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Abstract 

Background:  Cross-platform normalization seeks to minimize technological bias 
between microarray and RNAseq whole-transcriptome data. Incorporating multi-
ple gene expression platforms permits external validation of experimental findings, 
and augments training sets for machine learning models. Here, we compare the per-
formance of Feature Specific Quantile Normalization (FSQN) to a previously used 
but unvalidated and uncharacterized method we label as Feature Specific Mean Vari-
ance Normalization (FSMVN). We evaluate the performance of these methods for bidi-
rectional normalization in the context of nested feature selection.

Results:  FSQN and FSMVN provided clinically equivalent bidirectional model perfor-
mance with and without feature selection for colon CMS and breast PAM50 classifica-
tion. Using principal component analysis, we determine that these methods eliminate 
batch effects related to technological platforms. Without feature selection, no statistical 
difference was identified between the performance of FSQN and FSMVN of cross-plat-
form data compared to within-platform distributions. Under optimal feature selection 
conditions, balanced accuracy was FSQN and FSMVN were statistically equivalent 
to the within-platform distribution performance in multivariable linear regression 
analysis. FSQN and FSMVN also provided similar performance to within-platform distri-
butions as the number of selected genes used to create models decreases.

Conclusions:  In the context of generating supervised machine learning classifiers 
for molecular subtypes, FSQN and FSMVN are equally effective. Under optimal mod-
eling conditions, FSQN and FSMVN provide equivalent model accuracy performance 
on cross-platform normalization data compared to within-platform data. Using 
cross-platform data should still be approached with caution as subtle performance 
differences may exist depending on the classification problem, training, and testing 
distributions.
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Introduction
Molecular classification using gene expression data provides a robust framework 
to research, treat, and classify human disease [1–3]. In cancer, molecular classifica-
tion has delivered valuable insight into tumour heterogeneity, and disease etiology, 
progression, and prognosis [4–6]. Open data-sharing policies have created numer-
ous public online compendiums to access and use gene expression data for research 
purposes.

Whole transcriptome gene expression is commonly measured using either microarray 
or RNA-sequencing (RNAseq) technology. Although both methods generate gene-level 
expression data, the underlying technology used to determine expression levels is inher-
ently different [7]. Thus, comparing or combining experiments from separate techno-
logical platforms is a known problem. It is desirable to use multiple platforms of gene 
expression data to explore human disease because it allows external validation of experi-
mental findings, increases sample sizes for clinical outcomes data, and augments train-
ing sets for machine learning models.

Normalizing data between gene expression platforms is commonly referred to as 
cross-platform normalization. The purpose of normalization is to eliminate differences 
in samples due to technological differences while maintaining biologically relevant char-
acteristics. Methods that insufficiently account for technological differences or con-
versely methods that eliminate biological signals introduce confusion and bias.

The idea of matching the specific distribution of each gene to a reference target distri-
bution is a well-known, but poorly characterized method. For example, in 2003 Wright 
et al. used the principle of feature-specific distribution matching of the mean and vari-
ance of each gene to compare the measurement of lymphoma specimens from two sepa-
rate microarray probe-based technologies [8]. They claimed that this method removed 
systematic measurement differences between the two platforms. This method was never 
specifically named, and no formal validation study has been performed. However, this 
method has been used to learn molecular subtypes on external datasets in numer-
ous high-impact publications such as those published in Nature Communications [9], 
and Clinical Cancer Research [10]. The specific mathematical calculation used in this 
instance has not formally been provided and to our knowledge, no software-related code 
publicly exists for replication purposes. In the present study, we formally identify this 
method as Feature Specific Mean Variance Normalization (FSMVN).

In 2018, Franks et al. proposed using Feature Specific Quantile Normalization, which 
performs quantile normalization at the individual gene level [11] (see Fig.  1). In this 
study, FSQN provided superior classification performance compared to distribution 
level quantile normalization [12], training distribution matching [13], and non-par-
anormal transformation [14]. However, the utility of FSQN was only demonstrated in 
the unidirectional manner of transforming RNAseq to microarray data distributions. 
In 2023, Foltz et al. published an independent study also demonstrating the efficacy of 
FSQN [15]. Although not specifically referenced as FSQN, this study used the identical 
R function as the Franks et al. study. One important finding was that FSQN and other 
cross-platform normalization methods are able to normalize data in a bidirectional 
manner (i.e., RNAseq to microarray or microarray to RNAseq). However, interpreta-
tion of these data in some common experimental circumstances is limited because they 
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used a combination of microarray and RNAseq data in the training and testing sets as 
opposed to pure platform-independent data.

In this study, we investigate the utility of FSQN compared to FSMVN in the context 
of supervised machine learning classification performance for molecular subtypes. First, 
we test if these methods are capable of bi-directional normalization, defined as nor-
malization using exclusively microarray or RNAseq as a target distribution. Next, we 
explore the efficacy of these methods when using feature selection techniques. This work 
is novel because it is (1) the first formal analysis of FSMVN performance using gene 
expression data tested with both microarray and RNAseq data on the same patients, (2) 
the first analysis of FSQN and FSMVN using only RNAseq data as a target distribution 
for microarray cross-platform normalization (i.e. previous studies used mixed data as 
a target distribution or only normalized RNAseq to microarray data), and (3) the first 
to evaluate the effect of feature selection/number of selected features on cross-platform 
normalization performance (i.e. previous studies investigated the effect of sample size 
used for training).

Methods
Study design

Gold-standard comparison for cross-platform normalization uses data with separate 
technological gene expression measurements performed on the same biological sam-
ple/patient. These include The Cancer Genome Atlas (TCGA) breast (BRCA) [16] and 
TCGA colon adenocarcinoma (COAD) [17] data measured using both Agilent micro-
array and Illumina RNAseq platforms. Given that gene expression measurements are 

Fig. 1  Study overview. Feature Specific Quantile Normalization and Feature Specific Mean Variance 
Normalization are two methods of cross-platform normalization that allow integration and/or comparison 
of microarray and RNAseq data. These methods use either quantile normalization or mean and variance 
matching at a gene-specific level to match gene expression data to a target distribution. These methods are 
bidirectional, in that microarray data can match the RNAseq distribution and vice versa. Here, we evaluate the 
validity of using FSQN and/or FSMVN in the context of supervised machine learning classifiers for molecular 
subtyping using cross-platform data. We compare the model accuracy to the unnormalized log2 gene 
expression data of the target/training distribution. We also evaluate whether FSQN and/or FSMVN is a valid 
method in the context of feature selection
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performed within the same study and on the same patient samples we assume that dif-
ferences in gene-level expression are predominately due to technological platform-spe-
cific differences.

This study assesses the bidirectional performance of FSQN and FSMVN. Supervised 
machine learning models were created on a training distribution consisting entirely of 
microarray or RNAseq data. The performance of this model was then assessed in unseen, 
holdout test folds derived from nested cross-validation consisting of either: 1. data from 
same origin/platform of the training distribution (positive control); 2. data from differ-
ent origin/platform that is simply log2 transformed (negative control); 3. data from dif-
ferent origin/platform that is normalized to match the training distribution using FSQN; 
and 4. data from different origin/platform that is normalized to match the training dis-
tribution using FSMVN.

This study also assesses whether FSQN and FSMVN are valid in the setting of fea-
ture selection. Feature selection refers to decreasing the number of features/genes using 
some form of criteria that is typically derived from statistical models or expert knowl-
edge. Feature selection may enhance model performance by eliminating noise and aims 
to alleviate the curse of dimensionality [18]. We independently assess model perfor-
mance with and without feature selection. We also directly compare the performance 
of feature selection versus no feature selection in multivariable models. See below for 
details about our feature selection methods and design.

In all cases, control and experimental groups were trained and tested on the exact 
same patient samples. We used identical nested cross-validation folds for each experi-
mental procedure. Our primary outcome metric was balanced accuracy, which accounts 
for imbalanced class data. We also assessed the mean absolute scaled error (MASE) for 
gene expression matrices between log2, FSQN and FSMVN method to assess which 
method best approximates the native reference distribution gene expression values. 
Using these methods, we test the null hypothesis that FSQN, FSMVN, and the reference 
training platform distribution achieve equal model performance.

Dataset descriptions and processing

Whole transcriptome RNAseq data was retrieved from cbioportal for TCGA breast 
(BRCA) and colon adenocarcinoma (COAD) experiments [19]. Next-generation 
sequencing data was retrieved as RNA-Seq by Expectation–Maximization (RSEM) 
counts and already batch normalized [20]. Data was log2(RSEM count +1) transformed. 
Genes with mean log2 expression < 1 were removed. EntrezIDs were mapped to gene 
symbols with org.Hs.eg.db using AnnotationDBI [21].

Level 3 (gene-level) Agilent custom 244  K whole genome microarray data was 
retrieved from Genomic Data Commons [22]. Data was retrieved as log2 loess normal-
ized with annotated gene symbols. This data was previously known to contain no serious 
batch effects [16]. There was 0.18% missing data among 540 genes, which was imputed 
using the k-nearest neighbours algorithm.

For all datasets, we performed exploratory analysis using Bland–Altman plots, qqplots, 
boxplots, and probability density functions to confirm appropriate normalization. For 
each data set, tumour adjacent normal samples were removed. Molecular subtypes 
including PAM50 for BRCA [23] and Consensus Molecular Subtypes (CMS) [24] for 
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COAD were included. For BRCA, the normal-like subtype samples were removed due 
to low class prevalence for the learning algorithms. Only common samples measured 
on Agilent and Illumina platforms with molecular subtype labels were included. Only 
annotated genes that were present in both RNAseq and Agilent expression data were 
included. Following these procedures, the final gene expression matrix for BRCA and 
COAD was 431 patients × 12,638 genes and 187 patients × 13,362 genes, respectively.

Cross‑platform normalization

Normalization between platforms was performed using Feature Specific Quantile Nor-
malization and Feature Specific Mean Variance Normalization. The mathematical expla-
nation of FSQN was previously characterized [11]. FSQN was implemented in R using 
the FSQN package, which utilizes the normalize.quantiles.use.target function from the 
preprocessCore package.

FSMVN was performed by matching the mean and variance of the test distribution to 
a specified target distribution for each gene/feature, respectively. Let X i,j represent a test 
gene matrix and Y i,j a target gene matrix, where i rows represent biological samples and 
j columns represent genes. Note, FSMVN requires X j = Y j (i.e., identical gene features). 
We then applied FSMVN to normalize X i,j toXN

i,j , where N denotes a normalized matrix 
to the target distribution. For each feature∗, j , where∗ = [x1, . . . , xi]j ∈ X i,j , we standard-
ize to a mean of zero and standard deviation of 1, transform the feature to the stand-
ard deviation of  s∗,j ∈ Y i,j then add the meany

∗,j . Thus, for the first feature in a matrix 
xi,1 ∈ X i,j , FSMVN is calculated as:

To achieve XN
i,j FSMVN is calculated as above for each feature x1, . . . , xj ∈ X i,j . A 

FSMVN R function is provided in the supplement  (Additional File 1: Feature Specific 
Quantile Normalization R Function).

Machine learning models and feature selection

Supervised machine learning classifiers were created using caret in R [25]. Molecular 
subtypes were used as the supervised labels and genes as features. Models were trained 
and tested using nested stratified tenfold cross-validation (CV) [26]. Stratification of 
supervised labels ensured a consistent proportion of classes were present in each train-
ing and testing fold [27]. Support Vector Machine (SVM) models, implemented as ‘svm-
Linear2’ [28], and glmnet [29] models were used for feature selection and classification 
models. Model selection with hyperparameter optimization occurred within the middle 
layer of nested tenfold CV. The innermost layer was used to train feature-selected mod-
els that were subsequently tested on the holdout CV fold in the outermost layer.

Default tuning parameters were used except for glmnet models in the outermost loop. 
Here, glmnet was implemented as Least Absolute Shrinkage and Selection Operator 
(LASSO) regression (i.e., α = 1) so that features could be selected based on the minimum 
mean cross-validated error using the glmnet package. For SVM, the top features for 
each molecular subtype class were selected as defined by variable importance in caret. 
The number of features selected was the mean number of features selected by LASSO 

xNi,1 =
xi,1 − x∗,1

sx∗,1
sy

∗,1
+ y

∗,1
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regression in each experimental condition. Duplicate selected genes were removed. Of 
note, when assessing feature selection performance, FSQN and FSMVN were performed 
on unseen data with a reduced number of features after feature selection on the full 
training distribution.

Feature selection experiment

To assess whether FSQN or FSMVN performance is affected by the number of features 
selected we evaluated the performance of models using pre-specified feature selection. 
We used SVM to select approximately 10,000, 5000, 500, 100, 50, 25, or 10 features and 
assessed model performance.

Statistical analysis

Statistical analyses were completed using R version 4.2.3. Summary statistics were cal-
culated to describe the mean and empiric 95% bootstrapped confidence intervals using 
1,000 bootstraps. Differences between groups were assessed using Dunn’s test (i.e., 
Kruskal–Wallis with multiple comparisons). P-values were adjusted using the Holm 
method to control the Type 1 error rate due to multiple comparisons. Statistical signifi-
cance was defined at alpha = 0.05. Principal Component Analysis (PCA) was performed 
using Singular Value Decomposition in R. Multiple linear regression was performed 
using default parameters to summarize the overall effects of experimental conditions. 
Pairwise comparisons of the estimated marginal means for normalization methods vari-
ables were performed using the eemeans package. P-values for these pairwise compari-
sons were corrected using the Holm method. Figures were generated using ggplot2 and 
ggpubr packages [30].

Results
FSQN and FSMVN normalize distributions and eliminates platform related batch effects

The baseline distribution of log2 transformed gene expression data for microarray and 
RNAseq BRCA data is illustrated in Fig.  2a and g. The greatest source of variation 
observed in the first principal component (x-axis) is represented by the separate techno-
logical platforms (Fig. 2b and h). The second greatest source of variation is represented 
by the patient samples observed along the second principal component (y-axis).

Following FSQN and FSMVN, the batch effects between technological platforms 
observed in Fig. 2b and h were eliminated regardless of the training distribution used 
(Fig.  2c, d, i, and j). Furthermore, we observed that FSQN and FSMVN projected 
nearly identical PCA plots within their respective training distributions. In Fig. 2e and 
f, the near complete overlap of probability density functions is achieved after FSQN or 
FSMVN of microarray to RNAseq data. Likewise, in Fig. 2k and l, we again observe a 
meaningful and near complete shift of the RNAseq probability density function to match 
the training microarray distribution. These findings in BRCA data are replicated in 
COAD data (Additional file 1: Fig. S1).

FSQN and FSMVN deliver equivalent balanced accuracy without feature selection

We evaluated the effect of FSQN and FSMVN on classification performance using “Full” 
models without feature selection (i.e., all genes were used to train models). In Fig. 3, we 
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stratify the balanced accuracy by classification model. In all cases, balanced accuracy for 
PAM50 and CMS molecular classification was statistically equivalent between the refer-
ence training distribution and the experimental FSQN and FSMVN normalized distri-
butions (Fig.  3). Balanced accuracy for the reference training distribution, FSQN, and 
FSMVN data was significantly greater than non-normalized log2 transformed data. Sim-
ilar findings were reflected in the model’s Kappa performance metric (Additional file 1: 
Fig. S2).

Cross‑platform normalization and feature selection reduce mean absolute scaled error

We used MASE to evaluate the direct effects of FSQN and FSMVN on the gene expres-
sion values before and after cross-platform normalization. In some cases, FSMVN pro-
vided statistically significant reduction in MASE compared to FSQN (Fig.  3e and f ). 
The absolute reduction in MASE between FSQN and FSMVN was minimal compared 
to log2 transformed data. For example, in breast models trained with RNAseq data, 
MASE in log2 transformation was 7.09 ± 0.13 (mean ± standard deviation) compared to 

Fig. 2  Effect of feature specific normalization methods on test and training breast distributions. Left block 
(Dark Blue): Normalization using RNAseq data as training distribution. Right block (Gold): Normalization 
using microarray data as training distribution. Colour legends for each block are provided. a, g. Probability 
density functions of log2 microarray and RNAseq data prior to feature specific normalization. b, h Principal 
Component Analysis (PCA) plots of log2 microarray data and log2 RNAseq data. The first (PC1) and second 
(PC2) principal components are projected on the x-axis and y-axis, respectively. c, i PCA plot of the first two 
principal components of gene expression data after feature specific quantile normalization (orange) to the 
respective training distribution (blue) demonstrates limited variation between gene expression platforms 
after FSQN. d, j. PCA plot of the first two principal components of gene expression data after feature specific 
mean–variance normalization (green) to training distribution (blue) demonstrates limited variation between 
gene expression platforms after FSMVN. e, k. The probability density function of gene expression data after 
FSQN demonstrates the shift of the test distribution (orange) to match the training distribution (blue). f, l. 
The probability density function of gene expression data after FSMVN demonstrates the shift of the test 
distribution (green) to match the training distribution (blue)
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0.43 ± 0.01 and 0.42 ± 0.01 in FSQN and FSMVN, respectively. In Fig. 3g and h, we dem-
onstrate that MASE is reduced with feature selection and that SVM provides a greater 
benefit compared to glmnet feature selection techniques in the breast cohort. Similar 
findings were identified in colon CMS (Additional file 1: Fig. S3a–d).

FSQN and FSMVN are equally effective methods following feature selection
Next, we assessed the effects of feature selection on cross-platform normalization meth-
ods. In Fig.  4a and b, we show the balanced accuracy of machine learning classifiers 
using an “optimal” feature selection procedure. In this scenario, features were selected 
using glmnet LASSO regression or SVM as described in the Methods.

For PAM50 classifiers, we found that performance was statistically equivalent between 
the reference training, FSQN, and FSMVN distributions (Fig. 4a). These findings were 
identified in models trained using RNAseq or microarray data and for features selected 
using glmnet or SVM for feature selection. Once again, the reference training, FSQN, 
and FSMVN distributions achieved significantly greater balanced accuracy compared to 
the non-normalized log2 distribution.

For colon CMS classification, FSQN and FSMVN achieved comparable balanced accu-
racy compared to the reference distribution (Additional file 1 and Fig. 4b). The reference 
distribution was found to have statistically superior performance compared to FSQN 
and FSMVN for models trained on RNAseq data with either glmnet or SVM feature 
selection (Fig. 4b). However, in models trained using microarray data, RNAseq-FSQN-
to-microarray data achieved significantly greater balanced accuracy than the reference 
training distribution in the setting of glmnet feature selection (0.89 [95% CI 0.88–0.91] 
vs. 0.85 [95% CI 0.84–0.87]; p < 0.05). Similar findings were reflected in the model’s 
Kappa performance metric (Additional file 1: Fig. 4).

We performed multivariable regression to capture the effects of normalization 
methods, feature selection versus full modeling methods, and the training/testing 

Fig. 3  Model performance in PAM50 and CMS classification without feature selection. Left block (Dark 
Blue): Supervised classification using RNAseq data as training distribution. Right block (Gold): Supervised 
classification using microarray data as training distribution. Colour legends for each block are provided. All 
results are stratified by glmnet and SVM classification models. The y-axis label “Full” denotes models trained 
on all 12,638 genes (breast) or 13,362 genes (colon). a. Balanced accuracy (y-axis) derived from unseen 
out-of-fold test data from each normalization method (x-axis) for breast PAM50 classifier trained on RNAseq 
data. b. Balanced accuracy (y-axis) derived from unseen out-of-fold test data from each normalization 
method (x-axis) for breast PAM50 classifier trained on microarray data. c. Balanced accuracy (y-axis) derived 
from unseen out-of-fold test data from each normalization method (x-axis) for colon CMS classifier trained on 
RNAseq data. d. Balanced accuracy (y-axis) derived from unseen out-of-fold test data from each normalization 
method (x-axis) for colon CMS classifier trained on microarray data. 95% confidence intervals were calculated 
using 1,000 bootstraps with replacement. e. Mean absolute scaled error (y-axis) of breast gene expression 
data that is cross-platform normalized from microarray to RNAseq distribution for each normalization 
method (x-axis). f. Mean absolute scaled error (y-axis) of breast gene expression data that is cross-platform 
normalized from RNAseq to microarray distribution for each normalization method (x-axis). g. Mean absolute 
scaled error (y-axis) of breast gene expression data that is cross-platform normalized from microarray to 
RNAseq distribution according to feature selection method (x-axis) for FSQN and FSMVN, respectively. 
h. Mean absolute scaled error (y-axis) of breast gene expression data that is cross-platform normalized 
from RNAseq to microarray distribution according to each feature selection method (x-axis) for FSQN and 
FSMVN, respectively.. The significance of a Kruskal–Wallis with Dunn’s post-hoc test is annotated in the plot. 
(****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns = not significant)

(See figure on next page.)
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distributions (Table 1). To compare normalization methods, we performed a post-hoc 
analysis of all pairwise comparisons of the marginal means. We found no significant 
difference in balanced accuracy between reference, FSQN, and FSMVN distributions 
(see Additional file 1). Using optimal feature selection techniques, we identified that 
feature selection methods were equivalent or significantly advantageous compared 
to “Full” model methods for PAM50 and CMS classification (Table 1). Overall, there 
were minimal clinically significant regression coefficients. For example, the effect of 
FSMVN relative to the reference distribution in Colon CMS classification was  − 1.3% 
despite achieving statistical significance. Beyond log2 normalization, regression coef-
ficients only ranged from 0 to 3.4%.

Fig. 3  (See legend on previous page.)
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We wanted to determine if the performance of FSQN and FSMVN is affected by the 
number of feature selected genes. In Fig. 4c we found that the reference training, FSQN, 
and FSMVN distributions have nearly identical performance in the PAM50 classification 
problem regardless of training distribution and number of features selected. For CMS 
classification the FSQN and FSMVN normalization tended to outperform the micro-
array training distribution. In contrast, the RNAseq training distribution achieved a 
marginally greater balanced accuracy compared to FSQN and FSMVN. In both cases, 
balanced accuracy was stable from 1,000 to 100 genes and began decreasing at 50 genes. 
Once again, similar findings were reflected in the model’s Kappa performance metric 
(Additional file 1: Fig. S4).

The effects of decreasing the number of feature selected genes in the context of other 
confounding variables were assessed using multivariable regression. In the PAM50 clas-
sification the FSQN and FSMVN were equivalent to the reference training distribution 

Fig. 4  Model performance in PAM50 and CMS classification with feature selection. a. Balanced accuracy 
(y-axis) derived from unseen out-of-fold test data from each normalization method (x-axis) for breast PAM50 
classifier using feature selection. b. Balanced accuracy (y-axis) derived from unseen out-of-fold test data 
from each normalization method (x-axis) for colon CMS classifier using feature selection. For a and b, the 
gray labels above the plot denote the feature selection method and the gray labels to the right denote 
the training distribution. c. Balanced accuracy (y-axis) derived from unseen out-of-fold test data versus the 
number of selected features (x-axis) for PAM50 classification. d. Balanced accuracy (y-axis) derived from 
unseen out-of-fold test data versus the number of selected features (x-axis) for CMS classification. For c 
and d, the gray labels above the plot denote the classifier model and the gray labels to the right denote 
the training distribution. Scatter plot colours correspond to the normalization method (blue = reference/
training distribution, orange = FSQN, green = FSMVN, red = log2). 95% confidence intervals were calculated 
using 1000 bootstraps with replacement. The significance of a Kruskal–Wallis with Dunn’s post-hoc test is 
annotated in the plot. (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns = not significant)
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(Table  2). However, for CMS classification the reference distribution was found to 
achieve statistically greater balanced accuracy compared to FSQN and FSMVN for CMS 
classification. This result was arguably not clinically significant given that FSQN and 
FSMVN were estimated to contribute 1.0% and 1.3% less accuracy relative to the refer-
ence distribution. Pairwise comparisons of the normalization methods maintained the 
finding of greater balanced accuracy in the reference distribution compared to FSQN 
and FSMVN for CMS classification (Ref > FSQN, p < 0.05; Ref > FSMVN, p < 0.01) (Addi-
tional file 1).

Discussion
Accurate cross-platform normalization allows integration of whole transcriptome gene-
expression data. Reliable normalization from RNA-sequencing platforms to microarray 
and vice-versa provides researchers with a tool to test hypotheses on external datasets, 
which aids in replication and validation of findings. Furthermore, these methods may 
also allow translational delivery of findings derived from costly whole transcriptome 
data to affordable, and efficient tests such as Nanostring.

For the purposes of using cross-platform normalization in supervised machine learn-
ing models, we establish that FSQN and FSMVN are equivalent in terms of balanced 
accuracy and Kappa metrics. In the case of breast PAM50 classification, FSQN and 
FSMVN delivered statistically equivalent model performance on cross-platform nor-
malization data compared to within-platform data. This was also true for colon CMS 
classification in the context of no feature selection and SVM models with feature selec-
tion. Overall, FSQN and FSMVN provided significant improvement in MASE of the 
actual gene expression values, but these significant differences were not translated to 

Table 1  Balanced Accuracy of optimal multivariable regression models

a Beta = Percentage expressed as a decimal, bCI Confidence Interval

Breast Colon

Characteristic Betaa 95% CIb p-Value Betaa 95% CIb p-Value

Model

glmnet – – – –

SVM  − 0.001  − 0.009, 0.006 0.8 0.015 0.007, 0.023  < 0.001

Train distribution

Agilent – – – –

RNAseq  − 0.006  − 0.015, 0.002 0.15 0.016 0.007, 0.026  < 0.001

Test distribution

Agilent – – – –

RNAseq 0.006  − 0.002, 0.015 0.15 0.034 0.025, 0.044  < 0.001

Normalization method

Reference (REF) – – – –

FSQN 0.003  − 0.008, 0.014 0.6  − 0.006  − 0.017, 0.005 0.3

FSMVN  − 0.000  − 0.011, 0.011  > 0.9  − 0.013  − 0.024, − 0.001 0.031

LOG2  − 0.347  − 0.357, − 0.336  < 0.001  − 0.349  − 0.360, − 0.337  < 0.001

Feature selection method

Full Model – – – –

glmnet 0.009 0.001, 0.018 0.064 0.002  − 0.008, 0.012 0.7

SVM 0.012 0.002, 0.021 0.015 0.009 0.001, 0.019 0.083
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the primary outcome of balanced accuracy. Moreover, we provide the first validation of 
a commonly used, but previously unnamed method we label as Feature Specific Mean 
Variance Normalization.

Previous work has established the utility of FSQN compared to other prominent cross-
platform normalization methods. In this study, we provide novel results supporting the 
utility of FSQN and FSMVN in normalizing gene-expression data in a bidirectional 
manner (i.e., microarray to RNAseq and vice versa). Furthermore, our study provides 
the first unbiased assessment of FSQN and FSMVN in the context of feature selection by 
using nested cross-validation methods.

We identified that model performance differences may exist depending on the clas-
sification problem, the machine learning model used, or the training and testing dis-
tribution. For example, in the colon CMS classification model performance was model 
dependent on the training distribution and the feature selection model used. Based on 
this information we recommend that researchers continue to approach cross-platform 
normalization with caution. We encourage researchers to use a variety of models to 
identify the optimal combination. If possible, we also encourage external validation of 
classification models using alternative biological or clinical outcomes.

These methods are not without limitations. FSQN and FSMVN require matching dis-
tributions with identical genes. Depending on the specific technology, tissue or probe set 
used, it is not uncommon to have discordance between the measured genes. Thus, these 

Table 2  Balanced accuracy number of selected features regression models

a Beta Percentage expressed as a decimal, bCI Confidence Interval

Breast Colon

Characteristic Betaa 95% CIb p-Value Betaa 95% CIb p-Value

Number of features

10,000 – – – –

5000 0.006  − 0.005, 0.016 0.3 0.003  − 0.007, 0.013 0.5

500 0.025 0.014, 0.036  < 0.001 0.013 0.003, 0.023 0.012

100 0.017 0.006, 0.028 0.002  − 0.003  − 0.014, 0.007 0.5

50 0.012 0.001, 0.022 0.033  − 0.012  − 0.023, − 0.002 0.015

25  − 0.020  − 0.030, − 0.009  < 0.001  − 0.023  − 0.033, − 0.013  < 0.001

10  − 0.053  − 0.064, − 0.042  < 0.001  − 0.054  − 0.064, − 0.044  < 0.001

Model

glmnet – – – –

SVM 0.001  − 0.005, 0.006 0.8 0.004  − 0.001, 0.010 0.12

Train distribution

Agilent – – – –

RNAseq  − 0.010  − 0.016, − 0.003 0.003 0.020 0.013, 0.026  < 0.001

Test distribution

Agilent – – – –

RNAseq 0.007 0.000, 0.014 0.038 0.035 0.029, 0.041  < 0.001

Normalization method

Reference (REF) – – – –

FSQN  − 0.002  − 0.010, 0.006 0.7  − 0.010  − 0.018, − 0.002 0.010

FSMVN  − 0.002  − 0.011, 0.006 0.6  − 0.013  − 0.021, − 0.006  < 0.001

LOG2  − 0.324  − 0.332, − 0.316  < 0.001  − 0.347  − 0.355, − 0.340  < 0.001
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methods suffer where missing gene-level data occurs between separate platforms. Poten-
tial avenues to remedy this problem include missing data imputation methods such as 
k-nearest neighbour imputation or multivariate imputation by chained equations [31, 32]. 
Another limitation is that we only examined distributions within the same cancer type. 
Normalization in the context of multi-cancer or pan-cancer applications may be affected 
by distributional discrepancies among unique tissues. Further investigation of these limita-
tions is required in future studies.

Conclusions
In this study, we demonstrate that FSQN and FSMVN are effective methods for cross-plat-
form normalization. These methods allow the normalization of microarray data to RNAseq 
data and vice-versa. The validity of previous research using FSMVN is augmented by these 
results. To aid in the replication of these methods we have provided an R function for 
FSMVN. Finally, these methods are valid in the context of feature selection. Future study 
includes evaluating the validity of cross-platform normalization to perform pooled differ-
ential gene expression analysis and assessment of missing gene value techniques.
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