for deploying models 
in an interactive interface. Experimenting with different deep learning approaches 
typically requires switching software libraries and reprocessing data, reducing the feasi-
bility and practicality of experimenting with new architectures. We developed a flexible 
deep learning library for histopathology called Slideflow, a package which supports 
a broad array of deep learning methods for digital pathology and includes a fast 
whole-slide interface for deploying trained models. Slideflow includes unique tools 
for whole-slide image data processing, efficient stain normalization and augmenta-
tion, weakly-supervised whole-slide classification, uncertainty quantification, feature 
generation, feature space analysis, and explainability. Whole-slide image processing 
is highly optimized, enabling whole-slide tile extraction at 40x magnification in 2.5 s 
per slide. The framework-agnostic data processing pipeline enables rapid experimenta-
tion with new methods built with either Tensorflow or PyTorch, and the graphical user 
interface supports real-time visualization of slides, predictions, heatmaps, and feature 
space characteristics on a variety of hardware devices, including ARM-based devices 
such as the Raspberry Pi.
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Background
Histopathology slides of patient tissue and tumor specimens serve many purposes and 
are increasingly being captured and stored in digital formats. The advent of deep learn-
ing models for analyzing digital histopathology images has unlocked a new dimension 
from which we can extract clinically meaningful information [1]. These models not only 
accelerate and enhance pathology clinical workflows but also detect subtle morphologi-
cal features that escape the human eye, improving diagnostic efficiency and accuracy 
[2, 3]. Furthermore, deep learning models allow genomic subtype classification directly 
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from digital histopathology images [4–7], and they show promise as tools for patient risk 
stratification [8], prognosis [9], and treatment selection [10]. Digital histopathology may 
also increase accessibility of hematoxylin and eosin (H&E) and immunohistochemistry 
staining in low-resource settings through virtual staining, and these tools offer the abil-
ity to boost clinical workflow efficiency and provide advanced diagnostics that may oth-
erwise be unattainable due to a limited number of trained pathologists or their absence 
altogether [11]. Despite the far-reaching potential of deep learning applications in digital 
histopathology, development complexity and access to computational resources remain 
barriers to widespread adoption. There is a growing need for accessible and efficient 
open-source software that functions as a platform to perform these analyses.

Efficient software design is crucial for deep learning research toolkits in digital his-
topathology. Model performance improves with the amount of training data provided 
[12], but data storage requirements may impose practical limitations on dataset sizes 
and experimental scope. Unified and efficient data storage can reduce data redundancy 
and optimize the computational resources needed for training models. Computationally 
efficient software can reduce data processing and storage requirements while shortening 
training time, enabling groups with varying equipment capabilities to train their own 
models or access pretrained models for novel research objectives.

Additionally, it is vital for deep learning models that aim to support clinical decision-
making to be transparent and interpretable [13]. Explaining how a model has reached its 
decision and the level of certainty associated with a prediction can help build clinician 
trust, which may help foster greater adoption of these tools into clinical practice. Soft-
ware that seamlessly integrates explainability and uncertainty quantification presents a 
significant advantage in promoting the potential clinical utility of these deep learning 
tools.

As computational tools continue to gain importance in biological sciences, it is essen-
tial to ensure their accessibility to researchers with diverse computational backgrounds. 
This can be achieved through comprehensive documentation, intuitive code design, and 
active project development. When creating analytical tools for clinical applications, it is 
also important to consider that the target end-users may not possess extensive computa-
tional expertise. A graphical user interface (GUI) can offer an accessible entry point for 
such users, facilitating the deployment of deep learning tools in clinical settings.

In the broader machine learning literature, there is an abundance of software librar-
ies to assist with developing fast and robust deep learning applications, decreasing bar-
riers to research entry, streamlining development workflows, and improving speed of 
iteration and innovation. However, there are many processes unique to computational 
pathology research that make direct utilization of generic deep learning libraries chal-
lenging, including whole-slide image processing, stain normalization, and pathology-
specific algorithms such as tissue segmentation, cell identification, and multiple-instance 
learning. There is a need for accessible software libraries that provide access to com-
monly utilized computational pathology workflows that can serve as a foundation for 
research and development.

At present, most computational pathology research papers either share code that is 
custom written for the specific research application and not immediately generalizable 
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to other datasets or research questions, or do not share code at all [14]. There are several 
existing software libraries which seek to address this problem by providing a general-
izable toolkit for pathology artificial intelligence research. Some of these libraries have 
not been updated in several years [15, 16], while others continue to see active devel-
opment and appear to have ongoing support and community utilization. TIAToolbox 
is a robust, PyTorch-based computational pathology library that provides tools for 
whole-slide image processing and stain normalization, tile-based classification, and 
both tissue and nucleus segmentation [17]. TIAToolbox also offers a clean and well-
engineered code base and detailed, user-friendly documentation. Although not under 
active development, CLAM is a popular PyTorch-based deep learning repository that 
includes whole-slide image processing, feature extraction using a ResNet50 model pre-
trained on ImageNet, and attention-based multiple-instance learning [18]. PathML is a 
PyTorch-based deep learning library which provides whole-slide image processing for 
a variety of slide formats, model architectures for nucleus detection and weakly super-
vised tile-based classification, and detailed online documentation [19]. DeepPath is a 
Tensorflow-based library which provides whole-slide image processing for SVS slides 
and support for training Inception-v3 weakly supervised tile-based classification mod-
els [20]. Histolab is a whole-slide image preprocessing library for SVS slides designed to 
assist with downstream deep learning tasks, and thus does not include tools for model 
development [21]. Finally, MONAI is a PyTorch-based framework for deep learning in 
healthcare imaging primarily designed for radiology images, but which has a pathology 
working group seeking to expand support for pathology applications [22]. An interactive 
user interface for flexible model deployment to whole-slide images, accessible by some-
one with limited or no programming experience, is not readily available in any of these 
libraries.

Deep learning pathology research has seen tremendous advances over the past several 
years. State-of-the-art methods now include self-supervised learning, multiple-instance 
learning, generative adversarial networks, and uncertainty quantification. To maximize 
relevance for researchers, libraries designed for computational pathology researchers 
should provide highly flexible and efficient data processing pipelines, a design which 
supports fast implementation of new algorithms, and detailed documentation that illus-
trate how the library can be expanded as new methods emerge. Designing a flexible soft-
ware platform that can grow and scale with a constantly evolving field is a challenging 
task, but would offer numerous benefits for researchers such as reduced software devel-
opment time, easier access to state-of-the-art algorithms, and greater reproducibility. 
We have thus sought to develop a deep learning framework engineered from the ground 
up for flexibility, scalability, and ease of use, with an emphasis on both model develop-
ment and interactive whole-slide image model deployment.

Recognizing the limitations and unmet needs in current computational pathology 
tools, we introduce Slideflow. Slideflow is a comprehensive Python package designed 
to bridge these gaps, delivering an end-to-end suite of user-friendly tools for building, 
testing, explaining, and deploying deep learning models for histopathology applications. 
Slideflow aims to overcome challenges in computational efficiency, accessibility, and 
interpretability while empowering researchers and clinicians to harness the full potential 
of evolving deep learning approaches for digital histopathology.
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Implementation
Technical overview

Slideflow is a Python package providing a library of deep learning tools implemented 
with both PyTorch and Tensorflow backends. It has been developed to provide an end-
to-end toolkit for building and deploying deep learning histopathology applications for 
scientific research, including efficient data processing, model training, evaluation, uncer-
tainty quantification, explainability, and model deployment in a graphical user interface 
(GUI). Slideflow includes a whole-slide user interface, Slideflow Studio, for generating 
predictions and heatmaps for whole-slide images in real time. Slideflow is easy to deploy, 
with distributions available on the Python Packaging Index (PyPI) and pre-built docker 
containers on Docker Hub.

Whole‑slide image processing

Slideflow supports nine slide scanner vendors (Table  1) and includes two slide read-
ing backends – cuCIM [23], an efficient, GPU-accelerated slide reading framework for 
TIFF and SVS slides, and VIPS [24], an OpenSlide-based framework which adds sup-
port for additional slide formats. The first step in processing whole-slide images (WSI) 
for downstream deep learning applications is slide-level masking and filtering, a process 
that determines which areas of the slide are relevant and which areas should be ignored. 
Slides can be manually annotated with Regions of Interest (ROIs) using the provided 
whole-slide visualization tool, Slideflow Studio, or using alternative programs such as 
QuPath [25] or Aperio ImageScope [26]. Tissue detection can be performed with Otsu’s 
thresholding [27], which masks areas of background. Pen marks and out-of-focus areas 
can be masked with Gaussian blur filtering, as implemented by the scikit-image library 
[28].1 Parameters for Otsu’s thresholding and Gaussian blur filtering are customizable, 
with default values determined through empirical testing on slides with artifacts. Addi-
tionally, Slideflow includes an API for custom slide-level masking, with an example 
demonstrating how to use this API to apply a DeepFocus [29] model for detection of 
out-of-focus regions detailed in the online documentation [30].

Table 1  Slide scanner compatibility

Images from Philips and Olympus slide scanners must be exported from the scanner in TIFF format, as iSyntax and VSI files 
are currently unsupported

Vendor File format

Aperio SVS

Philips TIFF

Mirax MRXS

Hamamatsu NDPI

Leica SCN

Ventana BIF, TIF

Trestle TIF

Sakura SVSLIDE

Olympus TIFF

1  Gaussian blur filtering by default is performed with σ = 3 and threshold = 0.02 at one-fourth the target magnification.
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After slide-level masking and filtering, WSIs are tiled into smaller sub-regions. A sche-
matic of data flow during tile extraction is shown in Fig. 1. Image tiles can be buffered 
into binary TFRecord format, an efficient storage format that improves dataset itera-
tion speed compared to iterating directly from WSIs. Image data can be encoded using 
either JPEG (lossy) or PNG (lossless) compression. Image tiles are extracted in a grid, 
with optional overlap or jitter for data augmentation. During tile extraction, images tiles 
can undergo an additional filtering step using either grayspace or whitespace filtering, 
potentially identifying tiles with high background content that were not successfully 
removed by Otsu’s thresholding. Grayspace filtering is performed by converting images 
into the hue, saturation, value (HSV) spectrum, classifying pixels with saturation below 
a given threshold2 as gray, and discarding the tile as background if the fraction of pixels 
identified as gray exceeds a prespecified threshold.3 Whitespace filtering is performed 
by calculating the brightness of each pixel (average of red, green, and blue channels), 

Fig. 1  Schematic of data flow during whole-slide image tile extraction and image processing. a 
Schematic of initial slide processing and grid preparation. Whole-slide images can be annotated with Regions 
of Interest (ROI) to include only relevant areas of a slide for subsequent analysis. Optional slide filtering steps, 
including Gaussian blur filtering and Otsu’s thresholding, may be applied at this step. The remaining areas 
of the slide are sectioned into a grid in preparation for tile extraction. b Data flow during tile extraction. If 
tile-level filtering is to be performed, such as whitespace or grayspace filtering, a low-magnification image 
at the highest pyramidal layer is taken at the given location and used for background filtering. If the tile 
passes filtering, the full-magnification image extracted, optionally resized to match a target micron size, stain 
normalized, and converted into a PNG image, JPEG image, or Numpy array. Extracted tiles can be saved to 
disk as individual files, or buffered into TFRecords for faster dataset reading. c Schematic of data flow when 
reading from TFRecords. Image tiles are buffered in TFRecords with JPEG or PNG compression and stored 
with slide and location metadata. During dataset iteration, data is decoded and converted to Tensors. 
Augmentation, including random flipping/rotation, random JPEG compression, and random Gaussian 
blur, can be applied at this step. If stain normalization was not performed during tile extraction, stain 
normalization can be applied at this step when iterating through a TFRecord dataset in real-time. Images 
are then standardized, and slide names are converted to ground-truth outcome labels using a provided CSV 
annotations file or Pandas DataFrame

2  Default grayspace saturation filtering threshold is 0.05.
3  Default grayspace fraction threshold is 0.6.
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classifying pixels with brightness above a given threshold4 as white, and discarding the 
tile as background if the proportion of pixels identified as white exceeds a prespecified 
threshold. Default filtering thresholds were determined through empirical testing, as 
previously described, and are user-customizable [31]. Tile-level background filtering is 
performed at lower magnification for computational efficiency.

The effective optical magnification at which tiles are extracted can be determined by 
either designating a pyramid level or a tile width in microns (Fig. 2). If a pyramid level 
is used, image tiles are extracted at a specified pixel size. Not all slides have the same 
optical magnifications available as pyramid layers, so this approach may require that 
some slides are skipped (Additional file 1: Fig. 1). Furthermore, this approach restricts 
the magnification levels that can be explored for downstream analysis to only what is 
available in each slide. Alternatively, if a tile width is specified in microns, image tiles will 
be extracted from the nearest higher-magnification pyramid layer and downsized to the 
target micron width, allowing researchers to granularly specify effective optical magni-
fication. For this added flexibility, micron-based tile extraction is preferred. When using 
cuCIM, images are resized using bilinear interpolation, and when using VIPS, images 
are resized using Lanczos interpolation [32]. Tile extraction is heavily optimized and 
multiprocessing accelerated, enabling whole-slide tile extraction at 40x magnification in 
as little as 2.5 s per slide. Fast tile extraction enables researchers to quickly experiment 
with different magnification levels.

Fig. 2  Magnification-based vs micron-based tile extraction. a Comparison between magnification-based 
and micron-based tile extraction at 20x effective optical magnification. In this example, slide 1 has internal 
pyramid images stored at 2.5x, 10x, 20x and 40x magnification. Slide 2 has images stored at 2.5x, 10x, and 
40x. Magnification-based strategies extract tiles at a matching layer in the image pyramid for a target optical 
magnification. In this example, Slide 2 is missing the 20x magnification layer, so tiles could not be extracted 
at 20x magnification. In comparison, with micron-based tile extraction, image tiles would be extracted at 
the 40x layer for Slide 2 and resized to an effective optical magnification of 20x. b Comparison between 
magnification-based and micron-based tile extraction at 10x effective optical magnification. In this scenario, 
the “10x” layers in Slide 1 and Slide 3 have slightly different effective optical magnifications – 10x and 10.5x 
– due to slide scanner differences. With magnification-based tile extraction, image tiles extracted from Slide 
1 and Slide 3 would have slightly different effective optical magnification. With micron-based tile extraction, 
tiles would be extracted at the 10.5x magnification layer from Slide 3 and resized to match the same effective 
optical magnification as Slide 1 (10x). This strategy ensures that all image tiles have the same effective optical 
magnification

4  Default whitespace brightness filtering threshold is 230.
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All parameters needed to reproduce processed slide data are logged during tile 
extraction, assisting with data lineage tracking and management. Visual summary 
reports containing images of WSIs overlayed with tile masks and selected tiles 
from each WSI are automatically generated after tiles have been extracted, allow-
ing researchers to quickly assess the quality of masking, filtering, and extracted 
images. This step can identify potential dataset issues, such as out-of-focus slides, 
suboptimal background or artifact removal, or low-quality ROIs. Slideflow Studio, 
an interactive whole-slide graphical user interface (GUI) included with Slideflow, 
can be used to preview slide masking, background filtering, and stain normaliza-
tion settings in real-time. Interactive visualization assists with rapid determination 
of optimal slide processing parameters if further tuning of these settings is required. 
Slideflow Studio is described in more detail in the  “Tissue and cell segmentation” 
section.

Stain normalization and augmentation

Digital hematoxylin and eosin (H&E) stain normalization, which is used to help 
reduce biasing batch effects incurred by differences in staining color and intensity 
among slides, can be applied to image tiles either during tile extraction or in real-
time during model training. Available stain normalization methods include Reinhard 
[33], Macenko [34], and Vahadane [35], as well as a masked variant for Reinhard—
where normalization is only applied in non-white areas—and fast variants for both 
Reinhard and Macenko normalizers, with the brightness standardization step disa-
bled. The Reinhard and Macenko normalizers have native Numpy/OpenCV, Tensor-
flow, and PyTorch implementations to improve computational efficiency and enable 
GPU acceleration. Stain normalizers include several default reference fits and can be 
optionally fit to user-defined images.

Real-time stain augmentation can be performed during training when using the 
Reinhard or Macenko normalizers. Slideflow includes a novel stain augmentation 
approach performed by dynamically randomizing the stain normalization target, 
using a preset standard deviation around the normalization fit values. As the ran-
domized stain matrix targets are centered around normalized values, the result is a 
combination of both normalization and augmentation. This approach differs from 
the stain augmentation described by Tellez et al., in which authors performed stain 
augmentation in the deconvoluted stain matrix space without normalization [36].

Additionally, Slideflow includes an option for using contextual information from 
the corresponding WSI during Macenko stain normalization. With contextual nor-
malization, staining patterns across a slide are used to inform normalization of a 
constituent image tile. The deconvoluted H&E channels for a given image tile are 
normalized using the maximum H&E concentrations calculated from a context 
image, rather than calculating these maximum concentrations from the image being 
transformed. When this option is used, the context image is a thumbnail of the WSI, 
with background and areas outside ROIs removed to prevent pen marks and other 
artifacts from interfering with stain deconvolution. Contextual normalization is not 
recommended when artifact removal is suboptimal or ROIs are unavailable.
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Training weakly‑supervised, tile‑based models

Slideflow includes several tools for training deep learning classification, regression, and 
time-to-event models for WSIs. Weakly-supervised, tile-based models use a deep learn-
ing image classifier to generate predictions for all tiles in a slide, and the final slide-level 
prediction is calculated by averaging tile predictions (Fig. 3). Although this method may 
be limited with highly heterogeneous tumors or when salient morphological features are 
sparse, it has proven to be an effective approach for a variety of biological applications [6, 
37–39]. In addition to averaging, Slideflow supports calculating slide- and patient-level 
predictions using a variety of aggregation functions, as well as arbitrary user-defined 
functions.

Slideflow includes dataset organization tools to easily support the standard train, 
validate, test paradigm used for biomarker development. A held-out test set is first 
designated, either manually or using one of several tools for dataset splitting. Several 
approaches can be used for separating the remaining dataset into a training and vali-
dation splits, including fixed splitting, bootstrap, k-fold cross-validation, and site-pre-
served k-fold cross-validation [40].

Model architecture, loss function, and training hyperparameters are then configured; 
a list of included pre-configured model architectures is provided in Additional file  1: 
Table 1. Slideflow also supports custom models and loss functions using either Tensor-
flow or PyTorch. Models can be trained to single categorical, multi-categorical, continu-
ous, or time-to-event outcomes. Multi-modal models can also be trained with additional 
arbitrary input, such as clinical variables, using late multimodal fusion via concatenation 
at the post-convolutional layer. Hyperparameters can be optionally tuned using either 
grid-search sweeps or Bayesian hyperparameter optimization, which uses the SMAC3 
[41] package. Hyperparameter search spaces can be easily customized, and several pre-
configured search spaces are provided.

Fig. 3  Summary of approach for tile-based deep learning models. a Image tiles are extracted from 
whole-slide images after any slide processing and buffered into TFRecords. During training, tiles are read from 
TFRecords, augmented, stain normalized, standardized, and batched. In this weakly-supervised approach, 
models are trained using ground-truth labels for each tile determined from the label of the corresponding 
slide. b When evaluating a tile-based model, image tiles do not need to be buffered into TFRecords. Image 
tiles can be extracted from slides, processed and stain normalized, and predictions are generated for each tile 
from a slide. The final slide-level prediction is the average prediction from all tiles. Tile-level predictions can be 
visualized as a heatmap
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During training, images can undergo augmentation to broaden the training domain 
and promote generalizability (Fig.  1C). Images can undergo random cardinal rotation 
and random horizontal or vertical flipping, random JPEG compression,5 and random 
Gaussian blur,6 and stain augmentation. When using Tensorflow, images are standard-
ized to a mean of 0 and standard deviation of 1, and when using PyTorch, images are 
standardized to a range of 0–1.

By default, mini-batch balancing is used to ensure equal representation of all slides in 
each batch and equal representation of all classes (Additional file 1: Fig. 2). Throughout 
training, slides and classes will be oversampled to enable this balancing. This mini-batch 
balancing can be customized or disabled. During training, one epoch is defined as the 
total number of image tiles available in the training dataset divided by the batch size. 
The user can specify the interval at which validation checks are performed in the middle 
of an epoch. Early stopping can be configured to trigger when the exponential moving 
average of either loss or accuracy plateaus, or models can be trained for a prespecified 
number of epochs. Training can be distributed across multiple GPUs for computational 
efficiency. Training progress is monitored locally using Tensorboard [42] or remotely 
using Neptune.ai [43].

Three pretrained classification models, trained on thyroid cancer (BRAF-RAS gene 
expression score), breast cancer (Estrogen Receptor [ER]-positive vs. ER-negative), and 
lung cancer (adenocarcinoma vs. squamous cell carcinoma), have been made available 
on Hugging Face [44–46].

Evaluating weakly‑supervised tile‑based models

After training, performance metrics will be automatically calculated from the valida-
tion dataset at the tile-, slide- and patient-levels, including accuracy, area under receiver 
operator curve (AUROC), and average precision (AP). Slide-level predictions are calcu-
lated by averaging the one-hot predictions for all tiles from a slide, and patient-level pre-
dictions are calculated by averaging all tile-level predictions across all slides from a given 
patient. Tile-, slide-, and patient-level predictions are saved during both training and 
evaluation, allowing the researcher to calculate custom metrics if desired. Saved models 
can also be applied to held-out test sets, calculating test-set metrics, or to single slides 
for inference.

Predictive heatmaps are generated by overlying tile-level predictions onto a slide and 
can also be generated for either a single slide or multiple slides. Heatmap calculation is 
accelerated by parallelized tile extraction with multiprocessing. Heatmaps can be ren-
dered and exported as images or interactively viewed with real-time navigation in Slide-
flow Studio, the whole-slide GUI.

Uncertainty quantification

Estimation of confidence and uncertainty is essential for medical AI applications, as reli-
able uncertainty quantification can facilitate clinical decision-making and potentially 
improve patient safety [47, 48]. Slideflow enables uncertainty estimation using the Monte 

5  10% chance of compression at a random quality level between 50–100%
6  50% chance of Gaussian blur with sigma between 0.5–2.0.
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Carlo dropout paradigm [49]. With this approach, models are built with dropout layers 
enabled during both training and inference. During inference, a single image undergoes 
multiple forward passes in the network, with the resulting distribution representing the 
final prediction (mean) and uncertainty (standard deviation). Tile-level uncertainty can 
be translated into slide-level uncertainty and used for subsequent confidence thresh-
olding, using our previously described uncertainty thresholding algorithm [31]. Briefly, 
from a given set of validation predictions, an optimal uncertainty threshold is deter-
mined, below which predictions are more likely to be correct compared to predictions 
with higher uncertainty. Predictions with uncertainty above this threshold are then dis-
carded. This thresholding is performed first at the tile level and then at the slide level. 
Thresholds are determined for a given training dataset using nested cross-validation, to 
prevent data leakage. This uncertainty estimation and confidence thresholding approach 
improves accuracy for high-confidence predictions and guards against domain shift.

Image features and feature space analysis

Converting images into feature vectors provides an avenue for feature space analysis and 
more advanced, whole-slide classification models such as multiple-instance learning 
(MIL). Three feature generation methods are provided for processing image tiles into 
numerical vectors: pretrained networks, finetuned classifiers, and self-supervised learn-
ing (Fig.  4). For all methods, features can be calculated for single image tiles, a single 
slide, or image tiles read from TFRecords.

Several pretrained networks can be used for converting images into feature vec-
tors. Slideflow includes an API for calculating layer activations at any arbitrary neu-
ral network layer for models pretrained on ImageNet, by specifying an architecture 
name and layer name. If multiple layers are specified, activations at each layer will be 
calculated and concatenated. An API is also included for easily generating features 
using the pretrained, pathology-specific CTransPath [50] and RetCCL [51] net-
works. Finetuned classifiers trained with Slideflow can also be used for feature gen-
eration, calculating activations at any arbitrary neural network layer. Finally, an API 
is included for easily training the self-supervised learning model SimCLR, providing 
another avenue for feature generation through contrastive pretraining.

Once features are calculated for a dataset of image tiles, several tools are provided 
for flexible dimensionality reduction and feature space visualization using UMAP 
[52]. UMAP plots can be quickly generated and labeled with outcomes, clinical var-
iables, and suspected confounders such as site. Corresponding image tiles can be 
overlaid onto the UMAP plots to aid in interpretability, resulting in visualizations 
we refer to as mosaic maps. Mosaic maps are generated by separating a given UMAP 
projection into a grid (default 50 × 50), and for each grid space, plotting the cor-
responding image tile for any of the points in the grid space. Tile selection within a 
grid space can either be random (default), or the tile nearest to the centroid for that 
grid space can be chosen. Mosaic maps can be viewed alongside labeled UMAPs, 
providing insights into the relationship between morphologic image features, the 
outcome of interest, and other relevant clinical factors. This process can also help 
identify potential sources of confounding and bias. Mosaic maps can be exported as 
a high-resolution figure or viewed interactively with Slideflow Studio.
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Weakly‑supervised multiple‑instance learning

Tile-based whole-slide classification models may not be well-suited for datasets 
where relevant histopathological features are expected to be sparse or heterogenous 
in a slide, or when pathologist-annotated regions of interest are unavailable. Atten-
tion-based multiple-instance learning (MIL) models provide an avenue for weakly-
supervised whole-slide classification that is theoretically still robust when relevant 
features are sparse or regions of interest are unavailable [53]. These models generate 
predictions from bags of image tile feature vectors, and models will learn to ignore 
uninformative image tiles through attention weighting. The performance of these 
models is in part dependent upon the quality of features calculated from image tiles.

Three types of MIL models can be trained in Slideflow, including traditional MIL 
[54], attention-based MIL [55], and clustering-constrained attention-based MIL 
(CLAM) [18]. An API is provided for fast conversion of image tiles into feature vec-
tors and training of MIL models from these generated features. Training is executed 
using the FastAI framework [56], including options for either cosine annealing 
learning rate scheduling or one-cycle learning rate scheduling [57]. For CLAM, an 
option is provided to use the originally published training loop instead of the FastAI 
trainer, if desired. Trained MIL models can be used to generate attention heatmaps 
for WSIs, highlighting areas of the slide weighted with high attention. As with pre-
dictive heatmaps for tile-based classification models, attention heatmaps can be 
generated and exported as high-resolution images.

Generative adversarial networks

A growing body of evidence is showing the potential utility of Generative Adversarial 
Networks (GANs) for histopathological applications. GANs can reproduce realistic 

Fig. 4  Feature generation methods. a Trained classifiers can be converted into feature generators 
by specifying a neural network layer and calculating activations at the given layer. b Several pretrained 
models can be used as feature generators, including non-pathology pretrained models (e.g. ImageNet), or 
pathology-specific pretrained models (e.g. CTransPath). c Self-supervised contrastive learning (SimCLR) can 
be used to train a feature generator without requiring ground-truth labels for classification. d Features can be 
calculated from a model trained using self-supervised learning
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synthetic histology images that have been used for training augmentation, stain and 
color normalization, image enhancement, and explainability. Slideflow includes an API 
for training and using StyleGAN2 [58] and StyleGAN3 [59] with optional class condi-
tioning from image tiles saved in TFRecords. Model architectures, training paradigms, 
and configuration options are all equivalent to their original implementations. The API 
provides a method for training these GANs from preprocessed images already stored 
in TFRecords, without requiring additional data processing or alternative formatting, 
and additionally provides an interface for calculating predictions from generated images 
using a trained classifier.

For class-conditional GANs, several tools are provided for generating images from 
intermediate classes using feature space embedding interpolation. To generate an image 
in between two classes, we calculate the associated class embedding for each class, and 
then perform a linear interpolation to achieve an intermediate embedding. These inter-
mediate embeddings can be used for class or layer blending applications [60]. Images 
generated from trained GANs can be exported as raw PNG or JPG images, saved in 
TFRecord format, or visualized in real-time using Slideflow Studio.

Three pretrained conditional GANs, trained on thyroid cancer (conditioned on BRAF-
like vs. RAS-like gene expression), breast cancer (conditioned on Estrogen Receptor 
[ER]-positive vs. ER-negative), and lung cancer (conditioned on adenocarcinoma vs. 
squamous cell carcinoma), have been made available on Hugging Face [61–63].

Model explainability

Explainable artificial intelligence (XAI) approaches are an increasingly important com-
ponent of medical imaging research. These techniques can provide insights into what 
image features models have learned, support biological plausibility of model predictions, 
and improve model trust [13]. Slideflow includes four methods for model explainabil-
ity: heatmaps, mosaic maps, gradient-based pixel attribution (saliency maps), and condi-
tional generative adversarial networks (cGANs).

Heatmaps, including both predictive and attention heatmaps, provide an avenue for 
quickly assessing the areas of a WSI relevant to the final prediction. Described above, 
heatmaps can be calculated for a single slide or a dataset of multiple slides, and either 
exported as a high-resolution figure or interactively viewed.

Mosaic maps provide a tool for feature space exploration at arbitrary neural network 
layers. With pathologist interpretation, they can highlight morphologic associations 
between outcome variables and offer insights into the spatial relationship of image fea-
tures among classes.

Gradient-based pixel attribution approaches highlight the pixels in an image that were 
relevant for a given neural network model prediction. These attribution heatmaps, or 
saliency maps, can be calculated through a variety of provided methods, including Grad-
CAM [64], vanilla gradients [65], integrated gradients (and variations thereof ) [66], and 
XRAI [67]. Saliency maps can be displayed as raw heatmaps or as overlays onto the asso-
ciated image. Utility functions are included for rapid comparison between different sali-
ency map methods. Saliency maps can also be interactively viewed for WSIs in real-time 
using Slideflow Studio.
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cGANs offer a dataset-level explainability approach for trained neural networks mod-
els, using the paradigm we have recently described [60]. The synthetic histology gener-
ated by cGANs can illustrate morphologic features associated with outcome classes and 
can provide insights into the importance of larger histopathological features not amena-
ble to localization with saliency maps, such as differences in architecture, stroma, col-
loid, and staining patterns.

Tissue and cell segmentation

Slideflow also provides tools for building and using tissue and cell segmentation models. 
Binary and multiclass tissue segmentation models can be trained from labeled regions 
of interest using a variety of architectures, including U-Net, DeepLabV3, FPN, and oth-
ers, as implemented by Iakubovskii [68]. During training, whole-slide thumbnails and 
paired regions-of-interest masks at a user-defined microns-per-pixel magnification are 
augmented with random cropping, flipping, and cardinal rotation. Once trained, tis-
sue segmentation models can be deployed for generating regions of interest or used for 
slide-level masking and quality control, via either a programmatic interface or Slideflow 
Studio. A pretrained tumor identification tissue segmentation model, trained on 8,122 
slides and paired pathologist-annotated regions of interest from The Cancer Genome 
Atlas [69], is available on Hugging Face [70]. Example tumor regions of interest gener-
ated from this model on an external dataset of head and neck cancer whole-slide images 
from the University of Chicago is shown in Additional file 1: Fig. 3.

Whole-slide cell identification and segmentation is performed using Cellpose [71]. 
Both pretrained and user-trained models can be used to generate cell segmentation 
masks and centroids using either a programmatic interface or Slideflow Studio. Cell 
diameter is configured in microns, rather than pixels, to improve generalizability across 
slides with different magnifications. Cell segmentation is applied to whole-slide images 
in tile-wise fashion, with segmentation masks stitched together to form a whole-slide 
mask. Masks and centroids can be used to guide tile extraction, so that each extracted 
tile represents a single detected cell/nucleus, or be exported in NumPy format for down-
stream use and further analysis.

Whole‑slide visualization with slideflow studio

Slideflow includes a visualization tool, Slideflow Studio, for interactively viewing WSIs, 
focal predictions, heatmaps, saliency, uncertainty, and mosaic maps. Slide imaging data 
is read using either cuCIM or VIPS, accelerated with multiprocessing, and rendered 
using OpenGL. Slide processing settings, such as Otsu’s thresholding, grayspace filter-
ing, stain normalization, etc., can be previewed in real-time to assist with fast determi-
nation of optimal slide processing parameters (Additional file 1: Fig. 4). ROI annotations 
can be loaded, edited, and added with a lasso selection tool.

Once a model is loaded, right-clicking anywhere on the slide will reveal a preview win-
dow showing an image tile extracted at this location, before and after stain normalization 
(if applicable) (Fig. 5). Saliency maps generated through gradient-based pixel attribution 
can also be displayed as a heatmap or as an overlay on the extracted image tile. Tile-level 
predictions and uncertainty are shown in the control panel.
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Whole-slide predictive heatmaps can be calculated, customized, and displayed for 
slides once a model is loaded. A “low memory” mode can be enabled in Performance 
Settings, reducing memory consumption at the cost of slower heatmap calculation. Final 
slide-level predictions (and uncertainty, if applicable) will be shown in the control panel 
after the heatmap is calculated.

Mosaic maps can also be interactively viewed in Slideflow Studio (Additional file  1: 
Fig. 5). Compared with a static figure, this interface permits closer inspection of image 
tiles at higher resolution through interactive zoom and enables dynamic modification 
of the mosaic grid size. A popup window in the bottom-right corner shows the user the 
corresponding UMAP plot, with a red box indicating the current section of the plot in 
view. Hovering over an image tile will show a larger section from the corresponding slide 
at that tile location, revealing the surrounding histologic context.

Programmatic interface

Slideflow can be installed via the Python Packaging Index (PyPI), and pre-built Docker 
containers are available for easier dependency management.

Once installed, the first step to using Slideflow is creating a Project to facilitate organi-
zation of raw data, processed data, saved models, and experimental results. Projects are 
created and loaded using the slideflow.Project class. Locations of whole-slide images, 
pathologist ROI annotations, and processed TFRecords are defined through a dataset 
configuration JSON file associated with the Project. Ground truth patient- and slide-
level diagnoses and clinical outcomes can be provided either via a CSV file or a Pan-
das DataFrame. Several example preconfigured projects for lung cancer, breast cancer, 
and thyroid cancer are provided for testing and functionality exploration; when used, 

Fig. 5  Real-time predictions and saliency maps from whole-slide images. Slideflow Studio provides an 
interface for generating both whole-slide and focal tile predictions. Right clicking on an area of the screen 
extracts a tile at the given location, showing the tile before and after stain normalization (if applicable). 
Gradient-based pixel attribution methods can be used to render saliency maps for the given image, which 
can be shown as a heatmap (shown here) or as an overlay (not shown)
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whole-slide images and associated clinical annotations will be automatically downloaded 
from public repositories.

Most functions—such as training classification models, self-supervised learning, 
feature generation, or GAN training—require processed image tiles extracted from 
whole-slide images at a given magnification and pixel resolution. Data organization and 
processing is supervised by the slideflow.Dataset class, an instance of which can be gen-
erated by using the Project.dataset() method and specifying the desired magnification 
and target pixel size. Clinical annotations associated with a Project are automatically 
passed to the dataset and can be used for dataset filtering. Datasets can be easily split 
into training, test, and validation subsets with Dataset.split(). Whole-slide image pro-
cessing and tile extraction is performed using the Dataset.extract_tiles() method, with 
generated TFRecords automatically organized and stored according to the Project data-
set configuration. Once tiles are extracted, a tensorflow.data.Dataset or torch.utils.data.
DataLoader that dynamically reads and processes imaging data from TFRecords can be 
easily created using the Dataset.tensorflow() and Dataset.torch() methods, respectively.

Classification models are configured using slideflow.ModelParams, a class which 
defines the model architecture and training hyperparameters. To train a model, use Pro-
ject.train(), providing a ModelParams object, a training and validation Dataset, and the 
column name that contains the ground-truth labels in the clinical annotations. Held-out 
test sets can be assessed using Project.evaluate(), and predictions can be generated for 
slides with Project.predict().

The online documentation includes further details about training, including step-by-
step tutorials, instructions for the use of custom models and loss functions, and training 
strongly-supervised models with ROI labels. The documentation also contains further 
descriptions of the programmatic interface for Project configuration dataset manage-
ment, multiple-instance learning, feature space analysis, generative adversarial net-
works, and segmentation [30].

Supported hardware and software environments

Slideflow is a Python package that requires Python 3.7 or greater, and either Tensorflow 
or PyTorch. Some features, such as GANs and tissue segmentation, require PyTorch. 
Model training requires a Linux-based operating system, such as Ubuntu or RHEL/Cen-
tOS, and is greatly accelerated with a dedicated GPU. Trained models can be deployed 
using the interactive interface on a variety of operating systems and hardware environ-
ments. Testing of this user interface has been performed on Linux-based systems, Win-
dows, macOS (Intel and Apple chip), and ARM-based devices such as the Raspberry 
Pi and Jetson Nano. A dedicated GPU is recommended, but not required, for model 
deployment.

Software development processes

Slideflow has been engineered according to industry software quality standards. Source 
code adheres to PEP 8 style guidelines [72], supported through integrated pylint [73] 
checking. Functions and classes include Google-style docstrings [74] for documentation, 
along with type annotations leveraging mypy [75].



Page 16 of 29Dolezal et al. BMC Bioinformatics          (2024) 25:134 

The public GitHub repository serves as the platform for issue tracking, feature 
requests, and community contributions. Pull requests require approval before merging 
into the master branch, which triggers continuous integration testing on GitHub Actions 
including flake8 linting. Slideflow additionally includes an integrated test suite, with both 
unit tests and functional tests covering core data processing, whole-slide image process-
ing, TFRecord manipulation, stain normalization, model training, heatmap and mosaic 
map generation, and feature space analysis. The online documentation is built from the 
repository using Sphinx, leveraging code documentation to ensure it stays current with 
ongoing development work.

Altogether, these processes promote stability, continuity, transparency, and reliabil-
ity as new capabilities are added, facilitating long-term maintainability across future 
releases.

Results
The variety of tools offered by Slideflow have been utilized for many diverse research 
objectives, including gene expression prediction [6], prognostication [76], uncertainty 
quantification [31], identification of bias and batch effects [40], drug response predic-
tion [77], and generation of synthetic histology for model explainability [60]. In order to 
illustrate some of these tools on a real dataset, we will present results on a benchmark 
dataset for Human Papilloma Virus (HPV) status prediction in head and neck squamous 
cell carcinoma. The training/validation dataset is comprised of 262 patients (151 HPV-
negative, 111 HPV-positive) from the University of Chicago, and the held-out external 
dataset is comprised of 459 patients (407 HPV-negative, 52 HPV-positive) across 26 sites 
from The Cancer Genome Atlas (TCGA). All patients had one associated WSI.

Slide processing

Pathologists annotated ROIs encircling areas of tumor for all slides, except in cases 
where the entire sample was determined to be tumor. Otsu and Gaussian blur filter-
ing were explored for this dataset. In some cases, Otsu’s thresholding highlighted pen 
marks as foreground tissue, so both background filtering methods were used in addi-
tion to ROIs for all slides. Image tiles were extracted at 299 pixels and seven micron 
sizes ranging from 76  μm (40x magnification) to 1208  μm (2.5x). Using the cuCIM 
backend, tile extraction speed ranged from 614 to 2091 tiles/second (0.38–25 slides/
second) (Fig. 6, A and B). Tile extraction was also performed using VIPS for compari-
son, with tile extraction speed ranging between 198 and 1300 tiles per second (0.24–
11.5 slides/second). Otsu’s thresholding added 0.30 ± 0.12  s per slide, and Gaussian 
blur filtering added 0.50 ± 0.93  s per slide. Tile extraction with cuCIM was 1.6–3.3 
times faster than VIPS (Fig. 6A, B). Example pages from the associated tile extraction 
PDF reports are shown in Additional file 1: Figs. 6 and 7. TFRecord buffering permit-
ted dataset iteration at 11,453 images/second using Tensorflow and 6,784 images/sec-
ond using PyTorch. Buffered dataset sizes are shown in Fig. 6C.

Experimentation with tile-based background filtering was performed for com-
parison but not used for downstream analysis (Fig. 7). Otsu’s thresholding identified 
6.4% ± 8.2% more background tiles than grayspace filtering. Image tiles removed by 
Otsu’s thresholding but not grayspace filtering typically included edge tiles or images 
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with heterogenous background content, such as fat or stroma (Fig.  7B). With rare 
exception, all image tiles removed by Otsu’s thresholding were also removed with 
grayspace filtering. For 85.2% of slides, there was a < 5% difference in background 
identified by whitespace filtering and grayspace filtering. In 12.6% of cases, grayspace 

Fig. 6  Whole-slide image processing speed and dataset sizes/ a Median time required to extract tiles 
from WSIs using each of the two available slide processing backends. b Average tile extraction speed from 
WSIs, using each slide processing backend. c Size of the full training dataset as raw slides and in buffered 
TFRecords, at each assessed magnification size. Image tiles were stored in TFRecords using JPEG compression 
with 100% quality. Benchmarks were performed using an AMD Threadripper 3960X

Fig. 7  Comparison between background filtering methods. a Comparison between slide background 
filtering methods. An example whole-slide image with large pen mark artifact is shown, with associated 
background filtering masks applied. Black areas indicate masked background. With Otsu’s thresholding alone, 
the pen mark is identified as foreground, and several parts of the tissue area are erroneously removed as 
background. Gaussian blur filtering removes the pen mark, but some smaller areas of background near edges 
are not removed. Performing Gaussian blur first, followed by Otsu’s thresholding, results in the most accurate 
background identification and removes the pen mark. b Example images identified as background using 
Otsu’s thresholding, but not when using grayspace filtering. c Example images identified as background 
using grayspace filtering, but not when using whitespace filtering
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filtering removed a median of 10.2% more background than whitespace filtering 
(Fig. 7C), and in 2.2% of cases, whitespace filtering failed to remove any background 
tiles.

Three stain normalization methods with several variations were compared, as shown 
in Fig.  8. The fast variants of the Reinhard methods produced similar results to the 
standard Reinhard variants, with slight differences in perceived brightness. The masked 
and unmasked Reinhard variants yielded similar images in most contexts, but with the 
unmasked variants producing pink-tinted background for image tiles containing high 
background content. Compared with standard Macenko normalization, context-aware 
Macenko normalization generally resulted in images with higher perceived contrast but 
occasionally washed out fine details in bright areas, such as areas containing fat (Addi-
tional file 1: Fig. 8). Macenko stain augmentation yielded realistic, artifact-free images 
with diverse staining hues (Additional file 1: Fig. 9).

Computational efficiency was compared between methods using both Tensorflow and 
PyTorch, with results shown in Fig.  9. Removal of the brightness standardization step 
improved peak stain normalization speed by 272% for the Reinhard normalizer and 51% 
for the Macenko normalizer when using Tensorflow, and 26% and 24% for Reinhard and 
Macenko normalizers when using PyTorch. Reinhard normalizers exhibited superior 
computational performance when processed on the GPU, and Macenko normalizers 
were faster when processed on CPU. The utility of the Vahadane algorithm is limited by 
long processing times, and could not be used for real-time normalization. Based on a 

Fig. 8  Comparison between stain normalization methods. Four image tiles from whole-slide images 
with different staining patterns are shown before and after stain normalization. Three stain normalizers are 
compared: Reinhard, Macenko, and Vahadane. The Reinhard normalizer has a standard and fast variant (with 
brightness standardization disabled), and a masked and unmasked variant. Similarly, the Macenko also has a 
standard and fast variant
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combination of qualitative assessment and computational efficiency, the standard Mac-
enko stain normalization strategy was chosen for subsequent analyses. Real-time stain 
augmentation was used during model training.

Weakly‑supervised tile‑based classification

Weakly-supervised, binary classification models were trained on the institutional dataset 
of 262 slides to predict HPV status using three-fold cross-validation and the Tensorflow 
backend. As a first step, models were trained on the first cross-fold at seven magnifi-
cation levels between 2.5x and 40x using the Xception architecture and a single set of 
hyperparameters (Fig.  10). The best performance was seen at 6.6X (tile micron width 
of 453), so this magnification level was used for subsequent analysis. Hyperparameters 
were tuned on the first cross-fold with Bayesian hyperparameter optimization using the 
“shallow” search space configuration, a maximum of 50 iterations, and 5 replicate mod-
els trained for each hyperparameter combination. Average training time for each model 
was 2  min 11  s. Ten models were trained using the best performing hyperparameter 

Fig. 9  Real-time stain normalization benchmarks. Stain normalization speed was assessed for each 
normalization method and device type (CPU, GPU) using both Tensorflow and PyTorch. a Benchmark 
results using PyTorch. b Benchmark results using Tensorflow. All benchmarks were obtained using an AMD 
Threadripper 3960X CPU and A100 40 GB GPU

Fig. 10  Tile magnification optimization. Image tiles were extracted from slides in the training dataset at 
seven magnification sizes, ranging from 2.5x (tile width 1208 microns) to 40x (tile width 76 microns). Using 
the first training cross-fold, ten replicate models were trained at each magnification size using random weight 
initialization. a Area Under Receiver Operator Curve (AUROC) for models trained at varying magnifications. b 
Average Precision (AP) for models trained at varying magnifications
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combination and compared with ten models trained using the starting hyperparam-
eters. AUROC was not improved using the optimized hyperparameters (0.808 vs. 0.803, 
P = 0.11), so the initial hyperparameters were used for subsequent analysis (Additional 
file 1: Table 2). AUROC across the three cross-folds was 0.80, 0.84, and 0.78, with AP 
of 0.79, 0.83, and 0.77 (Fig. 11). Dropout-based uncertainty quantification was used for 
confidence threshold determination. A final model was then trained across the full data-
set using the previously determined optimal hyperparameters and the Tensorflow back-
end. When validated on the external test set comprised of 459 slides from TCGA, the 
model resulted in an AUROC of 0.87 and AP of 0.80. Using uncertainty quantification 
and confidence thresholding, 89.5% of slides had high-confidence predictions, with an 
AUROC of 0.88 within high-confidence predictions. Using prespecified prediction and 
uncertainty thresholds determined from cross-validation, the final model had a test-set 
accuracy of 90.2%, sensitivity of 77.0%, and specificity of 92.0% within high-confidence 
predictions.

After the final model was trained and evaluated on the external test set, a post-hoc 
analysis was performed to assess the impact of stain augmentation on model perfor-
mance. Ten replicate models were trained with and without stain augmentation on the 
full University of Chicago training dataset and then evaluated on the TCGA external test 
set. This post-hoc analysis demonstrated that stain augmentation resulted in a small but 
statistically significant improvement in AUROC on the test set, from 0.871 ± 0.008 to 
0.882 ± 0.014 (P = 0.021, one-sided t-test).

Multiple‑instance learning

In order to train multiple-instance learning (MIL) models, image tiles were first 
extracted from whole-slide images at 6.6X magnification (453 μm width) and normalized 
with Macenko normalization. Pathologist-annotated ROIs were not used for MIL exper-
iments. Image features were then calculated for all extracted image tiles using the pre-
trained model CTransPath [50]. MIL models were built using the CLAM single-branch 
architecture [18] and trained using a single set of default hyperparameters (Additional 

Fig. 11  Area Under Receiver Operator Curve (AUROC) for cross-validation and the held-out test set. 
a AUROC for the three models trained in cross-validation on the single institution, University of Chicago 
dataset. b After cross-validation, a final model was trained on the full University of Chicago dataset. This 
model was then evaluated on the held-out test set from The Cancer Genome Atlas (TCGA). AUROC for this 
test set evaluation is shown
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file 1: Table 3). Models were trained for a total of 20 epochs. Three-fold cross-validation 
AUROC for the MIL models was 0.77, 0.78, and 0.79. A final model was trained on the 
full University of Chicago dataset without validation, and then tested on the TCGA test 
set. On this held-out test set, the final model had an AUROC of 0.81 and AP of 0.77.

Feature space analysis

Features for the weakly supervised tile-based model were generated and visualized for 
both datasets using the included feature generation interface. Features are generated 
through calculation of post-convolutional layer activations for all image tiles, and the 
resulting feature space is visualized through UMAP dimensionality reduction. UMAP 
plots of the TCGA and University of Chicago feature spaces show good class separa-
tion between HPV-negative and HPV-positive images for both the training and test data 
(Fig.  12, A and B). The mosaic map for the University of Chicago feature space high-
lights known biologically-relevant image features associated with HPV status (Fig. 12E). 
Area 1, enriched for HPV-positive images, shows image tiles with tightly packed cells 
with scant cytoplasm and surrounding inflammation. Area 3, enriched primarily with 
HPV-negative images, shows heavy keratinization along with pleomorphic cells with 
increased cytoplasm. Findings in both of these areas are consistent with known histo-
pathological associations [78, 79]. Area 2, an intermediate zone with both HPV-positive 
and HPV-negative images, shows image tiles with keratinization, inflammation, and cells 
with varying cytoplasmic content. Together, this feature space analysis supports the bio-
logical plausibility of model predictions.

Features from CTransPath, which were used for training the multiple-instance learn-
ing model, were generated and visualized using the included feature generation inter-
face. Separation between HPV-negative and HPV-positive image tiles on the University 
of Chicago training dataset using CTransPath features is less clear than when using fea-
tures from the tile-based model (Fig. 12C). On the test dataset from TCGA, there is no 
clear separation between HPV-positive and HPV-negative image tiles with this visualiza-
tion (Fig. 12D). This poorer separation between HPV-positive and HPV-negative images 
in the feature space may help partially explain the discrepancy in performance between 
the tile-based and MIL models.

Explainability

Heatmaps of model predictions were generated from the final tile-based model at an 
average rate of 22.1 ± 4.2 s per slide. Example heatmaps of predictions and uncertainty 
are shown in Fig. 13. In general, areas with low uncertainty and strong predictions for 
negative HPV status demonstrated high keratinization and cells with pleomorphic 
nuclei. Low-uncertainty areas with strongly positive HPV status predictions tended to 
show tightly packed cells with monotonous nuclei and surrounding inflammatory infil-
trate. Both of these observations are consistent with known histopathological associa-
tions with HPV status [78, 79]. Attention heatmaps were also generated using the final 
MIL model, as shown in Additional file 1: Fig. 10. Areas with strong, high-confidence 
predictions from the tile-based model were generally also weighted with high attention 
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Fig. 12  Feature space visualization for the tile-based and multiple-instance learning models. a 
UMAP plot of post-convolutional layer activations, calculated using the final trained model, for all images in 
the University of Chicago training dataset. b Same as (a), but calculated for the TCGA test set. c UMAP plot 
of CTransPath features for all images in the University of Chicago training dataset. d Same as (c), calculated 
for the TCGA test set. e Mosaic map generated from the UMAP plot shown in (a). Three areas are magnified 
for closer inspection. Area 1 is enriched for HPV-positive images, Area 2 is in a zone of transition between 
HPV-positive and HPV-negative images, and Area 3 is enriched with HPV-negative images. Image tiles are 
shown using Macenko stain normalization
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from the MIL model. A screenshot of the whole-slide user interface with a loaded heat-
map is shown in Fig. 14.

Saliency maps were generated for an example correctly predicted HPV-negative 
image tile using vanilla gradients, three variations on integrated gradients, and XRAI 
(Fig. 15A). For this example, all saliency maps highlight the section of the image tile with 
heavy keratinization, a histopathological factor known to be associated with HPV nega-
tivity. Finally, a conditional generative adversarial network (cGAN) was trained on the 
institutional dataset, conditioned on HPV status, to provide generative explanations for 
the trained classifier through synthetic histology [60]. The StyleGAN2 architecture was 

Fig. 13  Prediction and uncertainty heatmaps on an example slide in the external test set. Heatmaps 
of HPV predictions and uncertainty were generated from the final tile-based model for a randomly selected 
slide from the test set. Two areas are shown with magnified display. Area 1 is a location with intermediate 
predictions and high uncertainty, showing mostly stroma and out-of-focus cells in the top-right corner. Area 
2 is a location with strong HPV-negative predictions and low uncertainty, showing heavy keratinization and 
pleomorphic nuclei

Fig. 14  Interface for viewing and navigating whole-slide heatmaps. Slideflow Studio includes an 
interface for generating whole-slide predictions and heatmaps, as shown in this figure. Heatmaps can be 
viewed interactively and exported as both PNG images and Numpy arrays. Heatmap color and display 
options are customized in another tab of the interface (not shown)
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used, using default hyperparameters from the original implementation [58]. Training 
was stopped after 15 million images due to divergence with further training. Training 
took 38  h on four A100 GPUs. Visualizations generated with this method highlighted 
differences in keratinization and nuclear pleomorphism, which is increased in the syn-
thetic HPV-negative images, and inflammatory infiltrate, increased in synthetic HPV-
positive images (Fig.  15B). These differences are consistent with known pathologic 
associations with HPV status, further supporting the biological plausibility of learned 
image features [78, 79].

Hardware deployment

The above experiments and benchmarks were performed on a Linux-based workstation 
with an AMD Threadripper 3960X CPU and NVIDIA A100 40 GB GPU. A breakdown 
of the total time required to train and evaluate a classification model on this hardware 
is provided in Additional file 1: Fig. 11. To assess the feasibility of using the whole-slide 
graphical interface as a deployable tool for WSI analysis, Slideflow Studio was deployed 
and tested on various Linux workstations, a Windows 10 desktop (with dedicated GPU), 
an Intel MacBook Pro, an M2 MacBook Pro, a Raspberry Pi 4 (4 GB), and a Jetson Orin 
Nano. All devices ran Slideflow Studio with usable performance and successfully gener-
ated predictions for WSIs. GPU acceleration for model training is only available on sys-
tems with a dedicated GPU.

Discussion
Slideflow represents a noteworthy advancement in computational pathology deep 
learning software, characterized by its versatility, user-friendliness, and a comprehen-
sive array of algorithmic approaches ready for immediate implementation. Among 
its enhancements over existing tools, Slideflow offers optimized whole-slide image 

Fig. 15  Example of model explanations using saliency maps and generative adversarial networks. 
a Various gradient-based pixel attribution methods with APIs available in Slideflow were used to generate 
saliency maps for an example HPV-negative image. b A class-conditional GAN based on the StyleGAN2 
architecture was trained using Slideflow to generate synthetic histology images belonging to HPV-negative 
and HPV-positive negative classes, visually highlighting morphologic differences between classes
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processing, enabling tile extraction at 40x magnification in as little as 2.5  s per slide. 
Image tile diameter for tile extraction is defined in microns, rather than pixels, to 
improve standardization across slide scanners with variable optical magnifications. 
The platform’s data storage format is cross-compatible between both Tensorflow and 
PyTorch, facilitating versatile experimentation with algorithms from either framework. 
Slideflow also includes out-of-the-box support for more diverse functions, such as self-
supervised learning, generative adversarial networks, segmentation, and highly flexible 
feature extraction, all utilizing the same unified data storage and streamlined IO pipe-
lines. Included uncertainty quantification and explainability techniques can assist with 
developing more robust and clinically trustworthy models, and the graphical user inter-
face provides a practical and accessible framework for testing model deployment in a 
prospective setting. Designed with an intuitive interface that supports easy customiza-
tion, Slideflow serves as an ideal foundation for researchers with diverse objectives, from 
trainees with limited programming experience to advanced software developers inte-
grating new methodologies.

Slideflow has been under active development for over 5 years by a dedicated team at 
University of Chicago and partner institutions. The developers are committed to ongo-
ing long-term support, with plans for regular updates and new releases. Typically a 
major feature release is targeted quarterly, while minor bug fix and maintenance ver-
sions release as needed in between.

Looking ahead, priorities for future development include integration of multi-omics 
data into multiple-instance learning model training, expanding cell segmentation and 
classification capabilities, streamlining human-in-the-loop refinement of tissue and cell 
annotations, augmenting the graphical interface to support no-code model building, 
and integration of a pretrained model zoo. This roadmap focuses both on capabilities to 
empower more impactful biomedical research, as well as further improving accessibil-
ity and ease-of-use for diverse research teams. With a strong foundation already estab-
lished, Slideflow is well-positioned to continue advancements as a community platform 
promoting broader adoption of novel AI tools for computational pathology.

Despite its advantages, Slideflow has several notable limitations. Although data pro-
cessed in Slideflow is cross-compatible between Tensorflow and PyTorch and many 
functions can be performed using either deep learning backend, some functions have 
specific backend requirements. For example, multiple-instance learning and segmenta-
tion functions both require PyTorch. There are also several deep learning tasks that have 
not yet been included in Slideflow, such as the building and analysis of nuclei graphs 
with graph neural networks (GNNs). Our goal with this library has been to provide a 
strong foundation upon which new features and additional functionality can be easily 
built, and we anticipate extending functionality to include GNNs in a future update.

Conclusions
Slideflow is a flexible, end-to-end deep learning toolkit for digital pathology with com-
putationally efficient whole-slide image processing, data storage cross-compatible with 
Tensorflow and PyTorch, efficient GPU-accelerated stain normalization, and a GUI to 
support deployment of trained deep learning models. Slideflow includes a variety of 
digital pathology deep learning methods to support a wide range of research objectives 
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without switching software environments or reprocessing data. The software is well doc-
umented and has been built to support researchers with a range of programming experi-
ence in the development of novel deep learning applications for digital histopathology.
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