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Abstract 

Background:  Classification of binary data arises naturally in many clinical applica-
tions, such as patient risk stratification through ICD codes. One of the key practical 
challenges in data classification using machine learning is to avoid overfitting. Overfit-
ting in supervised learning primarily occurs when a model learns random variations 
from noisy labels in training data rather than the underlying patterns. While traditional 
methods such as regularization and early stopping have demonstrated effectiveness 
in interpolation tasks, addressing overfitting in the classification of binary data, in which 
predictions always amount to extrapolation, demands extrapolation-enhanced strate-
gies. One such approach is hybrid mechanistic/data-driven modeling, which integrates 
prior knowledge on input features into the learning process, enhancing the model’s 
ability to extrapolate.

Results:  We present NoiseCut, a Python package for noise-tolerant classification 
of binary data by employing a hybrid modeling approach that leverages solutions 
of defined max-cut problems. In a comparative analysis conducted on synthetically 
generated binary datasets, NoiseCut exhibits better overfitting prevention compared 
to the early stopping technique employed by different supervised machine learning 
algorithms. The noise tolerance of NoiseCut stems from a dropout strategy that lever-
ages prior knowledge of input features and is further enhanced by the integration 
of max-cut problems into the learning process.

Conclusions:  NoiseCut is a Python package for the implementation of hybrid mod-
eling for the classification of binary data. It facilitates the integration of mechanistic 
knowledge on the input features into learning from data in a structured manner 
and proves to be a valuable classification tool when the available training data is noisy 
and/or limited in size. This advantage is especially prominent in medical and biomedi-
cal applications where data scarcity and noise are common challenges. The codebase, 
illustrations, and documentation for NoiseCut are accessible for download at https://​
pypi.​org/​proje​ct/​noise​cut/. The implementation detailed in this paper corresponds 
to the version 0.2.1 release of the software.

*Correspondence:   
aschuppert@ukaachen.de

1 Institute for Computational 
Biomedicine, RWTH Aachen 
University, Aachen, Germany
2 Process Systems Engineering 
(AVT.SVT), RWTH Aachen 
University, Aachen, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05769-8&domain=pdf
https://pypi.org/project/noisecut/
https://pypi.org/project/noisecut/


Page 2 of 19Samadi et al. BMC Bioinformatics          (2024) 25:155 

Keywords:  Hybrid mechanistic/data-driven modeling, Binary data, Overfitting, Max-
cut problem, Noise-tolerant classification

Background
Binary-represented data arise in many clinical applications [1, 2]. Binary endpoints, 
which have two possible outcomes such as success/failure or present/absent, are com-
monly used in clinical trials to evaluate the effectiveness and safety of treatments [3]. 
Binary data also emerge in the context of the International Classification of Diseases 
(ICD) codes, which represent the presence of distinct medical diagnoses, conditions, 
and procedures [4]. Moreover, binary outcomes often result from longitudinal data 
analysis in clinical studies, in which each subject is monitored over a period of time 
[5, 6].

Classification of binary data [7], however, presents inherent challenges, primarily 
because any unseen sample to a classifier does not belong to the convex hull of the train-
ing data and therefore all predictions amount to extrapolation [8–10]. Quantifying the 
uncertainty of extrapolations stands out as a significant challenge, especially considering 
the presence of noise in data.

In supervised learning, noise refers to errors or inconsistencies in the data labeling [11, 
12]. If the noise is significant in the training data, a data-driven model may learn noise-
specific variations rather than underlying patterns generalizable to unseen data. This can 
lead to overfitting, where the model performs well on the training data but poorly on 
new data. Overfitting can occur when a model has too many parameters relative to the 
size of the training data. Several techniques have been introduced to prevent overfit-
ting, such as regularization [13], cross-validation [14], and early stopping [15]. Such con-
ventional techniques are commonly used to prevent excessive increases in classification 
loss on evaluation data through the training process [16]. However, when the evalua-
tion data lies beyond the convex hull of the training data, the association between the 
loss functions of training and evaluation datasets loses clarity. To address this challenge, 
extrapolation-enhanced approaches are required, such as incorporating existing feature 
knowledge into learning within the framework of hybrid modeling.

The concept of hybrid mechanistic/data-driven modeling was developed in the early 
1990 s to combine prior knowledge about the system of interest with data-driven mod-
eling [17, 18]. Such methods are frequently used in the context of process and chemical 
engineering [19–22]. In a structured hybrid model (SHM) [23, 24], the prior knowledge 
about the system of interest serves as the structure of the information flow from input 
features to the outputs through different subsystems. The central idea of SHMs is to 
use structural knowledge to reduce the modeling complexity. As attested by the curse 
of dimensionality [25], the complexity of a black-box model increases exponentially 
with the dimension of its input. Purely data-driven models encounter high complexity 
as the mapping between input variables and outputs is modeled by a single black box 
that receives all variables in the modeling as its input. In contrast, an SHM conducts the 
information flow from input variables to outputs through several subsystems consisting 
of white boxes (known processes) and black boxes (unknown processes). Each black box 
of an SHM receives fewer input variables than the single black box in purely data-driven 
models. Due to the reduction in complexity compared with pure data-driven models, 
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SHMs can significantly reduce the number of datasets needed to identify the model 
without sacrificing accuracy [26].

In this work, we utilized a prime example of SHMs, so-called functional networks 
(FNs) [27, 28], as a model class for the classification of binary data with prior knowledge 
on input features. FNs can be viewed as modular neural networks, where the structure 
of the links between the modules and the information flow from input variables to the 
output variable is pre-determined. Each module within the FN , henceforth referred to 
as a box, can serve as an independent data-driven model. The identification of an FN, 
i.e., learning the input–output (I/O) function of the FN, is then decomposed to the iden-
tification of the individual interior boxes.

Figure 1 shows a simple FN mapping input vector x = [x11, x
2
1, x

1
2, x

2
2] to output vari-

able y. The subscript i indicates the input to box i while superscripts are ascending num-
bers enumerating the number of inputs to that box. In this example, the structure of 
the information flow from the input features x ∈ R

4 to the output y ∈ R stems from 
assumed prior knowledge on the input features. This prior knowledge attests that the 
main process F(x) = y can be decomposed into two sub-processes U and V , and a com-
plementary process Z on the outputs of the sub-processes towards the final output of the 
main process:

In this example, each sub-process separately performs computations on a subset 
of input features, here {x11, x

2
1} and {x12, x

2
2} . In general, if there is no common feature 

between the subset of input features to the boxes of a two-layered FN, then the structure 
of the associated FN has a so-called tree structure.

The identification of FNs has been studied in detail in [23, 24] for tree-structured net-
works that map continuous input variables x ∈ R

n to continuous output variables in 
y ∈ R . The proof of extrapolation used in [23, 24] is based on assumed densely distrib-
uted training data on low-dimensional subsets of Rn , and monotonicity in the functions 

(1)y = F(x), x ∈ R
4 , y ∈ R, F : R4 �−→ R,

(2)u = U(x11, x
2
1), u ∈ R, U : R2 �−→ R,

(3)v = V(x12, x
2
2), v ∈ R, V : R2 �−→ R,

(4)y = Z(u, v), y ∈ R, Z : R2 �−→ R.

Fig. 1  The visual representation of illustrative introduced in Eqs. (1–4)
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of subsystems. Towards the identification of tree-structured FNs that map randomly dis-
tributed binary input data x ∈ {0, 1}n to binary outputs y ∈ {0, 1} , a training strategy has 
been introduced in [26]. The training strategy uses graph-theoretic methods to analyze 
the data and identify the function of each box of an FN. However, the limitation of the 
strategy is to be relatively sensitive to noise in the data labeling.

In this work, in order to overcome the noise sensitivity observed in [26], we formulated 
the identification of each box of an FN as solving a maximum-cut (max-cut) problem. 
The max-cut problem is a well-known NP-hard combinatorial optimization problem 
and can be formulated as follows: given a graph G = (V ,E) , find a partition of the ver-
tices V into two sets V1 and V2 such that the sum of the weights of the edges connecting 
V1 and V2 is maximized. There are several algorithms that have been proposed to solve 
the max-cut problem, including spectral methods [29], randomized algorithms [30], 
and semi-definite programming [31]. However, most of these algorithms are only able 
to find approximate solutions, and there is still ongoing research to find more efficient 
and accurate methods to solve this problem. We chose to incorporate a max-cut prob-
lem into our learning strategy because maximizing the sum of weights associated with 
the cut necessitates excluding non-essential or weak connections between vertices. This 
selective exclusion can be utilized to filter out relatively infrequent noisy observations.

The introduced Python package in this work, named NoiseCut (standing for noise-
tolerant classification of binary data using prior knowledge integration and max-cut 
solutions), not only exhibited remarkable robustness against noise but also showcased 
a capacity for generalization to non-tree structured FNs, a capability notably absent in 
[26].

The paper is structured as follows: The section “Implementation” presents the Python 
classes utilized in the NoiseCut package, accompanied by a code snippet outlining the 
complete workflow. In the section “Material and methods”, we first introduce the data 
utilized in this study, followed by an explanation of the derivation of the hybrid model 
and a mathematical description of the function identification employed in the learning 
strategy of NoiseCut. The section “Results” demonstrates the utility of NoiseCut through 
two use cases: noise-tolerant classification and classification with reduced training data. 
In the section “Discussion”, we delve into the noise-mitigation process within NoiseCut, 
addressing its interpretability and areas for future research. Finally, we conclude with a 
brief section “Conclusion” that highlights the limitations of our approach.

Implementation
The NoiseCut package is implemented in Python, and its core functionality is organized 
into four main Python classes, each serving distinct roles: SampleGenerator, Data-
Manipulator, NoiseCut, and Metric.

As the first step, data integration can be achieved through two approaches. Users can 
manually upload their data using the Pandas library [32], allowing for incorporation of 
their existing datasets. Alternatively, the SampleGenerator class can be implemented 
for the generation of synthetic data, providing a customized approach for experimen-
tation and testing. For a detailed explanation of the synthetic data generation process, 
please refer to the supplementary information (Additional file  1), which covers cases 
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where functions within the functional networks are either randomly assigned or manu-
ally specified.

Moving forward, the DataManipulator class adds noise to data by flipping binary 
labels of randomly selected samples. DataManipulator class also manages data par-
titioning into training and test sets. The NoiseCut class takes the provided training 
set and fits it into the hybrid model. This step implements the function identification of 
the FNs’ interior boxes by solving particular max-cut problems. The attribute “n_input_
each_box” in the NoiseCut class defines the sole hyperparameter of the hybrid model 
as an array. Its length specifies the number of boxes in the first layer of the FN, while 
each element in the array denotes the number of inputs to each box in the first layer. 
The hyperparameter for each FN’s structure is predetermined and given by the assumed 
prior knowledge on the input features and their interactions. Finally, the Metric class 
calculates the evaluation metrics necessary for classification. This step allows for assess-
ing the performance of the model effectively. For a comprehensive understanding of 
these Python classes within the package, please refer to the supplementary information 
(Additional file  1), which includes a practical usage example to assist in grasping the 
implementation details.

The code snippet below demonstrates the execution of the package. This code summa-
rizes a complete workflow, starting with the generation of synthetic data, proceeding to 
the division of data into training and testing sets, and concluding with model fitting and 
result evaluation.

Material and methods
Data

To comprehensively benchmark the noise resistance of NoiseCut against machine 
learning (ML) models, we employed 30 synthetically generated datasets. These 
datasets were generated with the assumption that prior knowledge about the fea-
tures is available. This knowledge includes both the input features involved in the 
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classification task and the structure of the information flow from these inputs to the 
output labels. The structure is defined by tree-structured networks, as illustrated in 
Fig.  2. While NoiseCut is compatible with real-world data, we opted for synthetic 
datasets in the benchmark to eliminate potential uncertainties related to prior knowl-
edge of real-world features. This choice ensures a more controlled evaluation of 
NoiseCut’s noise resistance against ML models.

Each tree structure in the generated synthetic datasets consists of two layers of 
boxes, with a varying number of binary-represented input features x ∈ {0, 1}d , where 
d ranges from 8 to 12. The first layer comprises three boxes, followed by an output 
box in the second layer. The output labels are binary, denoted as y ∈ {0, 1} . To provide 
NoiseCut with prior knowledge, an array of length three is required, with each ele-
ment representing the number of inputs to each box in the first layer. Each tree struc-
ture was randomly constructed so that each first-layer box operates on 2–6 separate 
input entries and forwards the partial results to the output box. A total of six different 
network structures were created for each input dimension, resulting in 30 tree struc-
tures in total.

Figure 2 illustrates an example of the labeling procedure in the synthetic datasets. 
We assumed a tree-structured network F : {0, 1}7 �−→ {0, 1} mapping binary variables 
x to binary labels y:

In the network of Fig.  2, there are three first-layer boxes F1 : {0, 1}3 �−→ {0, 1} , 
F2 : {0, 1}

2 �−→ {0, 1} , and F3 : {0, 1}2 �−→ {0, 1} that separately perform computations 
on subsets of input features. Here are the I/O functions of the first-layer boxes in Fig. 2:

y = F(X), x ∈ {0, 1}7, y ∈ {0, 1}.

Fig. 2  A schematic representation of the information flow from binary-represented input data to binary 
labels. This procedure has been used to generate the synthetic datasets
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For instance, when we enter x′ = [0, 1, 0, 0, 1, 1, 0] to the network, the three first-layer 
boxes return [1, 1, 1], which is then forwarded to the output box FO : {0, 1}3 �−→ {0, 1} 
with the following I/O function:

Finally, the output box returns the generated label, here y′ = 0 , for the entered input x′ 
to the network.

The generated synthetic datasets encompass a combination of balanced and imbal-
anced configurations, with the ratio of the two binary output labels (y ∈ {0, 1}) varying 
between 0.1875:0.8125 and 0.8125:0.1875. This deliberate variation allows us to evalu-
ate the performance of NoiseCut under different class distribution scenarios, ensur-
ing robustness for both balanced and imbalanced datasets.

While our study exclusively focuses on binary-represented datasets, the application of 
NoiseCut can be extended to include categorical data through the use of one-hot encod-
ing for each category. In the case of continuous features, a straightforward approach 
involves binning the range of feature values into discrete intervals. This aligns with the 
learning strategy used for binary or categorical data, but it is crucial to acknowledge that 
the classification task will incorporate uncertainty arising from the binning process.

Model

NoiseCut employs a hybrid mechanistic/data-driven model designed for binary clas-
sification of binary-represented data. Stemming from prior knowledge of features 
(mechanistic modeling component), sets of binary input features are independently 
directed to distinct interior boxes within a tree-structured FN composed of nested 
functions. The learning strategy (data-driven modeling component) involves identify-
ing the function of these interior boxes using a set of labeled training dataset.

NoiseCut primarily focuses on tree-structured FNs with two layers. The first layer con-
sists of first-layer boxes, each operating on separated subsets of input features, while the 
second layer contains only an output box that processes the outputs of the first-layer 
boxes to produce the overall FN output. The first-layer boxes, assumed to have binary 
outputs, are employed for sub-computations related to the main classification task.

F1 :

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1
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1
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In alignment with the terminology introduced by some researchers [33, 34], the 
first-layer boxes can also be interpreted as weak classifiers. The primary contribu-
tion of this study lies in formulating the identification of individual first-layer boxes as 
the solution to specific max-cut problems. The I/O function of the output box, which 
can be regarded as a strong classifier [33, 34], is identified through a majority voting 
scheme.

Consider the FN F : {0, 1}N �−→ {0, 1} shown in Fig.  3. Let x ∈ {0, 1}N  be an 
N-dimensional binary represented input vector to the network and y ∈ {0, 1} be the 
associated output or label. The challenge is to use a given training set of S examples 
{(xs, ys)|s = 1, . . . , S} to deduce the I/O function of all M first-layer boxes and the I/O 
function of output box that accurately labels data points that are not in the training 
set.

Based on the structure of the FN in Fig.  3, N-dimensional binary input vector to 
the network can be decomposed into M vectors, 

[

[x11, . . . , x
n1
1 ], . . . , [x1M , . . . , x

nM
M ]

]

, 
which first-layer boxes separately perform computations on. Accordingly, [xim]

i=nm
i=1  is 

the subset of input features forwarded to the mth first-layer box, where nm is the size 
of the subset or the dimension of the binary input space of the mth first-layer box, 
∑M

m=1 nm = N  , and each xim ∈ {0, 1}.
Before feeding an nm-dimensional binary variable to the mth first-layer box, we con-

vert it to the associated decimal representation:

Therefore, an N-dimensional binary input vector x ∈ {0, 1}N to the FN on Fig. 3 can be 
represented as an M-dimensional vector X ∈ N

M:

(5)Decimal
(

[xim]
i=nm
i=1

)

= 1+

i=nm
∑

i=1

2i−1 × xim.

(6)X =

[

Decimal
(

[xi1]
i=n1
i=1

)

, . . . , Decimal
(

[xiM]
i=nM
i=1

)]

.

Fig. 3  A tree-structured FN F : x ∈ {0, 1}N �−→ y ∈ {0, 1} , which maps binary-represented data to binary 
output. The FN has M first-layer boxes, operating on separate subsets of the input variables: 
fm = Fm(Decimal

(

[xim]
i=nm
i=1

)

) . The output box in the second layer processes the outcomes of the first-layer 

boxes towards the overall output of the FN: y = FO(Decimal

(

[fi]
i=M
i=1

)

)
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For example, the function Fm of the mth first-layer box, receives a decimal value in 
Vm = {vkm}

k=2nm

k=1  , where the value of vkm is equal to k, and forwards a binary value fm to 
the output box:

where m ∈ {1, 2, . . . ,M} . Then, the output box receives an M-dimensional binary vari-
able [fi]i=M

i=1 ∈ {0, 1}M from all M first-layer boxes. After converting it to a decimal value, 
which is in VO = {vkM}k=2M

k=1  , the function of the output box FO returns the predicted 
label:

Learning strategy

NoiseCut’s learning strategy utilizes graph-theoretic methods to analyze training 
data, mapping the function identification of individual first-layer boxes in a given 
FN to solving max-cut problems. For each first-layer box of the FN, a conflict graph 
G(V,  E) is defined, enabling the use of graph-theoretic methods to deduce its I/O 
function.

In the conflict graph Gm(Vm,Em) of the mth first-layer box, Vm represents the deci-
mal values corresponding to the inputs of the box, and Em denotes an edge vkmvlm with 
weight wkl

m , indicating the dissimilarity between the function Fm of the box for the 
associated vertices vkm and vlm.

The primary goal of the learning strategy, preceding the function identification 
phase, is to determine how to ensure Fm(vkm)  = Fm(v

l
m) and how to establish edge 

weights wkl
m for a conflict graph. To tackle the former, let’s consider two input samples 

x and x′ , both belonging to the FN depicted in Fig. 3, where the inputs to all first-layer 
boxes except the mth first-layer box remain identical:

For vkm = Decimal
(

[xim]
i=nm
i=1

)

 and vlm = Decimal
(

[x′
i
m]

i=nm
i=1

)

 , Fm(vkm)  = Fm(v
l
m) if and 

only if x and x′ yield different labels, yx  = yx′ ; please refer to the proof provided in the 
supplementary information (Additional file 1).

Next, we assign weights to conflict graph edges. In a conflict graph G(V, E), edges 
E can be given weights W to signify the strength or importance of the connection 
between connecting vertices. In this context, each edge indicates differing outputs for 
associated input vertices in the first-layer box. To establish these weights, all 

(S
2

)

 pairs 
of input samples x and x′ in the training data {(xs, ys)|s = 1, . . . , S} are considered. If 
the selected pairs possess distinct labels and satisfy the condition in Eq. (9), the asso-
ciated edge’s weight in Gm(Vm,Em) is incremented by one.

In the example of the network structure of Fig.  3, we define a 2nm × 2nm weight 
matrix Wm for the mth first-layer box by:

(7)fm = Fm

(

Decimal
(

[xim]
i=nm
i=1

))

, xim , fm ∈ {0, 1}, Fm : Vm �−→ fm,

(8)y = FO

(

Decimal
(

[fi]
i=M
i=1

))

, fi , y ∈ {0, 1}, FO : VO �−→ y.

(9)∃! m ∈ {1, . . . ,M} ∋ [xim]
i=nm
i=1 �= [x′

i
m]

i=nm
i=1 .
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where X ,X ′ ∈ N
M are M-dimensional decimal representations of binary input vectors 

x, x′ ∈ {0, 1}N with labels yx , yx′ ∈ {0, 1} , δ is the Kronecker delta function, and ei are ele-
ments of the standard basis of vector space R2nm:

After determining the weight matrices of all M conflict graphs based on the training data 
at hand, we identify the function of the first-layer boxes by partitioning the vertices of 
the conflict graphs into two sets. The max-cut problem is used to find the best partition 
of the vertices that maximizes the sum of the weights of the edges connecting the two 
sets [35]: Let binary variables xi for every vertex in a graph G(V, E) be such that xu = 1 
if u ∈ V1 and xu = 0 if u ∈ V2 , and yuv be a binary variable indicating whether edge uv is 
cut by the partition (yuv = 1) or not (yuv = 0) . Then the mixed integer linear program-
ming (MILP) formulation of the max-cut problem is given by:

where n is the number of vertices in G(V, E), and wuv = 0 if and only if there is no edge 
between vertices u and v. The solution to above mentioned max-cut problem for a con-
flict graph Gm(Vm,Em) with a weight matrix Wm provides a function approximation for 
the mth first-layer box of the FN shown in Fig. 3; please refer to the proof provided in the 
supplementary information (Additional file 1).

NoiseCut employs an extension of the branch-and-bound (BB) algorithm, utilizing the 
CPLEX solver [36] to solve the MILP formulation of the specified max-cut problems for 
each first-layer box. To start, BB solves the “relaxed” problem, allowing yuv ∈ {0, 1} to 
take continuous values ∈ [0, 1] , providing a global lower bound on the objective func-
tion. If all the variables yuv have integer values (here 0 or 1), this solution becomes the 
global solution to the original problem. If there are non-integer values, BB branches by 
selecting one variable and creates two subproblems, fixing the variable to 0 in one and 1 
in the other. If an integer solution is found in either subproblem, the associated objective 
value becomes an upper bound. The best upper bound is updated if a smaller one is dis-
covered. BB proceeds iteratively by addressing non-integer variables, eliminating infeasi-
ble subproblems, and pruning subproblems in which the local lower bound exceeds the 

(10)

Wm = 02nm ,2nm +
∑

all pairs (x,x′)

|yx − yx′ | ×

i=M
∏

i=1 , i �=m

δ(X [i] − X
′[i])× eX [i]e

T
X ′[i],

(11)e1 = [1, 0, 0, . . . , 0]T , e2 = [0, 1, 0, . . . , 0]T , . . . , e2nm = [0, 0, 0, . . . , 1]T .

(12)max

n
∑

v=1

v−1
∑

u=1

wuv . yuv ,

(13)s.t. yuv − xu − xv ≤ 0, u, v = 1, 2, . . . , n, u < v,

(14)yuv + xu + xv ≤ 2, u, v = 1, 2, . . . , n, u < v,

(15)yuv ∈ {0, 1}, u, v = 1, 2, . . . , n, u < v,

(16)xu ∈ {0, 1}, u = 1, 2, . . . , n,
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best upper bound, until all subproblems are either solved or eliminated. This systematic 
process guarantees finding an optimal solution in a finite number of iterations in MILP 
problems.

Lastly, NoiseCut identifies the I/O function FO : VO �−→ y of the output box. As 
shown in Eq. (8), the output box receives the decimal representations of the outcomes 
of the first-layer boxes [fi]i=M

i=1  and assigns a binary label y ∈ {0, 1} to each of them. In 
order to identify the I/O function FO of the output box, NoiseCut uses a majority vot-
ing scheme as follows: inputs to the output box are in VO = {1, 2, 3, . . . , 2M} , and can 
be related to multiple input samples (xs, ys) in the training data set {(xs, ys)|s = 1, . . . , S} . 
For each element vkO in VO , the number of times that the associate sample xs in the train 
data set have labels ys equal 0 or 1 is counted. Then, the label with the most votes will be 
assigned as the outcome of the output box function for vkO.

Results
To showcase the utility of NoiseCut, we present the results of two use cases involv-
ing the classification of binary data with prior knowledge of features. The first use case 
demonstrates noise tolerance in the classification of binary data, while the second one 
focuses on classification with reduced training data. To evaluate NoiseCut’s performance 
for these two use cases, we conduct benchmarking tests against various supervised ML 
algorithms, namely Deep Neural Networks (DNNs) [37], eXtreme Gradient Boosting 
(XGBoost) [38], Support Vector Machine (SVM) [39], and Random Forest (RF) [40]. 
The entire analysis can be explored through interactive Python notebooks, conveniently 
named “Noise-tolerant classification.ipynb” and “Classification with reduced training 
data.ipynb”, accessible at the following link: https://​github.​com/​JRC-​COMBI​NE/​Noise​
Cut/​tree/​main/​docs/​noteb​ooks.

Noise‑tolerant classification

In the initial use case, we assess the performance of NoiseCut in classifying binary data 
with noisy labels, comparing it to different ML algorithms. To assess performance, 
we performed five experiments on each of the 30 generated synthetic datasets. These 
experiments aimed to measure classification metrics on testing data across various noise 
intensities in data labeling, maintaining a consistent 70% training data size across all 
cases.

We employed grid-search cross-validation [41] as a hyperparameter tuning method 
for DNN, XGBoost, and RF models. Specifically, we utilized 5-fold stratified cross-vali-
dation on shuffled training data. The performance of the selected hyperparameters and 
trained models was then evaluated on a dedicated test set that was kept separate during 
the training process. To prevent overfitting, we applied the early stopping method with 
a tunable waiting time, which was optimized as a hyperparameter for all the ML models.

The results presented in Table 1 showcase the remarkable noise tolerance of NoiseCut, 
as evidenced by its consistently high accuracy, recall, precision, F1 score, and Area 
Under the Receiver Operating Characteristic Curve (AUC-ROC) values for noise inten-
sities ranging from 0 to 10%. At a noise intensity of 0%, NoiseCut achieves perfect clas-
sification performance and excels at preserving high precision and recall. Even as noise 

https://github.com/JRC-COMBINE/NoiseCut/tree/main/docs/notebooks
https://github.com/JRC-COMBINE/NoiseCut/tree/main/docs/notebooks


Page 12 of 19Samadi et al. BMC Bioinformatics          (2024) 25:155 

intensifies to 10%, NoiseCut maintains a robust performance, achieving a classification 
accuracy of 0.887 ± 0.006, showcasing its effectiveness in handling overfitting.

In contrast, DNN, XGBoost, and SVM demonstrate a noticeable decline in perfor-
mance with increasing noise intensity. While they still achieve remarkable results at 
lower noise levels (e.g., 0% noise with a classification accuracy of 0.993 ± 0.011 for DNN, 
0.974 ± 0.008 for XGBoost, and 0.934 ± 0.009 for SVM), their performance reduces sig-
nificantly under the influence of noise in data labeling (e.g., 10% noise with a classifica-
tion accuracy of 0.807 ± 0.016 for DNN, 0.808 ± 0.008 for XGBoost, and 0.771 ± 0.009 
for SVM). Notably, the performance of RF underperformed the others, even at 0% noise, 
with a classification accuracy of 0.883 ± 0.010.

To quantitatively compare the performance of NoiseCut with other ML models, the 
Friedman test was employed, as it is recommended for comparing more than two clas-
sifiers over multiple datasets [42], which is the case in this study. In the Friedman test, 
each classifier is evaluated on the same dataset, and performance metrics are recorded. 
Subsequently, ranks are assigned to the classifiers based on their performance, and the 
average rank for each classifier is calculated across all performance metrics.

Table 1  The median with 95% CI of classification metrics for NoiseCut, DNN, XGBoost, SVM, and RF 
on testing data across different noise intensities in data labeling. The training data size was 70% for 
all the experiments

Noise Intensity Model Accuracy Recall Precision F1 Score AUC-ROC

0% NoiseCut 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

DNN 0.993 ± 0.011 0.998 ± 0.002 0.996 ± 0.006 0.993 ± 0.012 0.999 ± 0.001

XGBoost 0.974 ± 0.008 0.983 ± 0.019 0.975 ± 0.012 0.975 ± 0.015 0.998 ± 0.004

SVM 0.934 ± 0.009 0.941 ± 0.015 0.934 ± 0.014 0.929 ± 0.013 0.966 ± 0.009

RF 0.883 ± 0.010 0.905 ± 0.028 0.880 ± 0.016 0.890 ± 0.021 0.949 ± 0.009

2.5% NoiseCut 0.974 ± 0.001 0.980 ± 0.006 0.973 ± 0.002 0.975 ± 0.003 0.967 ± 0.003

DNN 0.933 ± 0.015 0.949 ± 0.034 0.922 ± 0.022 0.934 ± 0.031 0.955 ± 0.012

XGBoost 0.925 ± 0.008 0.941 ± 0.020 0.927 ± 0.012 0.931 ± 0.016 0.954 ± 0.006

SVM 0.874 ± 0.009 0.885 ± 0.017 0.879 ± 0.015 0.892 ± 0.015 0.896 ± 0.009

RF 0.857 ± 0.011 0.873 ± 0.030 0.857 ± 0.017 0.867 ± 0.022 0.908 ± 0.010

5% NoiseCut 0.947 ± 0.004 0.957 ± 0.013 0.950 ± 0.007 0.951 ± 0.008 0.934 ± 0.004

DNN 0.891 ± 0.016 0.883 ± 0.046 0.895 ± 0.036 0.892 ± 0.040 0.912 ± 0.019

XGBoost 0.873 ± 0.008 0.890 ± 0.022 0.880 ± 0.013 0.891 ± 0.017 0.909 ± 0.007

SVM 0.826 ± 0.011 0.857 ± 0.027 0.832 ± 0.018 0.838 ± 0.025 0.855 ± 0.019

RF 0.818 ± 0.010 0.844 ± 0.031 0.820 ± 0.015 0.834 ± 0.023 0.865 ± 0.009

7.5% NoiseCut 0.920 ± 0.005 0.924 ± 0.018 0.921 ± 0.011 0.917 ± 0.012 0.906 ± 0.006

DNN 0.845 ± 0.019 0.833 ± 0.048 0.828 ± 0.028 0.843 ± 0.032 0.864 ± 0.019

XGBoost 0.840 ± 0.009 0.868 ± 0.025 0.854 ± 0.014 0.858 ± 0.019 0.875 ± 0.008

SVM 0.805 ± 0.010 0.819 ± 0.023 0.804 ± 0.016 0.811 ± 0.019 0.824 ± 0.010

RF 0.798 ± 0.009 0.827 ± 0.033 0.803 ± 0.015 0.810 ± 0.024 0.828 ± 0.010

10% NoiseCut 0.887 ± 0.006 0.891 ± 0.022 0.892 ± 0.014 0.887 ± 0.017 0.872 ± 0.007

DNN 0.807 ± 0.016 0.830 ± 0.050 0.803 ± 0.034 0.824 ± 0.041 0.821 ± 0.018

XGBoost 0.808 ± 0.008 0.831 ± 0.026 0.814 ± 0.014 0.824 ± 0.019 0.839 ± 0.009

SVM 0.771 ± 0.009 0.786 ± 0.029 0.797 ± 0.016 0.784 ± 0.026 0.798 ± 0.011

RF 0.771 ± 0.010 0.780 ± 0.034 0.872 ± 0.015 0.773 ± 0.024 0.799 ± 0.011
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Table  2 presents the ranking of classifiers as determined by the Friedman test. The 
rankings are based on the average ranks of the algorithms across all testing datasets, 
considering noise intensities ranging from 0 to 10% and a training data size of 70% 
for all experiments. This analysis was conducted using the Statistical Tests for Algo-
rithms Comparison (STAC) Python Library [43]. The findings consistently demonstrate 
NoiseCut as the best-performing method.

Figure  4 visualizes the comparison of classification accuracy between NoiseCut and 
various ML models across the entire range of noise intensities in data labeling, span-
ning from 0 to 50%, i.e., flipping binary labels of 0–50% of randomly selected samples. 
Although NoiseCut, DNN, and XGBoost demonstrate near-perfect performance in 
the absence of noise in data labeling, as the intensity of noise increases, NoiseCut out-
performs the others. This underscores NoiseCut’s robustness in mitigating overfitting 
across varying levels of noise. It is noteworthy that, as the noise intensity reaches 50%, 
all models converge to a classification accuracy of around 50%, reflecting a scenario of 
random guessing.

Table 2  Classifier rankings based on average ranks across testing datasets and noise intensities (0% 
to 10%) highlighting NoiseCut as the best-performing method

Noise Intensity Model The Average 
Rank Across All 
Experiments

0% NoiseCut 1.540

DNN 2.670

XGBoost 2.930

SVM 3.466

RF 4.393

2.5% NoiseCut 1.490

DNN 2.340

XGBoost 2.753

SVM 3.416

RF 5.000

5% NoiseCut 1.506

DNN 2.316

XGBoost 2.730

SVM 3.446

RF 5.000

7.5% NoiseCut 1.543

DNN 2.473

XGBoost 2.730

SVM 3.253

RF 5.000

10% NoiseCut 1.553

DNN 2.503

XGBoost 2.676

SVM 3.266

RF 5.000
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Fig. 4  Classifier accuracy on testing datasets comparison of NoiseCut with various ML models for classifying 
binary data across the entire spectrum of noise intensities, with a consistent 70% training data size. NoiseCut 
outperforms the others as noise intensifies, demonstrating superior overfitting mitigation across varying 
levels of noise compared to the early stopping approach used by the other ML models

Fig. 5  a. Comparison of ROC curves illustrating the classification performance of NoiseCut alongside other 
ML models on testing datasets. b. Comparison of computational time between NoiseCut and the other ML 
models across varying sample sizes. The evaluation is conducted with only 30% of the training data available 
and 5% noise intensity in the data labeling
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Classification with reduced training data

In our second use case, we aim to showcase NoiseCut’s effectiveness in classifying 
binary-represented data when training data is limited. For this purpose, we employed 
the 30 synthetic datasets and evaluated NoiseCut’s performance against DNN, XGBoost, 
and RF models.

In Fig. 5a, we compare the ROC curves of NoiseCut with those of other ML models, 
generated using testing datasets for the classification of synthetic datasets. This evalua-
tion was conducted with only 30% of the training data available and a 5% noise intensity 
in the data labeling. NoiseCut demonstrates a superior performance with an AUC-ROC 
of approximately 0.91. In comparison, DNN achieves an AUC-ROC of 0.79, XGBoost 
follows with an AUC-ROC of around 0.82, SVM trails with an AUC-ROC of 0.61, and 
RF records an AUC-ROC of 0.60.

Figure 5b illustrates the comparison of computational time between NoiseCut and the 
other ML models across various sample sizes. The computation time accounts for model 
training and hyperparameter optimization for each dataset. The results suggest that the 
computational time of NoiseCut scales comparably with other models as the sample size 
increases within the datasets explored in this study.

These results indicate NoiseCut’s noteworthy performance in classifying binary data 
even when provided with limited training data. This advantage, highlighting the extrapo-
lability of our method, primarily arises from the simplified structure of the FNs employed 
within NoiseCut. These FNs are designed to adapt to the synthetic data’s structure based 
on our assumed prior knowledge. For more in-depth technical discussion, please refer to 
the supplementary information (Additional file 1).

Discussion
Although NoiseCut is compatible with real-world data, the examples and results show-
cased in this study utilize synthetic datasets. This choice is made due to the inherent 
noise present in real-world datasets, which constrains the systematic benchmarking of 
noise-free scenarios. Moreover, uncertainties in the prior knowledge of input features 
in real data introduce complexities that hinder a controlled comparison of NoiseCut’s 
noise-mitigating capabilities with other machine learning models. Nevertheless, validat-
ing NoiseCut’s efficacy on real-world datasets, particularly those with prior knowledge 
fitting a tree-structure FN with minimal uncertainty, remains an important pursuit, pre-
senting an intriguing avenue for future research.

The noise-tolerant classification results highlight the synergy between NoiseCut’s 
hybrid structure and the utilization of defined max-cut problems for function identi-
fication. This combination proves to be more effective in preventing overfitting when 
compared to the early stopping technique used in various ML models, especially in the 
classification of binary data with corrupted labels. On one hand, the reduced complexity 
of NoiseCut’s hybrid structure, in contrast to a pure black-box model, serves as an inher-
ent form of regularization. This can be construed as implementing a deliberate drop-out 
strategy, leveraging prior knowledge of input features to retain essential parameters for 
the model’s learning process while discarding non-essential ones.

On the other hand, NoiseCut excels in handling noisy labeling due to its alignment 
with the fundamental characteristics of max-cut problems. Specifically within the 
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learning strategy of NoiseCut, a conflict graph is associated with each box in an FN. 
Pairs of samples from the training data are selected, and if they possess distinct labels 
and satisfy the condition outlined in Eq. (9), the weight of the corresponding edge in the 
conflict graph is incremented (Eq. 10 summarizes the whole weight association strategy 
for the example of the network structure of Fig. 3). This weight association indicates that 
connections between vertices reflect differences in the output of the box function for 
those respective inputs. Subsequently, solutions to the max-cut problem on the conflict 
graph are utilized to approximate the box function. This involves identifying the optimal 
partitioning of vertices into two distinct sets, with the objective of maximizing the total 
weights associated with the cut. Notably, this objective intentionally disregards non-
essential or weak connections between vertices. By strategically excluding these non-sig-
nificant connections, often arising from relatively infrequent configurations due to noisy 
labels, NoiseCut effectively achieves noise filtration.

In a final note, the tree structure of the FN employed in NoiseCut inherently enhances 
interpretability compared to complex ML models. In contrast to other tree-based models 
like XGBoost and Random Forest, where, despite the interpretability of individual trees, 
the ensemble nature may complicate the overall decision-making process, NoiseCut’s 
final predictions involve aggregating several pre-defined first-layer boxes using prior 
knowledge on features and their interactions. It remains clear within NoiseCut’s learning 
strategy which aspect or subset of input features each black box evaluates towards the 
final decision made by the output box.

Conclusion
We present NoiseCut, an open-source software implemented in Python that facilitates 
structured hybrid modeling for binary data classification. Binary data and their classi-
fication are of eminent interest in medical and clinical applications. These applications 
often face challenges arising from inherent uncertainties in the data and limitations in 
the available training data resulting in effective noise in the data. By leveraging prior 
knowledge of features, NoiseCut promises reduced training data demand and enhanced 
robustness against noise in data labeling. Additionally, NoiseCut introduces a novel 
approach to avoid overfitting by integrating solutions to max-cut problems into the 
learning strategy. Max-cut solutions prioritize excluding non-essential or weak connec-
tions between vertices, filtering out infrequent noisy observations.

The learning strategy introduced by NoiseCut has certain limitations, such as the 
requirement for prior knowledge on input features, the ability to classify datasets only 
with binary labels, and the exponential increase in computation time required for exact 
solutions to max-cut problems. Tackling these challenges represents a potential area for 
future research. Utilizing Large Language Models could address the requirement for 
prior knowledge by capturing clinical or medical relationships in data features. Extend-
ing the application of NoiseCut to multi-class datasets reflects the challenges encoun-
tered when transitioning from solving a max-cut problem in a graph, which is known to 
be NP-hard, to addressing a multi-coloring graph problem, known to be NP-complete. 
The computational demands associated with solving max-cut problems can be addressed 
by leveraging the exponential computing power of quantum learning machines.
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Availability and requirements
Project name: NoiseCut
Project home page: https://​pypi.​org/​proje​ct/​noise​cut
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python(≥3.9), numpy, pandas, scipy, cplex, docplex
License: GNU GPL v3
Any restrictions to use by non-academics: none
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AUC-ROC	� Area under the receiver operating characteristic curve
CI	� Confidence interval
DNNs	� Deep neural networks
FN	� Functional network
ICD	� International classification of diseases
Max-cut	� Maximum cut
MILP	� Mixed integer linear programming
ML	� Machine learning
NoiseCut	� Noise-tolerant classification of binary data using prior knowledge integration and max-cut solutions
RF	� Random Forest
SHM	� Structured hybrid model
STAC​	� Statistical tests for algorithms comparison
SVM	� Support vector machine
XGBoost	� Extreme gradient boosting
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