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Abstract 

Background:  MicroRNAs play a critical role in regulating gene expression by bind-
ing to specific target sites within gene transcripts, making the identification of micro-
RNA targets a prominent focus of research. Conventional experimental methods 
for identifying microRNA targets are both time-consuming and expensive, prompting 
the development of computational tools for target prediction. However, the existing 
computational tools exhibit limited performance in meeting the demands of practical 
applications, highlighting the need to improve the performance of microRNA target 
prediction models.

Results:  In this paper, we utilize the most popular natural language processing 
and computer vision technologies to propose a novel approach, called TEC-miTarget, 
for microRNA target prediction based on transformer encoder and convolutional neu-
ral networks. TEC-miTarget treats RNA sequences as a natural language and encodes 
them using a transformer encoder, a widely used encoder in natural language pro-
cessing. It then combines the representations of a pair of microRNA and its candidate 
target site sequences into a contact map, which is a three-dimensional array similar 
to a multi-channel image. Therefore, the contact map’s features are extracted using 
a four-layer convolutional neural network, enabling the prediction of interactions 
between microRNA and its candidate target sites. We applied a series of comparative 
experiments to demonstrate that TEC-miTarget significantly improves microRNA target 
prediction, compared with existing state-of-the-art models. Our approach is the first 
approach to perform comparisons with other approaches at both sequence and tran-
script levels. Furthermore, it is the first approach compared with both deep learning-
based and seed-match-based methods. We first compared TEC-miTarget’s performance 
with approaches at the sequence level, and our approach delivers substantial improve-
ments in performance using the same datasets and evaluation metrics. Moreover, we 
utilized TEC-miTarget to predict microRNA targets in long mRNA sequences, which 
involves two steps: selecting candidate target site sequences and applying sequence-
level predictions. We finally showed that TEC-miTarget outperforms other approaches 
at the transcript level, including the popular seed match methods widely used in previ-
ous years.
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Conclusions:  We propose a novel approach for predicting microRNA targets 
at both sequence and transcript levels, and demonstrate that our approach outper-
forms other methods based on deep learning or seed match. We also provide our 
approach as an easy-to-use software, TEC-miTarget, at https://​github.​com/​tingp​eng17/​
TEC-​miTar​get. Our results provide new perspectives for microRNA target prediction.

Keywords:  MicroRNAs, miRNA targets, Target prediction, Deep learning, Transformer 
encoder, Convolutional neural networks

Background
MicroRNAs (miRNAs) are a class of short non-coding RNAs consisting of approxi-
mately 22 ribonucleotides. They serve as crucial regulators in gene expression by bind-
ing to specific transcripts of target genes, with binding sites referred to as microRNA 
target sites (miRNA targets). The principal mechanism through which miRNAs regu-
late their targets involves the binding of miRNAs to messenger RNAs (mRNAs), which 
subsequently inhibits the translation process, leading to reduced protein synthesis and 
ultimately down-regulated gene expression [1]. For instance, MicroRNA-138 and Micro-
RNA-25 have been observed to down-regulate the expression of mitochondrial calcium 
uniporter, contributing to the development of pulmonary arterial hypertension cancer 
phenotype [2]. Similarly, Hypoxia-induced MIR155 has been found to impact an increas-
ing number of human diseases by targeting multiple players in the MTOR pathway [3]. 
Collectively, miRNAs play a pivotal role in post-translational gene regulation underscor-
ing the importance of elucidating their functional significance, with the identification of 
miRNA targets serving as a key task.

CLIPL (crosslinking and immunoprecipitation followed by RNA ligation) [4] and 
CLASH (crosslinking, ligation, and sequencing of hybrids) [5] techniques have been 
employed for the experimental identification of miRNA targets. However, the consider-
able cost and time overhead required by these methods greatly reduced their practical 
applications. Computational tools for predicting miRNA targets have been developed 
shortly after miRNAs were widely identified in the human genome as alternative 
approaches.

In the early stages, heuristic methods [6] such as PITA [7], mirSVR [8], miRDB 
[9], microT [10] and Targetscan [11, 12] were used for miRNA target prediction. 
These methods usually adopt biological or physicochemical targeting features: the 
sequence complementarity between a miRNA and its target sites, the sequence con-
servation across species, the change in Gibbs free energy, and the site accessibility in 
their secondary structure. Subsequently, the advent of deep learning led to substan-
tial improvements in building computational tools for miRNA target prediction. For 
instance, DeepMirTar [13], based on the stacked denoised autoencoder (SdAE) [14], 
utilizes 750 features to characterize miRNAs and their candidate target sites (CTS), 
incorporating expert features such as seed match type and free energy. Another 
model, miRAW [15], employs an eight-layer deep artificial neural network [16], with 
the first five layers dedicated to extracting accessibility energy features and the final 
three layers focused on prediction. Furthermore, miTAR [17] is a hybrid miRNA 
target prediction model composed of six layers, incorporating both convolutional 
neural networks (CNNs) [18] and the bidirectional RNN (BiRNN) [19]. Meanwhile, 
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GraphTar [20] approaches miRNA target prediction as a graph classification prob-
lem and employs graph neural networks (GNNs) [21] to execute the prediction task. 
Additionally, deepTarget [22] employs RNNs [19] and introduces an end-to-end 
learning framework for miRNA target prediction, and deepTargetPro [23] (referred 
to as deepTargetPro for convenience, as it is an improved version of deepTarget) uti-
lizes a one-dimensional convolutional neural network [18] and experimental negative 
data to predict microRNA targets, instead of mock data. Moreover, TargetNet [24] 
adopts a relaxed CTS selection criteria and integrates the ResNet [25] to capture the 
miRNA–CTS interactions. However, these methods mainly focus on the seed-match 
features of a miRNA and the CTSs of a mRNA while neglecting the whole sequences, 
making their performances limited because the structure, energy, and other informa-
tion of a molecule are determined by its constituent sequence.

In recent years, deep learning has undergone remarkable advancements, with convo-
lutional neural networks (CNNs) [18], recurrent neural networks (RNNs) [19], Trans-
former [26], and other neural network architectures exhibiting exceptional performance 
across diverse domains. CNNs excel at extracting key information from images while 
eliminating redundancy, making them widely adopted for image feature extraction [27]. 
RNNs and Transformers are extensively utilized in temporal sequence processing tasks, 
such as machine translation and speech recognition. Comparatively, Transformers lev-
erage self-attention mechanisms to extract superior features when compared to RNNs. 
Additionally, the Transformer architecture replaces sequential computation in temporal 
sequences with parallel computation, resulting in significant improvements in training 
speed [28].

RNA sequences consist of four distinct ribonucleotides, each characterized by a spe-
cific base: adenine (A), guanine (G), cytosine (C), and uracil (U). These ribonucleotides 
are arranged in a specific order, giving rise to the unique sequence of RNAs. As a result, 
RNA sequences can be regarded as a form of natural language, and their representations 
can be obtained through the application of natural language processing methods. Similar 
to sequence-based natural language representation, which embodies the structural and 
semantic information of sentences, these sequence-based representations also contain 
the structure, energy, and conservation information for RNAs. Afterward, the fusion of 
representations for a given miRNA and its candidate target site (CTS) can be achieved 
by constructing a three-dimensional array, akin to a multi-channel image. Consequently, 
techniques derived from computer vision can be employed for processing and analyzing 
this three-dimensional array.

In this study, we present a novel model, TEC-miTarget, for predicting miRNA tar-
gets by leveraging the power of the transformer encoder [26] and convolutional neural 
networks (CNNs). TEC-miTarget employs a transformer encoder to capture meaning-
ful representations of both miRNA and its candidate target site (CTS) sequences. These 
representations are then fused to generate a contact map, which is subsequently fed into 
CNNs for feature extraction. Finally, TEC-miTarget predicts whether the CTS sequence 
is a miRNA target based on the extracted features. Through a comprehensive series 
of comparative experiments against state-of-the-art models based on deep learning 
and seed match, we demonstrate that TEC-miTarget achieves significant performance 
improvements at both the sequence level and transcript level.
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Methods
Datasets

We obtained three datasets from the studies of miRAW, DeepMirTar, and deepTarget-
Pro. For convenience, we will refer to these datasets as the miRaw dataset, DeepMir-
Tar dataset, and deepTargetPro dataset, respectively. All positive pairs for the three 
databases, along with the negative pairs for the miRAW and deepTargetPro datasets, 
are determined through experimental methods. However, for DeepMirTar, the nega-
tive pairs are generated by shuffling the real mature miRNAs. The miRaw dataset and 
DeepMirTar dataset contain only sequence-level (miRNA-CTS sequences) pairs, while 
the deepTargetPro dataset also includes transcript-level (miRNA-transcript sequences) 
pairs. It is important to highlight that we have implemented the dataset partition-
ing method described in the corresponding works to ensure fair comparisons, and we 
ensure that there is no duplication of data between the training set and the test sets to 
ensure the integrity of the evaluation process.

The miRAW dataset consists of two parts. The first part is a segmented dataset con-
sisting of a training set with 40,096 pairs (miRAW training set), a validation set with 
10,025 pairs (miRAW validation set), and a test set with 12,532 pairs (miRAW test set). 
In the segmented dataset, the number of positive pairs is approximately the same as the 
number of negative pairs. Additionally, there is an independent test set with 929 positive 
pairs and 890 negative pairs (miRAW independent test set).

The DeepMirTar dataset also has two parts. The segmented dataset contains a training 
set with 4964 pairs (DeepMirTar training set), a validation set with 1242 pairs (Deep-
MirTar validation set), and a test set with 1552 pairs (DeepMirTar testing set). Similar to 
the miRAW dataset, the number of positive pairs is approximately the same as the num-
ber of negative pairs in the segmented dataset. Furthermore, there is an independent test 
set with 48 positive pairs (DeepMirTar independent test set).

The deepTargetPro dataset comprises a sequence-level dataset consisting of 33,142 
positive pairs and 32,284 negative pairs (deepTargetPro training set). Additionally, there 
are ten independent transcript-level test sets available, named deepTargetPro test sets 
1–10.

The miRAW dataset and DeepMirTar dataset are utilized to assess the performance of 
TEC-miTarget at the sequence level. Models with the best performance on the valida-
tion sets are then evaluated on the corresponding test sets and independent test sets, 
following the methodologies described in the respective studies.

The deepTargetPro dataset is employed to assess the performance of TEC-miTarget 
at the transcript level. For this evaluation, the sequence-level dataset (deepTargetPro 
training set) is utilized for model training. Subsequently, the performance of the trained 
model is evaluated using ten independent transcript-level test sets. Specifically, CTSs 
of a miRNA in a transcript are collected, and then TEC-miTarget predicts whether the 
miRNA has interactions with the CTSs.

The architecture of TEC‑miTarget

TEC-miTarget is a deep learning model consisting of three key components: RNA 
sequence representation, representation fusion, and interaction prediction. The RNA 



Page 5 of 18Yang et al. BMC Bioinformatics          (2024) 25:159 	

sequence representation section encodes miRNA and CTS sequences using a base 
encoder, positional encoder, and transformer encoder, resulting in two groups of 
representations. In the representation fusion section, these two representations are 
transformed into appropriate dimensions using a transform module and fused into a 
contact map using the RNA base contact module. Lastly, the contact map’s features 
are extracted by a CNN module, and the interaction possibility of the miRNA-CTS 
pair is calculated using the probability calculation module. Refer to Fig. 1 for a graph-
ical representation of the model.

Base encoder

The base encoder converts an RNA sequence of length l  into a tensor of size l × d0 
(denoted as X ∈ Rl×d0 ) using an embedding layer [29]. In this process, the four bases 
of RNAs (1: A, 2: G, 3: C, 4: U) of RNAs, and zero padding are encoded, requiring 
a dictionary of embeddings with a size of 5. Furthermore, the embedding vector’s 
dimension is set as d0 to match the dimension of the transformer encoder.

Positional encoder

The positional encoder [26] encodes the location information of RNA bases as 
PX ∈ Rl×d0 , and the vector of the i-th base is calculated as follows:

where i = 1, 2, · · · , l , j = 1, 2, · · · , d0/2.

Transformer encoder

The transformer encoder is composed of nl encoder layers with nh attention heads. 
The dimension of the transformer encoder is d0 , the feedforward module has a 
dimension of 2d0 , and the dropout parameter is set pdropout . The transformer encoder 
takes the sum of X and PX as the input, and produces the output (represented as T  ) 
belonging to Rl×d0.

PX i, 2j = sin(i/100002j/d0)

PX
(

i, 2j + 1
)

= cos(i/100002j/d0)

Fig. 1  The architecture of TEC-miTarget
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The transform module

The transform module consists of a linear layer [30], followed by an activation function 
ReLU (rectified linear units) [31], and a dropout layer [32]. The output of the transform 
module is calculated as:

where W ∈ Rd0×d1 and b ∈ Rd1 represent the learned weights and biases respectively. The 
ReLU function, also known as the rectified linear unit, is a non-linear activation func-
tion defined as ReLU(x) = max(0, x) . In addition, the term Dropout(X , pdropout) refers to 
the process of randomly setting a fraction pdropout(pdropout ∈ [0, 1]) of values in X to be 
zero during training.

The RNA base contact module

After processing a pair of miRNA-CTS sequences with the base encoder, positional 
encoder, transformer encoder, and transform module, their representations are obtained 
as T1′ ∈ Rm×d1 ,T2′ ∈ Rn×d1 , which are also the inputs of the RNA base contact module. 
To calculate the features ( diff ,mul ) for the kth dimension, the features between the ith 
base in miRNA and the  jth base in CTS, namely diffk ,i,j and mulk ,i,j , are computed as:

where i = 1, · · · ,m, j = 1, · · · , n, k = 1, · · · , d1 . The contact_map of the pair of miRNA-
CTS is the concatenation of diff  and mul , resulting in the contact_map ∈ R2d1×m×n . 
These two types of features have been utilized in prior research and demonstrated prom-
ising performance [33].

The CNN module

The CNN module primarily comprises four convolutional layers, each accompanied by 
a batch normalization layer and a nonlinear activation function. The specific parameters 
for the convolutional layers are provided in Table 1.

The expression ks//2 denotes the quotient obtained when ks is divided by 2. The base 
interaction probability map ( p_map ∈ Rm×n ) is computed after processing the contact 
map through the CNN module.

T
′

i = Dropout
(

ReLU(TiW + b), pdropout
)

, i = 1, 2, · · · , l

diffk ,i,j =
∣

∣

∣
T

′

1i,k − T
′

2j,k

∣

∣

∣

mulk ,i,j = T
′

1i,k × T
′

2j,k

Table 1  The parameters of four layers in the CNN module

in_channels out_channels kernel_size Stride Padding Activation function

layer 1 2d1 d1 ks 1 ks//2 ReLU(x)

layer 2 d1 d1/2 ks 1 ks//2 ReLU(x)

layer 3 d1/2 d1/4 ks 1 ks//2 ReLU(x)

layer 4 d1/4 1 ks 1 ks//2 σ(x) = 1

1+e−x
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The probability calculation module

In this module, a global pooling operation is applied to p_map , which is calculated as

where

mean
(

pmap

)

 , var
(

pmap

)

 represent the mean and variance of pmap , respectively. γ and η 
are learned parameters, while p0 is a hyperparameter with a value ranging between 0 
and 1.

Evaluation metrics of the model

Given the labels and predictions of miRNA-CTS sample pairs, the true positive, false posi-
tive, true negative, and false negative samples are defined in Table 2:

Accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value 
(NPV), and F1 score are common metrics used for evaluating classification problems, and 
they are calculated as follows:

Q = ReLU(p_map−mean(p_map)− γ × var(p_map))

pQ =

∑m
i=1

∑n
j=1Qi,j

∑m
i=1

∑n
j=1sign(Qi,j)+ 1

p = σ(pQ, η, p0)

σ
(

pQ, η, p0
)

=
1

1+ e−η(pQ−p0)

sign(x) =







1, x > 0

0, x = 0

−1, x < 0

Accuracy =
TP + TN

TP + FP + TN + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Table 2  The definitions of TP, FP, TN, FN

Predictions Labels

True False

True TP FP

False FN TN
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AUC and AUPR (area under the precision-recall curve) are additional metrics com-
monly used in classification tasks. AUC represents the area under the receiver operating 
characteristic (ROC) curve, whereas AUPR denotes the area under the precision-recall 
curve.

Training the model

The base training objective is the binary cross entropy (BCE) loss [34] which is calcu-
lated by comparing the predicted probabilities generated by the model with the true 
binary labels. The model training is conducted using Python 3.8 and PyTorch 1.13.1 on 
an NVIDIA Tesla V100 with 32 GB of memory. The model weights are initialized with 
a random seed of 1234. Training is performed for 40 epochs using a batch size of 32 
and the Adam optimizer with an initial learning rate of 0.0001. The model’s performance 
is evaluated using the validation set during training, and the best model is determined 
based on the highest score calculated as follows:

Four hyperparameters, namely nh , d1 , ks , and p0 were determined as 1, 256, 9, and 0.5, 
respectively, through experimental analysis. The remaining hyperparameters were set as 
follows, following the convention of classic models: d0 = 512 , nl = 6 , and pdropout = 0.

Predicting miRNA‑RNA interaction at two levels

The primary function of TEC-miTarget is to predict the interaction between a pair of 
miRNA-CTS sequences, which is referred to as sequence-level prediction. Using the 
sequence-level prediction, the transcript-level prediction is subsequently computed as:

1.	 Given a pair of miRNA-transcript sequences, arrange the miRNA from 5’-end to 
3’-end, and the transcript from 3’-end to 5’-end.

2.	 Calculate the length of the miRNA (represented as l).
3.	 Identify nc CTS sequences using a 13-mer-m9 approach: select the Watson–Crick 

pairings of the first 13 bases in the miRNA as the seedsequence , find nc short 
sequences with an edit distance of no more than 4 from the seedsequence.

4.	 Expand the short sequences into CTS sequences using the following method: start 
from the 5’-ends of each short sequence, expand l bases from 3’-end to 5’-end until 
reaching the 5’-end, and expand 2l bases from 5’-end to 3’-end until reaching the 
3’-end.

PPV =
TP

TP + FP

NPV =
TN

TN + FN

F1score =
2TP

2TP + FP + FN

score = Accuracy+ Sensitivity+ Specificity+ PPV + NPV + F1score
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5.	 If nc = 0 : The pair of miRNA-transcript has no interactions. Else: form nc pairs of 
miRNA-CTS sequences for the transcript, and predict the nc pairs of miRNA-CTS 
sequences using TEC-miTarget and get nc predictions, determine the largest predic-
tion value (represented as pmax ) among the predictions, and go to the next step.

6.	 If pmax ≥ 0.5 : The pair of miRNA-transcript has an interaction. Else: The pair of 
miRNA-transcript has no interactions.

where the edit distance is defined as the minimum number of insertions, deletions, or 
substitutions required to transform a sequence into the seedsequence . Figure 2 illustrates 
an example of a candidate target site, in which the symbols  and × represent whether the 
base pair satisfies the Waston-Crick condition [35] or not, respectively.

Results
Hyperparameter tuning experiments for TEC‑miTarget

The TEC-miTarget hyperparameters were optimized using the miRAW dataset. Mod-
els with different hyperparameter configurations were trained on the miRAW training 

Fig. 2  The candidate target site (CTS) of size 3 l  for a given transcript sequence

Table 3  Hyperparameter tuning experiments

The bold font indicates the best performance

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 score (%) Score

nh

1 96.47 95.85 97.10 97.06 95.90 96.45 5.7883
2 94.89 94.47 95.30 95.25 94.53 94.86 5.6930

4 96.46 95.43 97.48 97.42 95.53 96.42 5.7874

8 93.74 94.71 92.78 92.90 94.62 93.80 5.6255

d1

128 95.33 95.72 94.94 94.98 95.69 95.35 5.7201

256 96.47 95.85 97.10 97.06 95.90 96.45 5.7883
512 93.21 93.60 92.82 92.87 93.56 93.23 5.5929

1024 96.31 96.07 96.56 96.53 96.10 96.30 5.7787

ks

1 87.47 93.26 81.69 83.57 92.39 88.15 5.2653

5 96.28 96.20 96.36 96.35 96.21 96.28 5.7768

9 96.47 95.85 97.10 97.06 95.90 96.45 5.7883
13 95.28 95.46 95.10 95.11 95.45 95.29 5.7169

p0

0.25 93.13 94.97 91.29 91.59 94.78 93.25 5.5901

0.5 96.47 95.85 97.10 97.06 95.90 96.45 5.7883
0.75 95.91 94.79 97.03 96.96 94.91 95.86 5.7546

1.0 95.97 96.50 95.44 95.48 96.47 95.99 5.7585
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set, and the corresponding best models were selected based on their performance on 
the miRAW validation set. Afterward, the selected models were then evaluated using 
the miRAW test set. At the start, the hyperparameters d1 , ks , and p0 were initialized to 
256, 9, and 0.5, respectively, and the hyperparameter nh was optimized in the first step. 
Table 3 presents the evaluation of models using score values, and from these results, the 
optimal value for nh was determined to be 1. Subsequently, the parameters were adjusted 
sequentially, building upon the previous step. Ultimately, the best combination of hyper-
parameters was determined as nh = 1, d1 = 256, ks = 9 , and p0 = 0.5.

TEC‑miTarget outperforms the state‑of‑the‑art methods

TEC-miTarget was trained using the optimal hyperparameters and compared with 
the state-of-the-art methods. Specifically, TEC-miTarget was compared with miRAW, 
DeepMirTar, miTAR, and GraphTar at the sequence level, and compared with deepTar-
get, deepTargetPro, TargetNet, PITA, mirSVR, miRDB, microT, and Targetscan at the 
transcript level.

TEC‑miTarget outperforms the state‑of‑the‑art methods at the sequence‑level prediction

In this section, we evaluated the performance of TEC-miTarget at the sequence level, 
compared to miRAW, DeepMirTar, miTAR, and GraphTar. We first assessed the per-
formance of the models on the miRAW dataset. Table  4 and Additional file  1: Figure 
S1A demonstrate the superior performance of TEC-miTarget across all evaluation met-
rics on the miRAW test set. Specifically, TEC-miTarget achieves the following percent-
age improvements for each metric: accuracy (+ 1.76%), sensitivity (+ 1.11%), specificity 
(+ 2.43%), PPV (+ 2.31%), NPV (+ 1.25%), and F1 score (+ 1.71%), compared to the best 
performance of the other four models. Moreover, as shown in Table 4 and Additional 
file 1: Figure S1B, TEC-miTarget surpasses the maximum values of the other four models 
on the miRAW independent test set across most metrics, including accuracy (+ 1.52%), 
specificity (+ 3.32%), NPV (+ 0.01%), and F1 score (+ 0.36%).

Table 4  Performance comparison between TEC-miTarget, miRAW, DeepMirTar, miTAR, and GraphTar 
on the miRAW dataset

The bold font indicates the best performance

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 score (%)

miRAW test set

miRAW​ 93.50 93.50 93.80 93.50 93.20 93.50

DeepMirTar 87.50 87.50 87.50 87.67 87.33 87.59

miTAR​ 93.94 93.94 93.94 94.03 93.85 93.98

GraphTar 94.80 94.80 94.80 94.87 94.72 94.83

TEC-miTarget 96.47 95.85 97.10 97.06 95.90 96.45
miRAW independent 
test set

miRAW​ 91.30 93.10 36.30 97.80 15.00 95.40

DeepMirTar 86.54 86.55 86.53 87.02 86.04 86.78

miTAR​ 93.79 93.81 93.76 94.01 93.55 93.91

GraphTar 94.28 94.26 94.29 94.52 94.02 94.39

TEC-miTarget 95.71 94.08 97.42 97.44 94.03 95.73
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Then, we compared the performance of the models on the DeepMirTar dataset. As 
shown in Table  5 and Additional file  1: Figure S1C, TEC-miTarget also demonstrates 
superior performance across all metrics. On the DeepMirTar test set, TEC-miTar-
get outperforms the best performance of the other four models in terms of accuracy 
(+ 4.21%), sensitivity (+ 3.95%), specificity (+ 3.86%), PPV (+ 3.99%), NPV (+ 4.09%), 
and F1 score (+ 4.19%). Moreover, on the DeepMirTar independent test set, TEC-miTar-
get showcases significant improvements in accuracy (+ 8.33%) and sensitivity (+ 8.33%). 
It is worth noting that the pre-trained word2vec model of GraphTar fails to encode some 
sequences in the DeepMirTar independent test set. Consequently, we had to label the 
corresponding samples as false negative pairs, which led to GraphTar exhibiting poor 
performance on the DeepMirTar independent test set.

TEC‑miTarget outperforms the state‑of‑the‑art methods at the transcript level prediction

TEC-miTarget was also evaluated at the "transcript level prediction". As shown in 
Table  6 and Additional file 1: Figure S2, TEC-miTarget consistently demonstrates sta-
ble and commendable performance across ten deepTargetPro test sets, highlighting the 
excellent generalization ability of TEC-miTarget.

We first compared TEC-miTarget’s performance with existing deep learning 
approaches, such as deepTarget, deepTargetPro, and TargetNet. The results, as shown in 
Table 7, illustrate that TEC-miTarget outperforms deepTargetPro across all evaluation 
metrics on ten test sets. Specifically, TEC-miTarget achieves the following percentage 
increases: accuracy (+ 1.93%), sensitivity (+ 3.05%), specificity (+ 0.91%), PPV (+ 1.50%), 
NPV (+ 2.33%), and F1 score (+ 2.30%), compared to deepTargetPro. Furthermore, TEC-
miTarget significantly outperforms deepTarget in terms of accuracy, sensitivity, NPV, 
and F1 score, and surpasses TargetNet in terms of accuracy, specificity, PPV, and F1 
score. Overall, TEC-miTarget demonstrates the best F1 score, which is a more important 

Table 5  Performance comparison between TEC-miTarget, miRAW, DeepMirTar, miTAR, and GraphTar 
on the DeepMirTar dataset

The bold font indicates the best performance

NA represents that the value can’t be calculated because the corresponding dataset consists of only positive pairs

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 score (%)

DeepMirTar test set

miRAW​ 90.22 90.25 90.20 90.25 90.18 90.25

DeepMirTar 93.48 92.35 94.79 94.64 92.56 93.48

miTAR​ 92.74 92.74 92.74 92.80 92.67 92.77

GraphTar 92.22 92.21 92.23 92.26 92.16 92.23

TEC-miTarget 97.42 96.40 98.45 98.42 96.46 97.40
DeepMirTar independent 
test set

miRAW​ 40.63 40.63 NA NA NA NA

DeepMirTar 50.00 50.00 NA NA NA NA

miTAR​ 75.00 75.00 NA NA NA NA

GraphTar 34.72 34.72 NA NA NA NA

TEC-miTarget 81.25 81.25 NA NA NA NA
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metric reflecting the comprehensive performance of the models. These results demon-
strate the superior performance of TEC-miTarget.

Then, we compare TEC-miTarget’s performance with other widely used seed-match-
based methods (such as PITA, mirSVR, miRDB, microT, and Targetscan) in the past 
decades. As demonstrated in Table  8, TEC-miTarget stands out as the top performer. 
Specifically, TEC-miTarget significantly outperforms other models across various met-
rics including accuracy, sensitivity, PPV, NPV, and F1 score. In contrast, while miRBD 
excels in specificity, it falls short in terms of other performance metrics.

Table 7  Average performance comparison between the deep learning approaches and TEC-
miTarget on ten deepTargetPro test sets

The bold font indicates the best performance

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 score (%)

deepTarget 65.21 34.77 93.54 83.32 60.64 49.04

deepTargetPro 78.04 75.51 80.38 78.17 77.92 76.81

TargetNet 72.61 95.08 51.67 64.69 91.90 76.99

TEC-miTarget 79.97 78.56 81.29 79.67 80.25 79.11

Table 8  Average performance comparison between the seed-match-based methods and TEC-
miTarget on ten deepTargetPro test sets

The bold font indicates the best performance

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 score (%)

PITA 50.53 13.65 87.41 51.96 50.31 21.62

mirSVR 50.01 27.76 72.26 49.97 50.01 35.68

miRBD 53.73 12.39 95.07 71.35 52.05 21.10

microT 61.13 58.94 63.32 61.62 60.70 60.24

Targetscan 55.77 39.45 72.08 58.52 54.36 47.12

TEC-miTarget 79.97 78.56 81.29 79.67 80.25 79.11

Table 6  The performance of TEC-miTarget on ten deepTargetPro test sets

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 score (%)

Test set 1 80.15 78.89 81.29 79.31 80.91 79.10

Test set 2 80.42 79.50 81.29 80.30 80.52 79.90

Test set 3 80.07 78.76 81.29 79.58 80.52 79.17

Test set 4 78.35 75.25 81.29 79.26 77.57 77.20

Test set 5 79.75 78.12 81.29 79.74 79.76 78.92

Test set 6 79.55 77.66 81.29 79.31 79.76 78.48

Test set 7 79.21 76.98 81.29 79.42 79.02 78.18

Test set 8 81.08 80.84 81.29 79.79 82.28 80.31

Test set 9 80.63 79.90 81.29 79.69 81.49 79.79

Test set 10 80.51 79.70 81.29 80.30 80.71 80.00

Average 79.97 78.56 81.29 79.67 80.25 79.11
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Visualization of comparative experimental results

We also utilize the radar chart to visually show the comparative results on the miRAW 
test set, miRAW independent test set, DeepMirTar test set, and deepTargetPro test sets. 
As shown in Fig. 3, TEC-miTarget shows the largest square on the radar chart, provid-
ing further evidence of its accurate performance. In summary, TEC-miTarget surpasses 
state-of-the-art methods in both sequence-level and transcript-level prediction tasks, 
providing more accurate predictions for miRNA targets.

TEC‑miTarget reflects the binding region of miRNA CTS interaction

The base interaction probability map provides an intuitive representation of the interac-
tions between a miRNA and its candidate target. As shown in Fig. 4, the predicted posi-
tive pairs (Fig. 4A, C) exhibit a stronger contrast in the base interaction probability map 
compared to predicted negative pairs (Fig. 4B, D). This contrast serves as the primary 
distinguishing feature between positive and negative predictions. Moreover, the average 
probabilities within the base interaction probability map for positive predictions tend 
to be higher than those for negative ones. Furthermore, the base interaction probability 
map demonstrates that the interactions between miRNA and its CTSs are primarily con-
centrated within the 5’ region of the miRNA. This observation underscores the precision 
of the features extracted by CNN.

Ablation study about the real effectiveness of the encoder part

The encoder part of TEC-miTarget is composed of three sequential components: the 
base encoder (I), the positional encoder (II), and the transformer encoder (III). To assess 
the effectiveness of these components, ablation experiments were devised, considering 
that component I forms the fundamental module of the encoder part. Specifically, these 

Fig. 3  The radar charts of the comparative results. A–C The performance of TEC-miTarget on the miRAW test 
set (A), miRAW independent test set (B), and DeepMirTar test set (C), compared with miRAW, DeepMirTar, 
miTAR, and GraphTar. D The average performance of TEC-miTarget on deepTargetPro test sets, compared with 
deepTarget, deepTargetPro, and TargetNet

Fig. 4  Base interaction probability maps. A TP pair. B TN pair. C FP pair. D FN pair
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experiments are structured as follows: (1) I +  II  +  III, (2) I  +  II, (3) I  +  III, and (4) I. 
Subsequently, we trained TEC-miTarget using the same training strategy and evaluated 
the performance of TEC-miTarget with each of the four different encoders serving as the 
encoder part of TEC-miTarget, respectively.

As shown in Fig.  5, removing either the positional encoder (II) or the transformer 
encoder (III) from the encoder part results in a degradation of TEC-miTarget’s per-
formance (experiments 2 and 3). Specifically, the accuracy of TEC-miTarget decreases 
from 81.25% to 75.00%. Furthermore, the simultaneous removal of both the positional 
encoder (II) and the transformer encoder (III) leads to a more pronounced decrease 
in TEC-miTarget’s performance, with the accuracy dropping to 72.92% (experiment 
4). These results can be explained by analyzing the functions of the positional encoder 
and the transformer encoder. Primarily, the positional encoder integrates the positional 
information of RNA bases into the embeddings of RNA sequences, thereby enabling 
TEC-miTarget to comprehend the order or position of bases within RNA sequences. 
Moreover, the transformer encoder captures dependencies between RNA bases and 
generates rich contextualized representations for RNA sequences. These results dem-
onstrate the effectiveness of the encoder part, underscoring the pivotal roles played 
by the positional encoder and the transformer encoder in enhancing TEC-miTarget’s 
performance.

Evaluation of TEC‑miTarget’s execution speed

To assess the execution speed of TEC-miTarget, we measured the training time required 
for TEC-miTarget on the DeepMirTar training set, starting from the initiation of train-
ing until convergence. The experiments were conducted on an NVIDIA Tesla V100 with 
32GB of memory, and the results were compared against other models. As shown in 
Table 9, TEC-miTarget achieved the second position in terms of training time, closely 

Fig. 5  The performance of TEC-miTarget utilizing four different encoders. Models are trained on the 
DeepMirTar training set and evaluated on the DeepMirTar independent test set

Table 9  The execution speed evaluation

Parameter count Training time/min Testing time/s

miRAW​ 471,951 17.91 2.85

DeepMirTar 29,203,396 31.90 4.94

miTAR​ 301,413 6.45 4.30

GraphTar 587,137 12.79 7.89

TEC-miTarget 26,691,717 27.66 4.01
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trailing the first-ranked DeepMirTar (27.66 min vs. 31.90 min). This is reasonable given 
that both TEC-miTarget and DeepMirTar have a higher parameter count, demanding 
more computational resources and consequently slowing down the training process. 
However, it’s noteworthy that TEC-miTarget demonstrates effective performance dur-
ing the testing phase. Table 9 illustrates the testing time for the models when assessed 
on the DeepMirTar test set, with TEC-miTarget as the second fastest approach. This 
is primarily due to our code optimization and the implementation of parallel inference 
methods. Overall, TEC-miTarget stands as a high-throughput method for miRNA target 
prediction.

Discussion
Predicting miRNA targets plays a crucial role in understanding the significant func-
tions of miRNAs in gene expression regulation. Over time, miRNA target prediction 
methods have witnessed remarkable advancements, transitioning from initial heuristic 
approaches to the current deep learning methods. However, the performance of exist-
ing approaches, including miRaw, DeepMirTar, and deepTargetPro, still requires further 
improvement to meet the demands of real-world applications. Consequently, there are 
growing demands to improve the performance of miRNA-target prediction models.

In the present study, we introduced a novel miRNA target prediction model called 
TEC-miTarget, which leverages the power of the transformer encoder and CNNs. Based 
on deep learning of ribonucleic acid sequences, the transformer encoder is employed 
to generate representations of miRNA and its CTS sequences. Afterward, these repre-
sentations are fused into a three-dimensional array called the contact map containing 
the interaction information between miRNA and its CTSs. Additionally, taking cues 
from computer vision technologies, CNNs are utilized to extract features from the fused 
contact map. These extracted features enable the model to make accurate miRNA target 
site identification. Hyperparameters are fine-tuned through a series of hyperparameter 
tuning experiments, and subsequent comparative experiments are conducted using the 
final identified optimal hyperparameters. We first perform the comparative experiments 
at both the sequence level and transcript level for miRNA predictions. The results of 
comprehensive experiments demonstrate that TEC-miTarget consistently outperforms 
the three state-of-the-art models, including deep-learning-based and seed-match-based 
approaches. Furthermore, the base interaction probability map serves as an intuitive 
representation of the interactions between miRNA and its candidate target site, aiding in 
the interpretation of the model’s predictions.

A significant challenge in miRNA target prediction at the transcript level lies in 
obtaining reliable candidate target sites (CTS) within a transcript [36]. Typically, the 
seed sequence, consisting of a few ribonucleotides located at the 5’ end of the miRNA, is 
employed in combination with a specific matching strategy based on the Watson–Crick 
complementary condition [35] to select CTS within a transcript. However, these selec-
tion methods may introduce errors, leading to situations where certain transcripts have 
miRNA targets but cannot be detected out of any CTS using the selection methods. This 
phenomenon mainly occurs because the selection methods based on the seed sequence 
are one-sided or biased. As shown in Fig.  6, some positive pairs exhibit interactions 
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that do not satisfy the selection methods due to a low ratio of paired bases (Fig. 6A). 
Conversely, in some negative pairs, the ratio of paired bases may be high (Fig. 6B). This 
discrepancy is attributed to the fact that miRNA-target interactions are not solely deter-
mined by the sequences but also depend on the structural characteristics of the miRNA 
and its target transcripts. Therefore, the base interactions determined solely by the Wat-
son–Crick complementary condition may not accurately represent the true binding sites 
of miRNA and its targets. In this study, we employ the 13-mer-m9 method to identify 
CTS within transcripts, which yields superior performance compared to alternative 
strategies such as offset-9-mer-m7, as demonstrated in Additional file 1: Table S1. For 
more details on the offset-9-mer-m7, refer to deepTargetPro [23].

Conclusions
Overall, our proposed TEC-miTarget model, utilizing natural language processing and 
computer vision technologies, surpasses other state-of-the-art methods in terms of sev-
eral evaluation metrics through a series of comparative experiments. TEC-miTarget 
offers fresh insights into miRNA target prediction and represents a significant advance-
ment in this field.
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