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Abstract 

Background:  The Biology System Description Language (BiSDL) is an accessible, 
easy-to-use computational language for multicellular synthetic biology. It allows 
synthetic biologists to represent spatiality and multi-level cellular dynamics inherent 
to multicellular designs, filling a gap in the state of the art. Developed for designing 
and simulating spatial, multicellular synthetic biological systems, BiSDL integrates 
high-level conceptual design with detailed low-level modeling, fostering collaboration 
in the Design-Build-Test-Learn cycle. BiSDL descriptions directly compile into Nets-
Within-Nets (NWNs) models, offering a unique approach to spatial and hierarchical 
modeling in biological systems.

Results:  BiSDL’s effectiveness is showcased through three case studies on com-
plex multicellular systems: a bacterial consortium, a synthetic morphogen system 
and a conjugative plasmid transfer process. These studies highlight the BiSDL pro-
ficiency in representing spatial interactions and multi-level cellular dynamics. The 
language facilitates the compilation of conceptual designs into detailed, simulatable 
models, leveraging the NWNs formalism. This enables intuitive modeling of com-
plex biological systems, making advanced computational tools more accessible 
to a broader range of researchers.

Conclusions:  BiSDL represents a significant step forward in computational languages 
for synthetic biology, providing a sophisticated yet user-friendly tool for designing 
and simulating complex biological systems with an emphasis on spatiality and cellular 
dynamics. Its introduction has the potential to transform research and development 
in synthetic biology, allowing for deeper insights and novel applications in understand-
ing and manipulating multicellular systems.

Keywords:  Systems biology, Synthetic biology, Computational biology, Domain-
specific languages

Introduction
Computational methods play a crucial role in synthetic biology, providing powerful 
tools that significantly improve the design, analysis, and construction of synthetic bio-
logical systems, with a particular emphasis on multicellular synthetic systems [1, 2]. 
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These systems implement intricate functions by distributing genetic constructs among 
different cells [3]. This approach exploits intra and intercellular interactions within the 
cell population, distributing the metabolic burden to amplify system responsiveness. 
However, the complexity of these synthetic designs leads to intricate interactions with 
the host organism, thereby diminishing predictability and controllability [4, 5]. In this 
context, synthetic morphogenesis applications pose unique challenges as they strive to 
govern cellular self-organization, which heavily relies on spatial relationships and inter-
actions among cells in space [6].

Computational methods have a key role in the analysis [7, 8], modeling [9, 10], design 
[1] and optimization [11–13] of complex biological processes. In particular, for analyz-
ing and predicting the dynamics of multicellular synthetic systems, computational tools 
must offer instruments for modeling and simulation, accounting for multiple spatial and 
temporal scales [14]. Computational modeling languages serve as powerful tools in this 
domain. They must expressively represent the target systems while integrating knowl-
edge from diverse sources [15], thus enhancing our understanding of the Design-Build-
Test-Learn (DBTL) cycle [16]. Furthermore, to facilitate interdisciplinary collaboration, 
these languages must support collaborative development, reproducibility, and knowl-
edge sharing [17, 18].

In computational biology, Domain-Specific Languages (DSLs) serve specific applica-
tions (see Sect.  “Related work”). For instance, the Systems Biology Markup Language 
(SBML) specializes in biochemical networks [19], NeuroML focuses on the struc-
ture and function of neural systems [20], and the Simulation Experiment Description 
Markup Language (SED-ML) handles procedures for running computational simula-
tions [21]. While these languages excel within their applications, their limited scope and 
interoperability [22] hamper integration into the multi-level models needed for multi-
cellular synthetic biology. The Infobiotics Language (IBL) addresses interoperability by 
consolidating modeling, verification, and compilation into a single file, streamlining in 
silico synthetic biology processes and ensuring compatibility with the Synthetic Biology 
Open Language (SBOL) and SBML frameworks [22]. However, IBL lacks support for 
describing multicellular synthetic designs and expressing spatial aspects crucial for syn-
thetic morphogenesis applications [6].

Models of multicellular, spatial biological systems can utilize low-level modeling for-
malisms [23–25] or multi-level hybrid models that combine different formalisms across 
multiple scales [14]. Unfortunately, these powerful tools are primarily accessible to 
expert users, limiting their availability to experimental synthetic biologists.

This paper introduces the Biology System Description Language (BiSDL), a computa-
tional language for spatial, multicellular synthetic designs that can be directly compiled 
into simulatable, low-level models to explore system behavior. BiSDL aims to balance 
simplicity and intuitive usage for broad accessibility, while its expressive power ena-
bles the description of biological complexity in multicellular synthetic systems. Build-
ing on preliminary work [26], BiSDL supports flexible abstraction, allowing non-experts 
to reuse high-level descriptions and experts to manipulate or create low-level models. 
Additionally, BiSDL supports modularity and composition, facilitating the creation 
and usage of libraries for knowledge exchange, integration, and reuse in the multicel-
lular synthetic biology DBTL cycle. In this work, the low-level models generated from 
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BiSDL descriptions are based on the Nets-Within-Nets (NWN) formalism [27], chosen 
for its capability in multi-level and spatial modeling of complex biological processes [25, 
28]. Nevertheless, the language is general enough to be integrated with other low-level 
formalisms.

BiSDL closely mirrors the natural language used within the biological domain. The 
compiler manages the gap between this high-level biological semantics and the low-level 
NWN formalism syntax, reducing the need for advanced modeling skills and knowl-
edge of the low-level formalism. While in its current implementation BiSDL requires 
basic programming and modeling skills, the language could be integrated with a dedi-
cated Graphical User Interface (GUI), paving the way for extensive broadening of the 
user base. BiSDL aims to simplify data exchange in bioinformatics, offering a high-level 
approach that abstracts away the complexity found in standards like SBOL [29, 30] and 
SBML [31], and is versatile enough to be translated into other formalisms like Petri 
Nets (PN), unlike tools such as pySBOL [32] and libSBML [33] that still rely on complex 
XML-like syntax.

The paper is organized as follows: Sect. “Related work” summarizes existing compu-
tational languages for synthetic biology, Sect. “Methods” details the design, syntax, and 
semantics of BiSDL and its compilation into low-level models using the NWN formal-
ism. Then, Sect.  “Results and discussion” showcases BiSDL capabilities through three 
case studies on multicellular synthetic systems. Finally, Sect. “Conclusions” summarizes 
the contributions, highlights open challenges, and outlines future developments.

Related work
The scientific landscape of model description languages for systems and synthetic biol-
ogy is rich and complex.

Figure 1 organizes them by expressivity of biological semantics and generality in mod-
eling different biological levels or domains. Each language links to the biological lev-
els it targets (either molecular pathways, cells, multicellular systems, or a combination 
thereof ) and the level of flexibility the language has in generalizing to different biological 
domains or mechanisms (see Legend on the right).

The COmputational Modelling in BIology NEtwork (COMBINE) initiative coor-
dinates the development of inter-operable and non-overlapping standard languages 
covering different aspects of biological systems [34–36]. COMBINE DSLs provide 
intermediary layers between the user and low-level modeling formalisms. They rely 
on XML for model description and compile into Ordinary Differential Equations 
(ODE) models, making this mathematical modeling formalism accessible by non-
expert users. Some of the COMBINE DSLs specialize in intracellular pathways, such 
as BioPAX [37], and processes, such as Systems Biology Graphical Notation (SBGN) 
[38], SBML [31] and CellML [39]. SED-ML [21, 40] exclusively aims at managing sim-
ulations of system behavior. NeuroML [20] tackles different biological aspects simul-
taneously, including spatiality and support simulation management, yet specializes in 
only neuronal systems. Among COMBINE standards, SBOL [29, 30] targets in silico 
synthetic genetic designs, yet is limited to genetic circuits alone, and does not cover 
any other biological aspect. Existing standards such as SBOL [29, 30], CellML [39], 
SED-ML [21, 40], and SBML [31] offer valuable frameworks for data exchange, albeit 
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with limitations such as verbosity and complexity. While tools like pySBOL [32] and 
libSBML [33] provide programmatic access to these standards, they still require users 
to navigate XML-like syntax. BiSDL allows users to focus solely on high-level con-
cepts, abstracting from the implementation details. The proposed compiler, trans-
lating BiSDL into PN, showcases the versatility of the language, demonstrating the 
potential for translation into other languages and formalisms.

Besides COMBINE standards, several computational languages for systems and 
synthetic biology exist [41]. Antimony is a text-based definition language that directly 
converts to the SBML standard employed in Tellurium, a modeling environment 
for systems and synthetic biology [42]. The Cell Programming Language (gro) [43] 
is a language for simulating colony growth and cell-cell communication in synthetic 
microbial consortia. It handles the spatiality and mobility of bacterial cells, internal 
genetic regulations, and mutual communications. Eugene [44] specifies synthetic bio-
logical parts, devices, and systems, mainly focusing on genetic constructs and their 
expression. Genetic Engineering of Cells (GEC) [45] centers over logical interactions 
between proteins and genes. GEC programs can be compiled into sequences of stand-
ard biological parts for laboratory applications. Genomic Unified Behavior Specifica-
tion (GUBS) [46] focuses on the cell’s behavior as the central entity with a rule-based, 
declarative, and discrete modeling formalism. gro and GUBS can model the interac-
tion between cells. gro also supports the representation of the spatial organization in 
a system. However, it is limited to bacterial cells only. Also, both languages require 
programming skills. Thus, neither is easily accessible to non-expert users. Eugene and 
GEC focus on genetic circuits only or simple molecular interaction networks for rep-
resenting and exchanging reusable genetic designs through functional modules, such 
as Standard Parts [47]. Even when combined in more complex structures, such mod-
ules only partly comprise the complexity and hierarchy of interdependent regulations 

Fig. 1  Comparison of Model Description Languages in Systems Biology over expressivity (broadness and 
depth of described models) and generality (broadness of modeling target, scope, and domain), providing 
further details on the biological levels covered and the modeling flexibility supported
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and the role of spatiality in biological multicellular designs. IBL [22] is a DSL for syn-
thetic biology that manages several computational aspects into a single specification, 
overcoming interoperability issues and ensuring seamless compatibility with SBOL 
and SBML frameworks. Yet, it currently does not support multicellular synthetic sys-
tems nor spatial aspects.

To overcome the limitations of existing solutions in biological scope, expressivity of 
multicellular and spatial aspects, and accessibility, BiSDL provides high-level descrip-
tions of intra- and inter-cellular mechanisms over spatial grids, and their direct com-
pilation into low-level simulatable models for the exploration of system behavior.

Methods
To help synthetic biologists create models of multicellular synthetic systems, BiSDL 
is designed for users with varying computational skills, making biological knowledge 
readable and writable. BiSDL stands at an abstraction level parallel to biological con-
cepts used in experimental science, bridging the gap between these concepts and the 
more intricate low-level models. BiSDL descriptions combine user-friendly biological 
semantics with the capacity to capture system complexity. Its development is centered 
on domain-specific terminology and the ability to compile into NWN simulation 
models, discussed in Sect. 3.4. The language syntax covers process hierarchies, spatial 
relations, and cellular interactions at the intercellular and intracellular levels. While 
the BiSDL supports the description of the system, the BiSDL models can be compiled 
into complex NWN models for the simulation and analysis of system behavior.

Fig. 2  A scheme of BiSDL domains and abstraction levels inspired to the VHDL Y-Chart [48]. The upper 
panel (BiSDL) shows the (A) Structural, (B) Behavioral, and (C) Spatial domains and the corresponding high 
abstraction levels (II, III, and IV) in BiSDL descriptions. The lower panel (NWN) illustrates the three domains at 
the low abstraction level relative to the Nets-Within-Nets formalism (I)
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Biological perspectives and levels of abstraction

The BiSDL syntax supports describing spatial and multi-level biological concepts 
through multiple domains and abstraction levels, as illustrated in the Y Chart reported 
in Fig. 2.

Inspired by the Very High-Speed Integrated Circuit Hardware Description Lan-guage 
(VHDL) [48], the BiSDL Y Chart adapts the three description domains defined for 
VHDL (i.e., Behavioral, Structural, and Physical) to the biological semantics.

The Structural domain, illustrated in Fig. 2 (A—STRU​CTU​RAL, top right), delves into 
the architecture of biological structures such as transcriptional machinery, protein com-
plexes, or synthetic genetic constructs within a host. On the other hand, the Behavioral 
domain (Fig. 2, B - BEHAVIORAL, top left) focuses on describing the dynamic function-
ing, interactions, and transformations of biological elements, encompassing processes 
like gene transcription, diffusion, and protein degradation. Lastly, the Spatial domain 
(Fig. 2 C—SPATIAL, center left) outlines the spatial substrate influencing interactions 
among the elements composing the system (e.g., the spatial organization of a group of 
cells).

The BiSDL describes each domain at four different abstraction levels, spanning from 
general biological concepts (high abstraction) to the NWN modeling formalism ele-
ments (low abstraction).

Level IV (Fig. 2, circle IV) describes a Biosystem comprising multiple composite motifs 
within the structural domain. This corresponds, for instance, to a Bioprocess made up of 
multiple bioprocesses in the behavioral domain and a Biocompartment defined by mul-
tiple spatial grids in the spatial domain. Level III (Fig. 2, circle III) elucidates Composite 
motifs, i.e., combinations of building blocks representing complex biological structures 
in the structural domain. These correspond to Subprocesses that emerge from inter-
laced base functions in the behavioral domain, necessitating Spatial grids in the spatial 
domain to model the underlying spatial relations. Level II (Fig. 2, circle II) defines Build-
ing blocks, capturing fundamental biological concepts in the structural domain. These 
correspond to Base functions in the behavioral domain and simple Local relations in the 
spatial domain. Level I (Fig. 2, circle I) describes NWN formalism elements combined in 
low-level models of the system.

When describing composite systems (e.g., a biological tissue), BiSDL covers all 
domains: structural, spatial, and behavioral (as shown in Fig.  2.A-C). These descrip-
tions can include cells, extracellular structures, spatial arrangements, and the pro-
cesses involved, requiring elements from each of the BiSDL domains. However, simpler 
descriptions may focus on a single domain, such as the transcription process of a gene 
concentrating on the behavioral domain. Simple MODULE definitions can be combined 
to form more complex descriptions. The syntax and semantics of a set of composable 
BiSDL descriptions are detailed in Additional file 1 BiSDL Modules Library—Section 1 
as an example of a BiSDL library.

Syntax and semantics

All BiSDL descriptions respect the template shown in Algorithm 1 based on a hierar-
chy of MODULE, SCOPE and PROCESS constructs. They start with naming the MODULE 
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(line 1). A MODULE encapsulates the complete description of a biological system, encom-
passing structural, behavioral, and spatial aspects. This includes detailing groups of 
cells, their spatial arrangement on a two-dimensional grid, intracellular processes, and 
the spatial diffusion mechanisms facilitating intercellular communications. Modules are 
self-contained and serve as the fundamental units for reusing and composing existing 
descriptions.

Each MODULE consists of a set of SCOPE declarations with defined identifiers and 
spatial coordinates (lines 3–12 and 13) that describe the relevant biological compart-
ments within the modeled system and a set of DIFFUSION mechanisms (lines 14–15) 
that model the diffusion of signals among them. The SCOPE declarations may incorpo-
rate additional communication methods, such as PARACRINE_SIGNAL (line 10) and 
JUXTACRINE_SIGNAL (lines 11–12), describing intercellular communication, either 
through diffusible signals (paracrine) or direct contact (juxtacrine). Integer timescales 
can represent any ratio between the operations of different models in the provided dis-
crete-time simulator. The TIMESCALE of a module (line 2) sets the base pace of the sys-
tem dynamics compared to the unitary step of the discrete-time simulator. For instance, 
if one model has a TIMESCALE of N, it means that it evolves by 1 step every N simula-
tor’s steps (whose TIMESCALE is made equal to 1). The model is slower than the base 
time step by a factor of N.

Each SCOPE contains a set of biological PROCESS instantiations with explicit identi-
fiers (lines 4–8 and 9). They comprise base functions like transcription, translation, and 
degradation.

The TIMESCALE of a process (line 6) is a discrete multiplier of the MODULE timescale, 
determining the relative speed at which the process occurs compared to the base mod-
ule pace. The same applies to processes with different timescales: they proceed at a rela-
tive speed, the ratio of their respective timescales. For instance, if TIMESCALE is 2 for 
PROCESS p1, and 5 for PROCESS p2, they will proceed at a relative speed of 5/2 (i.e., 
p1 evolves 2.5 times faster than p2). Different PROCESS instances can connect over the 
same elements: for example, one process might produce a molecule that regulates a base 
function in another process. BiSDL emphasizes ease of description. Each SCOPE can 
reuse a PROCESS from another SCOPE simply by declaring a PROCESS with the same 
<process_id>.
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Algorithm 1  BiSDL general template. Each MODULE organizes around a set of SCOPE definitions. Each SCOPE 
contains a set of PROCESS instances describing the behavior of entities in the MODULE and a set of SIGNAL 
declarations describing communication mechanisms among entities. DIFFUSION mechanisms support 
communication among SCOPE constructs. 

As a simple example, Algorithm 2 provides the BiSDL description of the chemical 
reaction by which two H2 molecules react with one O2 molecule to form two H2O 
molecules.

Algorithm 2  BiSDL description of the chemical reaction by which two H2 molecules react with one O2 molecule 
to form two H2O molecules.

The MODULE, whose base TIMESCALE is 1, consists of a biological compartment at 
coordinates (0, 0) within the spatial grid (SCOPE s, line 3). The SCOPE contains 
a single PROCESS, whose base TIMESCALE multiplier is 1, named reaction. Here, 
the entities describing molecular hydrogen (H2_molecule) and oxygen (O2_mol-
ecule) transform into water (2*H2O_molecule, line 6). Multipliers for H2_mol-
ecule and H2O_molecule specify the proportion the molecules combine, implying 
a multiplier with unitary value when not indicated.

BiSDL constructs

This work proposes a library of BiSDL constructs (see Additional file 1—Section 1) to 
exemplify the language semantic capabilities, showing its expressiveness and close-
ness to the biological semantics. To foster standardization in model description lan-
guages, all proposed BiSDL constructs follow the Systems Biology Ontology (SBO) 
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[49] and fall into the following four subcategories (of the seven provided by the 
standard):

•	 Physical entity representation:

–	 Material entities identify the functional entities (i.e., SCOPE, CELL, and the base 
types GENE, MRNA, PROTEIN, COMPLEX, MOLECULE);

–	 Functional entities identify the function they perform (i.e., PARACRINE_SIG-
NAL, JUXTACRINE_SIGNAL, and DIFFUSION).

•	 Participant role:

–	 identifies the role played by an entity in a modeled process (i.e., INDUCERS, 
INHIBITORS, ACTIVATORS);

•	 Occurring entity representation:

–	 identifies processual relationships involving physical entities (i.e., TRANSCRIP-
TION, TRANSLATION, DEGRADATION,PROTEIN_COMPLEX_FORMATION, 
ENZYMATIC_REACTION, CUSTOM_PROCESS);

•	 System description parameter:

–	 provides quantitative descriptions of biological processes (i.e., TIMESCALEs and 
the multipliers of physical entities).

From BiSDL descriptions to NWNs models

BiSDL supports the system dynamics analysis utilizing simulations. This is obtained by 
compiling BiSDL descriptions into low-level models based on the NWN formalism.

Compilation of NWNs models

NWN extend the PN formalism to support hierarchy, encapsulation, and selective com-
munication [9, 24, 27], which makes them suitable to model complex biological pro-
cesses [25, 28], coherently with the design goals of BiSDL (Sect. 3.1). PN are bipartite 
graphs where nodes can be either places or transitions. Places represent states the mod-
eled resources can assume. Transitions model the creation, consumption, or transforma-
tion of resources in, from, or across places. Tokens model discrete units of resources in 
different states. Each transition has rules regulating its enabling and activation, depend-
ing on the availability of tokens in its input places. Directed arcs link places and transi-
tions to form the desired network architectures. When a transition fires, it consumes the 
required tokens from the input places and creates tokens in its output places.

The NWN formalism is a high-level PN formalism supporting all features of other 
high-level PN: tokens of different types and timed and stochastic time delays associ-
ated with transitions. NWN introduce an additional type of token named Net Token. A 
Net Token is a token that embeds another instance of a PN. With this type of token, 
NWN support hierarchical organization, and each layer relies on the same formalism 
(see  Fig.  3). This characteristic introduces the Object-Oriented Programming (OOP) 
paradigm within the PN formalism. Therefore, NWN models express encapsulation and 
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selective communication, allowing the representation of biological compartmentaliza-
tion and semi-permeability of biological membranes easily. Nets at different levels in 
the hierarchy evolve independently and optionally communicate through synchronous 
channels that interlock transitions from different nets, synchronizing their activation 
upon satisfaction of enabling conditions.

NWN have heightened expressivity compared to other modeling formalisms. While 
Boolean models offer binary node states, high-level Petri Nets can convey intricate 
information regarding system resources and processes. Similarly, while ODE represent 
uniform compartments with continuous values, NWN accommodate discrete and con-
tinuous quantities. Unlike many existing approaches that primarily focus on intracellular 
mechanisms, multi-level NWN allow for the modeling of both intracellular and supra-
cellular information, enabling a broader scope of representation and effective analysis of 
complex biological systems [23]. However, the increased expressivity of NWNs comes at 
the cost of greater model complexity and computational demands for simulation algo-
rithms, a common trade-off in computational modeling [50]. In conclusion, the deci-
sion to employ NWN for demonstrating BiSDL stems from the desire to highlight its full 
expressive capacity in generating complex models. BiSDL may support compilation into 
various low-level formalisms, generating models on different points across this trade-off.

To support NWN, BiSDL compilation generates models implemented with nwn-
snakes, a customized version of the SNAKES library  [51]. SNAKES is an efficient 
Python library for the design and simulation of PN [51]. The nwn-snakes library pre-
sented in this work extends SNAKES to handle multi-scale models, ensuring consistency 
across the hierarchical levels in the model. nwn-snakes provides constructs to express 

Fig. 3  A representation of the NWN formalism. Tokens in these PN can be instances of PN, thus 
implementing a hierarchy of encapsulated levels. Channels can interlock two transitions from different nets, 
allowing the exchange of tokens and information
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the hierarchy of temporal and spatial scales. Every BiSDL MODULE in the compiled 
model is represented by a Module class with an individual timescale, which in turn 
inherits from the PetriNet class implemented in nwn-snakes. A prototype BiSDL 
compiler (bisdl2snakes.py) generates Python Module classes implementing nwn-
snakes models from BiSDL descriptions. Detailed instructions on compiler use are 
available in the BiSDL GitHub public repository (see Availability of data and materials).

The spatial hierarchy underlying BiSDL descriptions (see Sect. 3.2) is translated into 
a low-level model based on a system of nested spatial grids represented by PN. In 
this model, the places model sub-portions of space, allowing the representation of 
multiple spatial scales. Each place in a spatial grid can host, as a net token, another 
spatial grid, ensuring cross-level semantic consistency across different spatial scales. 
This work provides consistent semantics for two-level hierarchies, which support 
the intended modeling of multicellular systems where both intra- and intercellular 
mechanisms are described. nwn-snakes handles the marking evolution of the two 
levels synchronously: if marking evolves on one level, the other level mirrors the exact 
change. Additional file  1—Section  2 reports the way nwn-snakes supports NWN 
modeling describing the mapping between BiSDL building blocks and NWN.

BiSDL supports high interpretability of generated NWN models in two ways. Firstly, 
a compilation of BiSDL constructs labels the resulting low-level constructs with the 
high-level specific parameters. For instance, the construct PROTEIN_COMPLEX_
FORMATION(3*LuxR_protein, 3*AHL_molecule, 3*LuxR_AHL_complex) 
generates NWN constructs containing the product name: LuxR_AHL_complex. Sec-
ondly, in BiSDL, any construct can be wrapped into a process, and the process is assigned 
a custom name. This feature supports the direct reuse of processes in general and the 
reuse of constructs wrapped up in processes by leveraging the process name.  Algo-
rithm 4 exemplifies this mechanism: the PROCESS defined in lines 18–21 encapsulates 
TRANSCRIPTION, TRANSLATION, and DEGRADATION constructs, and is named 
CD19_production. The same process is reused (by name) in line 37. Indeed, the 
SCOPE defined in lines 36–40 (5 lines of code) reuses processes defined only once for 
the first SCOPE, which spans over 35 lines of code (1–35). In compilation, to avoid ambi-
guity, each time the same process is used again in the BiSDL description, a new set of 
low-level elements is generated and named by appending a progressive number. In the 
same example from Algorithm 4, the first instance of PROCESS CD19_production 
(lines 18–21) is assigned the name CD19_production_process_0 in the NWN 
model. The second instance (line 37) is internally assigned the name CD19_produc-
tion_process_1, and thereafter.

Simulation of NWNs models

The exploration of systems dynamics relies on the simulation of nwn-snakes models 
compiled from BiSDL descriptions with the nwn-petrisim simulator. The simulator is 
designed to be simple and easy to use, thus requiring minimal coding as reported in List-
ing 1.
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Listing 1  nwn-petrisim instantiation

The simulator is instantiated at line 2. The argument m=test_module represents the 
instance of the top-level net to be simulated. The arguments draw_nets=False and 
mode=’exploration’ control the generation of visual output, preventing the crea-
tion of images of the net architectures and allowing evolution plots to adapt to the gen-
erated output value ranges.

The simulation, executed in line 3, is discrete, with nstep=100 determining the 
number of simulation steps. The simulator analyzes the stochastic evolution of the sys-
tem. Additionally, it allows simulating the system’s response to external stimuli applied 
to the model as outlined in Listing 2. The simulation comprises a loop running for the 
specified number of steps (n_steps). Within this loop, at every n steps, the simula-
tor adjusts the marking of the place that models the stimulus within the network. This 
adjustment involves adding a random number of black tokens, ranging from 0 to r. Sub-
sequently, this modified marking is applied to the simulated model before proceeding to 
the next simulation step. The values of n and r control the intensity of the administered 
stimulus.

Listing 2  nwn-petrisim stimuli administration

In the stochastic simulation supported by nwn-petrisim, conflicts among transi-
tions competing for tokens are managed through the randomized ordering of transitions 
enabling and firing events. All transitions have a user-defined firing probability of p set 
by default to 0.6. Furthermore, for each firing event, the set of tokens consumed by the 
transition is randomly chosen from those available in the input place. These random 
selections prevent the systematic exclusion of specific transitions from firing.

Results and discussion
The BiSDL allows synthetic biologists to quickly model and design multicellular syn-
thetic systems, simulating their behaviour. Synthetic biology aimed first to develop 
essential genetic constructs to control specific intracellular processes, then to com-
bine such essential elements into complex circuits within or across cells [52]. Complex 
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circuits enable a broader range of controllable behaviours yet have the drawback of met-
abolic burden and unknown interactions at the host. To address these constraints, syn-
thetic biology has shifted focus towards designs based on multicellular networks  [53], 
where splitting the overall construct across different cells facilitates integration into host 
cells and limits their metabolic burden. Construct parts interact via intercellular com-
munication, and the desired behaviour emerges from the interaction between the dif-
ferent cells. Multicellular synthetic designs must consider complex interactions between 
the construct and the host cells. Results prove BiSDL capability for (1) model descrip-
tion and (2) exploration of system behaviour over three case studies of multicellular 
synthetic designs: a bacterial consortium (see Sect. 4.1), a synthetic morphogen system 
(see Sect. 4.2), and a conjugative plasmid transfer (see Sect. 4.3).

Case study 1—bacterial consortium

The first case study focuses on implementing gene expression control across different 
bacterial cells. To achieve this, a synthetic biologist can exploit gene expression regu-
lation across cells operated by the lactose repressor protein (LacI).

Initially, the biologist must identify a reliable source of knowledge regarding syn-
thetic designs that realize the desired behaviour. The Registry for Standard Biological 
Parts holds a collection of predefined genetic constructs with known functional-
ity [54]. These constructs can serve as templates for the DBTL process. Selecting and 
combining these parts makes it possible to design a bacterial consortium where the 
overall genetic device enforces LacI-operated gene expression regulation across 
cells. This consortium comprises two cell types. Controller cells establish base-
line 3-oxohexanoyl-homoserine lactone (3OC6HSL) production, inhibited by a 

Fig. 4  The multicellular bacterial consortium synthetic design was considered for the first case study. This 
consortium comprises two cell types. (A) Controller cells establish baseline 3OC6HSL production, inhibited 
by a reference signal (LacI administration); (B) Target cells initiate GFP reporter signal production only when 
receiving the AHL molecular signal, which, in this system, is 3OC6HSL
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reference signal: LacI administration (Fig. 4, top panel A). Conversely, Target cells ini-
tiate Green Fluorescent Protein (GFP) reporter signal production only when receiv-
ing the Acyl-homoserine lactones (AHL) molecular signal, which, in this system, is 
3OC6HSL (Fig. 4, bottom panel B).

Various Standard Biological Parts contribute to the design. Part:BBa_C0012 (LacI 
protein) serves as the reference signal, inhibiting the Lac-repressible promoter. 
Part:BBa_I13202 (3OC6HSL Sender Controlled by Lac Repressible Promoter) inte-
grated with S-adenosylmethionine (SAM) and an acylated acyl carrier protein (ACP) 
substrate to synthesize 3OC6HSL  [55] constructs in the Controller cell. Part:BBa_
E0040 (GFP) together with Part:BBa_T9001 (Producer Controlled by 3OC6HSL 
Receiver Device) complete the design with the inducible reporter gene expression in 
the Target cell. The GFP levels serve as the readout signal.

The synthetic biologist who leverages BiSDL to describe the synthetic bacterial 
consortium should model the synthetic construct split across Controller and Target 
cells. Moreover, the model must include the biological interactions and mechanisms 
involved, such as transcriptional processes (gene expression), activation and inhibi-
tion of gene expression, protein production and degradation, enzymatic reactions, 
and inter-cellular signaling. Algorithm  3 provides a BiSDL description of the syn-
thetic bacterial consortium that considers all of these relevant aspects.

Algorithm 3  BiSDL description of the bacterial consortium.
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The illustrated bacterialConsortium MODULE contains two SCOPE state-
ments: one for the Controller cell (producer)  (Algorithm  3, lines 3–20); another 
one for the Target cell (sensor) (Algorithm 3, lines 21–34). Each SCOPE definition 
includes its name and two-dimensional coordinates on the spatial grid underlying the 
model (Algorithm 3, lines 3 and 21). Each SCOPE contains a single PROCESS repre-
senting the fundamental biological functionality of each cell: AHL_production for 
the producer and GFP_production for the sensor. The TIMESCALE at the top 
level (Algorithm 3, line 2) indicates the base pace for the bacterialConsortium. 
On the other hand, the TIMESCALE of each PROCESS (Algorithm 3, lines 5 and 22) 
indicates the process slowdown factor related to the base pace: AHL_production 
evolves at half the base pace and GFP_production evolves at one-third of the base 
pace. The bacterialConsortium also contains declarations of the DIFFUSION 
processes that set up bidirectional connections between the two SCOPE constructs 
(producer and sensor) and the diffusion of AHL_molecule across them (Algo-
rithm 3, lines 33–37).

The BiSDL supports a very compact description of the system, using approximately 
25% of the lines of code required by the low-level nwn-snakes model: 50 lines of code 
(see Algorithm 3) versus 203 lines of code in the compiled nwn-snakes Python model 
file (based on the files in the public GitHub repository, see Availability of data and 
materials).

To compile the BiSDL description into a nwn-snakes model, the synthetic biologist 
uses the BiSDL compiler (see Sect. 3.4) to generate a nwn-snakes file that contains all 
the NWN models required by the BiSDL description. Visualization of the NWN models 
relies on the GraphViz visualization tool  [56], provided by SNAKES as a plugin. For 
this use case, the NWN description includes a top-level net, where two places contain 
one net token each, and a bottom-level net where these net tokens lie.

Figure  5 visualizes the top-level NWN model, where the places that contain net 
tokens correspond to the two BiSDL SCOPE statements. The producer place holds the 

Fig. 5  The top-level bacterial_consortium net architecture. The places that contain net tokens correspond 
to the two BiSDL SCOPE statements. The producer place holds the AHL_production net token, while the 
sensor place holds the GFP_production net token. Several transitions connect the two places, allowing the 
bidirectional diffusion of AHL_molecule colored tokens across them and the net tokens they contain during 
simulation, thanks to the nwn-snakes synchronization and communication capabilities
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AHL_production net token  (Fig.  6), while the sensor place holds the GFP_production 
net token (Fig. 7). Several transitions connect the two places, allowing the bidirectional 
diffusion of AHL_molecule colored tokens across them and the net tokens they contain 
during simulation, thanks to the nwn-snakes synchronization and communication 
capabilities (see Sect. 3.4.1).

Figure  6 and Figure  7 visualize the producer and sensor net tokens, respectively. In 
these PN, places model genes, transcripts, proteins, and molecules, while transitions 
model processes involving them, such as transcription, translation, degradation, and 
enzymatic reactions. Black tokens model discrete quantities of resources in each place 
and are represented by the dot symbol.

The simulation of BiSDL-compiled nwn-snakes models shows that LacI levels con-
trol GFP_protein levels, consistently with the expected behaviour under the following 
conditions:

•	 noLacI: the absence of LacI administration;
•	 lowLacI: constant and low LacI administration (n=3 and r=3);
•	 highLacI: constant and high LacI administration (n=3 and r=10);

Values of n and r determine the intensity of stimulus administration (see Sect. 3.4.2).
Figure  8 presents the marking evolution of the LacI signal mediators (Lux1_pro-

tein and AHL_molecule) and Target (GFP_reporter_protein) in the bacte-
rial consortium after the three considered LacI administration schemes. noLacI (Fig. 8, 
top left panel A) does not interfere with AHL_molecule levels  (Fig.  8, middle left 
panel D), inducing transcription of high GFP_reporter_protein readout sig-
nals  (Fig. 8, bottom left panel G). lowLacI  (Fig. 8, top central panel B) hampers AHL_
molecule levels (Fig. 8, middle central panel E), resulting in the transcription of lower 

Fig. 6  The producer bacterial_consortium net token architecture. Places model genes, transcripts, proteins, 
and molecules, while transitions model processes involving them, such as transcription, translation, 
degradation, and enzymatic reactions. Black tokens model discrete quantities of resources in each place and 
are represented by the dot symbol
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GFP_reporter_protein (Fig. 8, bottom central panel H). highLacI (Fig. 8, top right 
panel C) almost shuts down AHL_molecule levels (Fig. 8, middle right panel F), sup-
pressing the transcription of high GFP_reporter_protein readout signals almost 
completely (Fig. 8, bottom right panel I). The results show consistency with the expected 
system behavior, an inverse relation between LacI stimulus and readout signal levels.

Fig. 7  The sensor bacterial_consortium net token architecture. Places model genes, transcripts, proteins, and 
molecules, while transitions model processes involving them, such as transcription, translation, degradation, 
and enzymatic reactions. Black tokens model discrete quantities of resources in each place and are 
represented by the dot symbol
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Case study 2—RGB synthetic morphogen system

The second case study implements a synthetic morphogen system where the spatial 
interactions and organization of the cells sustain the emergence of a spatial pattern of 
red, green, and blue (RGB) fluorescent markers. In developmental processes, morpho-
gens transmit positional signals to cells, diffusing from a source to create concentration 
gradients. Cells interpret these gradients using diverse signaling mechanisms, including 
paracrine signaling (short-range) and juxtacrine communication (cell-to-cell). Synthetic 
biology offers the potential to manipulate these mechanisms, enabling control over 
spatial arrangement and functional features in synthetic morphogenetic designs. This 
second case study illustrates how BiSDL descriptions express the essential dynamics 
underlying a multicellular synthetic design accounting for the role of spatial organiza-
tion and neighborhood relations among cells.

Fig. 8  Marking evolution of the LacI signal mediators (Lux1_protein and AHL_molecule) and 
Target (GFP_reporter_protein) in the bacterial consortium after three LacI administration schemes. 
(A) noLacI does not interfere with (D) AHL_molecule levels, (G) inducing transcription of high GFP_
reporter_protein readout signals. (B) lowLacI (E) hampers AHL_molecule levels, resulting in (H) the 
transcription of lower GFP_reporter_protein. (C) highLacI (F) almost shuts down AHL_molecule 
levels, (I) suppressing the transcription of high GFP_reporter_protein readout signals almost 
completely. The results show consistency with the expected system behavior, an inverse relation between 
LacI stimulus and readout signal levels
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This time, rather than relying on Standard Parts (refer to Sect. 4.1), the objective is to 
replicate designs found in the scientific literature, such as the modular synNotch system 
outlined in  [57], providing a platform for engineering orthogonal juxtacrine signaling, 
which functions independently of natural cellular communication pathways. It enables 
specific and controlled cell interactions, featuring an extracellular recognition domain, 
the Notch core regulatory domain, and an intracellular transcriptional domain. With the 
incorporation of fluorescent markers, the synNotch system proves to be a valuable tool 
for engineering multicellular synthetic systems.

This second case study comprises a three-layer multicellular circuit in which the Receiver 
cells (Cells B, Fig. 9, top right panel B) inducibly expresses E-cadherin ( Ecadhi ) and a modi-
fied form of GFP working as a synNotch ligand on the cell membrane ( GFPlig ). Further-
more, GFPlig serves as both a fluorescent reporter and a ligand for a secondary synNotch 
receptor with the cognate anti-GFP binding domain  (Fig.  9, central right panel C). The 
Sender cells (Cells A, Fig. 9, top left panel A) constitutively express BFP, CD19 ligand, and 
the anti-GFP synNotch receptor, which drives expression of a low amount of E-cadherin 
( Ecadlo ) fused with a mCherry reporter for visualization (Fig. 9, central left panel D). Thus, 
Cells  A have low adherence, blue fluorescence, and inducible red fluorescence  (Fig.  9, 
bottom left panel E), while Cells  B have inducible green fluorescence and high adher-
ence (Fig. 9, bottom right panel F).

Fig. 9  The multicellular synthetic circuit mediated by cell-cell communication makes the RGB pattern 
emerge. (A) The Sender cells (Cells A) constitutively express blue fluorescent protein (BFP), CD19 ligand, and 
the anti-GFP synthetic Notch (synNotch) receptor, which drives expression of a low amount of E-cadherin 
( Ecadlo ) fused with a (D) mCherry reporter for visualization. (B) Receiver cells (Cells B) inducibly express 
E-cadherin ( Ecadhi ) and a modified form of GFP working as a synNotch ligand on the cell membrane ( GFPlig ). 
(C) GFPlig serves as both a fluorescent reporter and a ligand for a secondary synNotch receptor with the 
cognate anti-GFP binding domain. (E) Cells A have low adherence, blue fluorescence, and inducible red 
fluorescence; (F) Cells B have inducible green fluorescence and high adherence. Adapted from [57]
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Cells start as a disorganized aggregate (Fig. 10, bottom left panel A), and CD19 in Cells A 
activates anti-CD19 synNotch in Cells B, inducing the expression of a high level of E-cad-
herin ( Ecadhi ) and GFPlig (Fig. 10, top left panel B). Cells B thus aggregate and form a com-
pact group in the middle of the aggregate (Fig. 10, bottom central panel C). The GFPlig on 
Cells B activates the anti-GFP synNotch receptors on Cells A in direct contact with the 
central group, inducing Ecadlo and the mCherry reporter (Fig. 10, top right panel D), and 
making a spatially organized pattern of cells  emerge in a synthetic morphogenetic pat-
tern (Fig. 10, bottom right panel E) with three concentric layers: a green internal core (Cells 
B expressing Ecadhi and GFPlig ) with high cell-cell adhesion, an outer layer of blue cells 
(Cells A expressing BFP), and a population of red cells in the middle layer (Cells A express-
ing Ecadlo and mCherry).

Fig. 10  The RGB synthetic morphogenesis process for the second case study. (A) Cells start as a disorganized 
aggregate; (B) CD19 in Cells A activates anti-CD19 synNotch in Cells B, inducing the expression of a high 
level of E-cadherin ( Ecadhi ) and GFPlig ; (C) Cells B aggregate and form a compact group in the middle of the 
aggregate; (D) The GFPlig on Cells B activates the anti-GFP synNotch receptors on Cells A in direct contact 
with the central group, inducing Ecadlo and the mCherry reporter, (E) making a spatially organized pattern of 
cells emerge in a synthetic morphogenetic pattern with three concentric layers: a green internal core (Cells B 
expressing Ecadhi and GFPlig ) with high cell-cell adhesion, an outer layer of blue cells (Cells A expressing BFP), 
and a population of red cells in the middle layer (Cells A expressing Ecadlo and mCherry).Adapted from [57]
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Algorithm 4  BiSDL description of the RGB synthetic morphogen system.

Algorithm 4 illustrates the BiSDL description of the RGB synthetic morphogen system, 
where a central cell induces patterning in its neighbors of the first and second-degree. 
Vertical dots indicate sections describing red and blue cells SCOPEs with identical struc-
ture as the ones presented but different spatial coordinates. The complete description 
and the visualization of the compiled nwn-snakes PN models are not included due to 
their size, but they are available from the BiSDL GitHub public repository (see Avail-
ability of data and materials).

BiSDL again supports a compact description of the system composed of 165 lines of 
code, approximately 9% of the corresponding compiled nwn-snakes model file, having 
1807 lines of code (based on the files in the public GitHub repository, see Availability of 
data and materials).

Results recapitulate the emergence of the expected simplistic version of one of the syn-
thetic morphogenetic patterns presented in  [57]. Fig. 11 depicts the evolving intensity 
of the fluorescent markers in each cell during a simulation of the nwn-snakes Python 
models compiled from the BiSDL description (see  Algorithm  4). At first (t = 10), the 
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central cell slightly affects only one of its neighbors of the first degree, while other cells 
keep producing the BFP signal (Fig. 11, top left panel A); the central cell engages all of its 
neighbors of the first degree, inducing the expression of mCherry in them, whose inten-
sity evolves throughout the simulation (from t=20 to t=50, Fig. 11, top central panel B, 
top right panel C, bottom left panel D, bottom central panel E); at t=60 all first-degree 
neighbors of the central cell express high levels of mCherry (Fig. 11, bottom right panel 
F). On the contrary, the simulated deletion of GFPlig results in a stable pattern with a 
central, colorless cell of type B and all its neighbors of the first and second degree consti-
tutively expressing BFP (data not shown).

Case study 3—conjugative plasmid transfer

Plasmids are crucial in disseminating antibiotic resistance, virulence genes, and vari-
ous adaptive traits within bacterial communities through horizontal gene transfer [58]. 
The third case study examines antibiotic resistance (R) conjugative plasmids transfer 
between bacterial cells, mirroring the fundamental conjugation mechanism presented 
in [59]. As depicted in Fig. 12, the plasmid transfer process [60] initiates with a Donor 
cell harboring a conjugative R plasmid (Fig. 12, top left). The Donor extends a Pilus, a 
proteinaceous protrusion [61], encoded by the R plasmid, to establish contact with a 

Fig. 11  Evolution of the three fluorescent marker levels (GFP, BFP and mCherry) in each cell on the 
two-dimensional spatial grid along the simulation of the nwn-snakes Python models compiled from 
the BiSDL description. (A) At first (t = 10), the central cell slightly affects only one of its neighbors of the first 
degree, while other cells keep producing the BFP signal; (B-E) the central cell engages all of its neighbors 
of the first degree, inducing the expression of mCherry in them, whose intensity evolves throughout the 
simulation (from t=20 to t=50); (F) all first-degree neighbors of the central cell express high levels of mCherry 
(t=60)
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compatible recipient cell, referred to as the Transconjugant cell [59] (Fig. 12, top right). 
Upon contact, the Pilus retracts, bringing the cells into proximity and forming a conju-
gation bridge. This bridge facilitates the transfer of one of the plasmid DNA strands in 
a linearized form from the Donor to the Transconjugant (Fig. 12, center). Subsequently, 
both cells harbor a single-stranded copy of the R plasmid. Finally, through circulariza-
tion and DNA synthesis, the Donor and Transconjugant cells complete the second 
strand for their respective R plasmid copies. Consequently, both cells become capable of 
further disseminating the R plasmid, effectively functioning as Donor cells (Fig. 12, bot-
tom), thereby facilitating the propagation of antibiotic resistance.

Algorithm 5 provides a BiSDL description of the conjugative R plasmid transfer from 
the Donor to the Transconjugant cell.

Fig. 12  The mechanism considered for the third case study is antibiotic resistance (R) plasmid transfer 
across bacterial cells, recapitulating the basic conjugation mechanism modeled in [59]. The plasmid transfer 
mechanism [60] begins with a Donor cell that carries a conjugative R plasmid (top left). The Donor extends 
a Pilus, a proteinaceous protrusion [61] to contact a compatible receiver cell, named the Transconjugant cell 
(top right). In this example, the Pilus is encoded in the R plasmid. Upon contact, the Pilus retracts, pulling the 
cells together and establishing a conjugation bridge. This bridge enables the transfer of one of the plasmid 
DNA strands in linearized form from the Donor to the Transconjugant (center). At this point, both cells hold 
a single-stranded copy of the R plasmid. Finally, both cells build the second strand for their respective R 
plasmid copies through circularization and DNA synthesis. Thus, both Donor and Transconjugant cells are 
equipped to disseminate the R plasmid further, making them both Donor cells (bottom) enacting antibiotic 
resistance propagation
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Algorithm 5  BiSDL description of the conjugative R plasmid transfer from the Donor to the Transconjugant cell.

The illustrated plasmidTransfer MODULE contains three SCOPE statements: 
one for the Donor cell (donor, (Algorithm  5, lines 3–15); another one for the 
Transconjugant cell (transconjugant, Algorithm 5, lines 21–32), and a third one 
for the Pilus proteinaceous structure mediating the conjugation process (pilus, 
Algorithm 5, lines 16–20). This shows the flexibility of the SCOPE construct in sup-
porting the modeler for expressing different types of biological compartments. JUX-
TACRINE_SIGNAL mechanisms connect the SCOPE statements from the donor to 
the transconjugant through the pilus, recapitulating the R plasmid transfer 
process.

Figure 13 visualizes the top-level NWN model for this use case, having a place for 
each of the three BiSDL SCOPE statements, holding the donor net token (Fig.  14), 
the transconjugant net token (Fig. 15) and the pilus net token (Fig. 16), respectively.

The simulation of BiSDL-compiled nwn-snakes models demonstrates that trans-
ferring R plasmids from the Donor to the Transconjugant cells aligns with antici-
pated behavior. Throughout the simulation, the Donor cell consistently retains one 
R plasmid (Fig. 17, top left), while the Transconjugant cell initially lacks any R plas-
mids (Fig. 17, top right). The R plasmid within the Donor encodes the Pilus protein, 
which initiates the conjugation process upon translation. The Pilus mediates two 
R plasmid transfer events, illustrated by linearized single-strand R plasmids within 
it (Fig. 17, center), resulting in two subsequent increases in R plasmid copies within 
the Donor cell (Fig. 17, top right). R plasmids encode the R protein, conferring anti-
biotic resistance. The R protein is consistently present in the Donor cell due to the 
R plasmid  (Fig.  17, bottom left). Conversely, in the Transconjugant cell, R protein 
levels only rise above zero after the initial R plasmid transfer event (Fig. 17, bottom 
right). These findings indicate that the simulation accurately reproduces the conju-
gative plasmid transfer process, leading to R protein-mediated antibiotic resistance 
propagation.
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Conclusions
In conclusion, the BiSDL framework represents a significant advancement in syn-
thetic biology modeling. The core aim of BiSDL is to merge the detailed expressive 
capabilities of computational models with the user-friendliness of high-level lan-
guages, providing a tool that is both powerful and more accessible than a low-level 
language. In fact, BiSDL requires only basic modeling and programming skills com-
pared to the advanced modeling and programming skills required by low-level lan-
guages. The hierarchical and modular structure of BiSDL is ideal for capturing the 
inherent complexity of biological systems and constructing reusable and adaptable 
components.

Through the development of a prototype BiSDL compiler, models can be compiled 
into low-level descriptions that encapsulate the spatial, hierarchical, and dynamic 
behaviors of biological entities, using the NWN approach to handle biological com-
plexity. As BiSDL closely mirrors the domain-specific language used within the bio-
logical domain, the compiler closes the gap between high-level biological semantics 
and NWN low-level formalism syntax. Generated models rely on the nwn-snakes 
library, an extension of the SNAKES library [51] to support the NWN formalism. 
Results indicate that BiSDL can dramatically simplify complex model descriptions, 
significantly reducing the code needed to represent sophisticated systems. This is 
evidenced by the bacterial consortium, RGB and conjugative plasmid transfer case 
studies.

Fig. 13  The top-level plasmid_transfer net architecture. The places that contain net tokens correspond 
to the two BiSDL SCOPE statements, holding the donor net token (Fig. 14), the transconjugant net 
token (Fig. 15) and the pilus net token (Fig. 16), respectively
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The accompanying nwn-petrisim simulator has been developed to reproduce 
and investigate behaviors of systems modeled in BiSDL, confirming that the BiSDL-
compiled models accurately represent the expected behaviors of the systems studied.

Future developments may integrate into BiSDL a tool for formal verification [62], 
inherently supported by PN as a low-level formalism. This would allow the validation 
of complex models by rigorously checking for correctness according to specific cri-
teria. Several integrable tools exist for PN formal verification, including TINA (Time 
Petri Net Analyzer) [63], ABCD plus Neco for SNAKES models [64] and GreatSPN 
[65], which provides a user-friendly visual interface, in alignment with BiSDL’s aim 
for broader accessibility.

Fig. 14  The donor plasmid_transfer net token architecture. Places model genes, transcripts, proteins, and 
molecules, while transitions model processes involving them, such as transcription, translation, degradation, 
and enzymatic reactions. Black tokens model discrete quantities of resources in each place and are 
represented by the dot symbol
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Fig. 15  The transconjugant plasmid_transfer net token architecture. Places model genes, transcripts, 
proteins, and molecules, while transitions model processes involving them, such as transcription, translation, 
degradation, and enzymatic reactions. Black tokens model discrete quantities of resources in each place and 
are represented by the dot symbol

Fig. 16  The Pilus plasmid_transfer net token architecture. Places model genes, transcripts, proteins, and 
molecules, while transitions model processes involving them, such as transcription, translation, degradation, 
and enzymatic reactions. The black tokens model discrete quantities of resources in each place and are 
represented by the dot symbol
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The proposed BiSDL constructs exemplify the expressiveness of the language, and its 
closeness to the biological semantics. Future developments include gradually extending 
the syntax of the language with additional constructs.

In the future, plans are in place to further enhance BiSDL usability by developing a 
visual language interface and refining the user interface to simplify combining or edit-
ing modules. While, in its current implementation, the BiSDL still requires basic pro-
gramming and modeling skills, a graphical interface would pave the way to the extensive 
broadening of the user base to people with no programming skills.

Considering the importance of BiSDL adhering to Findability, Accessibility, Inter-
operability, and Reuse (FAIR) guidelines for data management and stewardship, adop-
tion and enforcement of a standardized naming convention in BiSDL is of paramount 

Fig. 17  Simulation of BiSDL-compiled nwn-snakes models shows that the transfer of R plasmids from 
the Donor to the Transconjugant cells is consistent with the expected behavior. The Donor cell holds one 
R plasmid throughout the simulation (top left), while the Transconjugant cell starts with none (top right). 
The R plasmid in the Donor encodes for the Pilus protein, which initiates the conjugation process as soon 
as it is translated. The Pilus mediates two R plasmid transfer events, depicted as the presence of a linearized 
single-strand R plasmid within it (center), resulting in two subsequent increases of R plasmid copies in the 
Donor cell (top right). R plasmids encode for R protein, which provides antibiotic resistance. In the Donor 
cell, the R protein is present from the start due to the presence of the R plasmid (bottom left). Otherwise, 
protein levels rise above zero in the Transconjugant cell R only after the first R plasmid transfer event (bottom 
right). These results show that simulation recapitulates the plasmid-transfer conjugation process, causing the 
acquisition of R protein-mediated antibiotic resistance
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goal in the future. In this regard, BiSDL current framework is poised for advance-
ments in two critical areas. Firstly, the versatility of its source-to-source compiler, 
which currently facilitates the translation of BiSDL into NWN models, could be 
expanded to support additional formalisms and standards, including those under the 
COMBINE initiative. Secondly, future works may integrate an ONTOLOGY_ID field 
into the language within the Metadata representation SBO category to encourage 
adherence to standards and foster model exchange.
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