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Abstract 

This study investigates the impact of spatio- temporal correlation using four spatio-
temporal models: Spatio-Temporal Poisson Linear Trend Model (SPLTM), Poisson 
Temporal Model (TMS), Spatio-Temporal Poisson Anova Model (SPAM), and Spatio-Tem-
poral Poisson Separable Model (STSM) concerning food security and nutrition in Africa. 
Evaluating model goodness of fit using the Watanabe Akaike Information Criterion 
(WAIC) and assessing bias through root mean square error and mean absolute error 
values revealed a consistent monotonic pattern. SPLTM consistently demonstrates 
a propensity for overestimating food security, while TMS exhibits a diverse bias profile, 
shifting between overestimation and underestimation based on varying correlation 
settings. SPAM emerges as a beacon of reliability, showcasing minimal bias and WAIC 
across diverse scenarios, while STSM consistently underestimates food security, 
particularly in regions marked by low to moderate spatio-temporal correlation. SPAM 
consistently outperforms other models, making it a top choice for modeling food 
security and nutrition dynamics in Africa. This research highlights the impact of spa-
tial and temporal correlations on food security and nutrition patterns and provides 
guidance for model selection and refinement. Researchers are encouraged to meticu-
lously evaluate the biases and goodness of fit characteristics of models, ensuring their 
alignment with the specific attributes of their data and research goals. This knowledge 
empowers researchers to select models that offer reliability and consistency, enhanc-
ing the applicability of their findings.

Keywords: Bayesian poisson model, Markov chain monte carlo(MCMC), Matrix plot, 
Mean absolute error, Root mean square error, Watanabe akaike information criterion

Introduction
Food security is a critical concern, particularly in the context of Africa, where numer-
ous countries face persistent challenges in ensuring adequate access to safe, nutritious, 
and affordable food for their populations. Understanding the complex dynamics of food 
security is essential for policymakers, researchers, and practitioners to develop effective 
interventions and strategies to address this pressing issue.

*Correspondence:   
221119873@stu.ukzn.ac.za; bofa.
adusei@gcuc.edu.gh

1 School of Mathematics, 
Statistics, and Computer Science, 
University of KwaZulu Natal, 
Oliver Tambo Building, Westville 
Campus, Durban, South Africa

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05791-w&domain=pdf


Page 2 of 24Bofa and Zewotir  BMC Bioinformatics          (2024) 25:168 

Traditionally, food security analysis has focused on temporal aspects, examining 
trends and changes in food availability, access, and utilization over time [1]. Nicholson, 
Stephens [1] reiterated the overemphasis on availability and accessibility indicators. In 
their study, they put forth four recommendations: avoiding confusion between "food 
availability" and "food security," consolidating food access indicators, assessing stable 
outcomes for food security indicators, and establishing empirical data linking results 
from agricultural systems models to outcomes related to food access. This emphasizes 
the necessity of including a broader spectrum of variables when evaluating food secu-
rity and nutrition, particularly within the African context. However, it is increasingly 
recognized that food security is not solely determined by temporal factors but is also 
influenced by spatial dynamics [2]. Cooper, Brown [3] conducted a review of factors 
associated with food security, analyzing 16,152 abstracts from 3297 publications span-
ning the years 1975 to 2018. The review revealed that a majority of the studied publica-
tions focused solely on spatial effects rather than considering spatio-temporal impacts. 
This highlights the necessity for exploring spatio-temporal modeling.

To capture spatial–temporal variations and better comprehend the intricacies of food 
security in Africa, there is a growing need for spatio-temporal modeling approaches. 
Spatio-temporal models integrate both the spatial and temporal dimensions of data, 
enabling a more comprehensive understanding of the underlying processes and patterns 
that shape food security dynamics [4]. Spatio-temporal modeling offers several advan-
tages as it explores spatial dependencies, assesses temporal dependencies, and captures 
persistence, trends, and cyclical patterns in food security outcomes. Moreover, it pro-
vides a framework to investigate interactions between spatial and temporal factors, rec-
ognizing complex feedback loops and dynamics within food systems [5].

Over the years, Bayesian-based spatio-temporal modeling has emerged as a signifi-
cant area of interest due to its versatile applications across various disciplines, including 
ecology and epidemiology [6]. Aswi, Cramb [7] conducted a substantive case study on 
Dengue Incidence, exploring a range of Bayesian spatio-temporal models and evaluating 
their goodness of fit using the Watanabe Akaike Information Criterion (WAIC). Similar 
research has also been conducted by Ibeji, Mwambi [8], Wahyuni and Syam [9], and Yoo 
and Wikle [10], showcasing the growing interest in Bayesian spatio-temporal modeling 
in different contexts.

Previous studies [1, 3] have employed spatio-temporal modeling from a frequen-
tist perspective, driven by limitations such as the absence of subjectivity, challenges 
in handling prior information, and issues with non-robustness. Additionally, the dif-
ficulties in establishing efficient and reliable computing techniques for Intrinsic Con-
ditional Autoregressive (ICAR) models, as outlined by Ver Hoef, Peterson [11], might 
have prompted the adoption of a spatio-temporal perspective, as seen in works by Fenta, 
Zewotir [12]and Sahu [13]. Are all spatio-temporal models robust to spatial and tempo-
ral correlations[14]? Hence, our goal was to conduct a comparative investigation into the 
impact of spatio-temporal correlation on four models [13] by evaluating their goodness 
of fit and biases in modeling food security in Africa. The Bayesian framework allows us 
to incorporate subjective insights, dealing adeptly with prior information and ensuring 
robustness—a notable improvement over the limitations identified in frequentist meth-
odologies [11]
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To assess goodness of fit, we employed the Watanabe-Akaike Information Criterion 
(WAIC) for model comparison. This criterion, based on the entire posterior distribution, 
strikes a balance between model fit and complexity, addressing concerns of both under-
fitting and overfitting. WAIC is specifically designed to estimate out-of-sample predic-
tive accuracy, making it a versatile and valuable tool for researchers working with various 
types of Bayesian models [14]. Furthermore, we examined the extent of bias within this 
category of models through the utilization of Root Mean Square Error (RMSE) and 
Mean Absolute Error (MAE) measurements using Monte Carlo Simulations.

This comparison helps to understand how each model performs and whether certain 
models are more robust to variations in the spatio-temporal correlations. By achieving 
these objectives, the study sought to provide valuable insights into the suitability and 
performance of various spatio-temporal models in the context of food security analysis, 
especially considering the impact of different spatio-temporal correlations. The findings 
would contribute to a better understanding of the strengths and limitations of different 
modeling approaches and aid in making informed decisions when analyzing food secu-
rity data in Africa.

Our methodology uniquely combines dimensionality reduction through PCA, Bayes-
ian modeling, and simulation-based exploration, addressing the complexities of spa-
tio-temporal correlation structures in the context of food security. This enables the 
exploration of diverse policy scenarios, ranging from weak to strong spatio-temporal 
correlation structures. By simulating these scenarios, we not only account for uncertain-
ties but also offer a comprehensive understanding of potential impacts on the spatio-
temporal dynamics of food security in Africa.

The simulation-based approach not only enhances our comprehension of intricate spa-
tio-temporal correlation structures but also equips policymakers with a potent tool for 
scenario analysis. Policymakers can now evaluate the potential impact of various inter-
ventions, spanning from weak to strong spatio-temporal correlation structures. This 
insight proves invaluable for devising evidence-based policies that effectively address the 
dynamic challenges of food security in Africa. Given the intrinsic connection between 
food security, nutritional well-being, and community health, the simulation of diverse 
scenarios offers a nuanced understanding of potential outcomes. This, in turn, assists 
public health professionals in designing targeted interventions to enhance the nutri-
tional landscape in the region. Our approach establishes a robust framework for mod-
eling complex spatio-temporal correlation structures.

This paper is structured as follows: In the next section, we describe briefly the meth-
odology of the spatio-temporal interaction models. In Sect.  "Simulation study", we 
describe the Monte Carlo simulation scheme that was used to examine the performance 
of the four considered models. In particular, we report on goodness of fit (WAIC) and 
BIAS (RMSE and MAE). The simulation results are presented in Sect. "Results". Finally, 
in Sect. "Discussion", we summarize our findings and give final remarks.

Methodology and simulation
DATA 

The Food and Agriculture Organization (FAO) of the United Nations plays a cru-
cial role in supplying data and information to support the attainment of Sustainable 
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Development Goal 2. This goal aims to eradicate hunger, food insecurity, and malnutri-
tion on a global scale. The comprehensive dataset on food and nutrition security can be 
accessed on the FAO website, where you can also find metadata specifically pertaining 
to Africa. This metadata comprises variable definitions, data sources, years, and units. 
To address missing values within the dataset, we employed the missForest, which is ran-
dom forest algorithm[15]. This research covered a 20-year timeframe, ranging from 2000 
to 2019. The study gathered a total of 1080 observations, representing data from all 54 
countries on the continent. This dataset encompassed 42 variables, each dedicated to 
specific aspects of food security and nutrition in accordance with the FAO’s definitions. 
The FAO employs the Food Insecurity Experience Scale (FIES) as a metric for measur-
ing food insecurity. In order to maintain consistency and facilitate comparisons between 
countries, the FIES Survey Module is implemented among nationally representative 
samples of the adult population. This standardized approach ensures that data on food 
insecurity is collected in a uniform manner across different nations [16].

Afridi, Jabbar [16] highlighted the significance of utilizing a convergence of evidence 
strategy, which involves the use of multiple metrics, to identify the key factors associated 
with food security and nutrition. The initial set of 40 variables sourced from the FAO 
dataset underwent Principal Components Analysis (PCA). This method was employed 
to mitigate potential data loss and tackle the challenge of multicollinearity. It also aimed 
to overcome limitations associated with the conventional selection of based solely on 
experts’ judgment regarding covariates or factors influencing food security and nutri-
tion. PCA offers a more data-driven and objective approach to identifying relevant 
covariates (explanatory variables) for food security and nutrition. In the end, a total of 
ten factors were chosen as explanatory variables in the study. These factors included 
nutrient intake, average food supply, consumption status, childcare, caloric losses, envi-
ronment, undernourishment, food or nutritional stability, adequate dietary supply, and 
newborn feeding practices. Together, these ten factors accounted for approximately 
74.6% of the total variance present in the dataset [17].

The results of the Kaiser–Meyer–Olkin and Bartlett’s Sphericity test values (with a 
KMO value of 0.729 and a p value of 0.00) indicated that PCA was a suitable approach, 
as suggested by [18]. Principal component extraction considered eigenvalues larger than 
one [19]. To ensure that each major component offered distinct information, we applied 
a VariMax-orthogonal rotation method, in line with Kaiser [19].

The first principal component (PC1) essentially represents nutrient intake and 
accounts for 19.26% of the total variation in the data. The second principal component 
(PC2) is associated with factors like food supply, food production, and dietary energy 
and protein supply. PC2 explains 14.96% of the variation and quantifies the average food 
supply in Africa. PC3 reflects African consumption levels based on indicators like Gross 
Domestic Product (GDP) per capita, childhood stunting and overweight, and adult obe-
sity prevalence. It accounts for 10.96% of the variation.PC4, explaining 5.71% of the vari-
ance, pertains to childcare factors. PC5 (5.51%) relates to calorie loss, PC6 (4.47%) to 
environmental influences, PC7 (3.72%) to undernourishment, PC8 (3.43%) to food sta-
bility, PC9 (3.39%) to dietary adequacy, and PC10 (3.19%) to infant feeding practices.

The modeling formulation employed in this study is from the spatiotemporal frame-
work. This framework integrates a spatial conditional autoregressive (CAR) prior and 
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an autoregressive (AR) process. By incorporating both spatial and temporal intercon-
nections, this method effectively captures the underlying patterns in the data. The CAR 
prior is employed to represent the spatial component, taking into account the spatial 
autocorrelation between neighboring locations. On the other hand, the AR process is 
utilized to model the temporal component, capturing the temporal autocorrelation over 
time. By combining these two components, the model can effectively analyze the spati-
otemporal dynamics of the data [20].

In Bayesian statistics, when specifying a prior distribution for random variables exhibit-
ing spatial autocorrelation, a common strategy involves combining a uniform prior that 
encompasses a wide range of values for the intercept (mean) with the intrinsic conditional 
autoregressive (ICAR) distribution. This approach allows for flexibility and accommodates 
the spatial autocorrelation structure in the data. Leroux, Lei [21] proposed a remarkable 
modification to conditional autoregressive (CAR) models that we incorporated into our 
work. Their suggestion involves using the equation Q(W, ρ) = ρ(Wd −W)+ (1− ρ)I , 
Where, Wd represents a diagonal matrix of the weighted average value derived adjacency, 
and W is the n-dimensional adjacency matrix. I represent the identity matrix of 
sizeN × N  , and 1 is an N × 1 vector of ones. The parameter ρ, which controls the spatial 
correlation strength, takes on values between 0 and 1, inclusive. This results in a CAR dis-

tribution ϕi|ρ, k2,ϕj , j �= i ∼ N
ρ

n
j=1 wijϕj

ρ
n
j=1 wij+1−ρ

, k2

ρ
n
j=1 wij+1−ρ

 . In this context, wij refers 

to the element in the nth dimensional adjacency matrix W corresponding to the ith row 
and jth column. The random effects have a spatial variance of k2 and autocorrelation of ρ

The spatial weight matrix related to the units i and j is represented by each item wij ∈ 
W. The constituent of wij is ( (i, j) , which remains the neighborhood matrix with 54 × 54 
dimension. The matrix’s nonzero entries reveal whether the two places are neighbors. 
Typically, the weighted matrix is written as:

The dataset’s spatial autocorrelation is verified by applying Moran’s I = ns0

∑
ij(wij(xi−µ)(xj−µ))

∑
i(xi−µ)2

 , 

’n’ represents the count of points under investigation,xixj denote the observed values at two 
distinct points, µ denote the expected value of ’ x and wij signify the spatial weight element. 
Moran’s I range [− 1,1], large values of the relevant metrics are close to other large value clus-
ters when the value is 1, while large values are close to low values when the value of the 
Moran’s I is -1[12, 13]

In the model,Yit represented the number of severe food insecurity individuals in a 
country i ( i = 1, 2, ..., 54) during year t(t = 1, 2, . . . , 20) and nit denoted the population 
size of country i at time t. The design matrix X represented the food security and nutri-
tion covariates components) are represented by the design matrix X , and β was a vector 
comprising related fixed effects parameters:

By introducing the spatio-temporal random effect ψit  to Eq. (1), we obtained the fol-
lowing expression:

sij =

{
1 if areas i and j are neighbours

o ortherise

(1)log(µit)= ηit = Xβ + log(nit)
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To capture the various spatio-temporal features (spatio-temporal interactions) of the 
multiple aspects of the spatio-temporal random effect (vit) , we decomposed it, leading to 
the four models in the sequel.

Spatio‑tmporal poisson linear trend model (SPLTM)

where t is calculated as T+1
2  Here ω1 and ω2 represent the overall intercept and slope 

parameters, respectively, and are assigned a flat prior distribution. On the other hand, 
the incremental trend(slope) and intercept parameters for the ith region, denoted as ai 
and bi

respectively, are assigned a conditional autoregressive (CAR) prior distribution with 
different values of ρ and k2. Specifically, the parameters parameters  a = (a1, . . . , an) 
and b = (bi, . . . , bn) follow the CAR prior distributions a ∼ CAR(a|ρint , k

2
int ,W ) and 

b ∼ CAR(b|ρslo, k
2
slo,W ) respectively. Similarly, k2slo, andk2int represent the variance 

parameters. The parameters ρslo, andρint  are assigned independent uniform prior dis-
tributions in the unit interval (0, 1), indicating that their values can range between 0 
and 1. On the other hand, the variance parameters, k2slo, andk2int follow the inverse 
gamma prior distribution. In this model, important trends for severe food insecurity are 
accounted for and their level of significance is accessed.

Spatio‑temporal poisson anova model ( SPAM).

Knorr‐Held [22] proposed a method for analyzing data that incorporates the interaction 
between space and time by using a model that factors spatial and temporal main effects 
based on the Analysis of Variance. Equation 4 is derived from Eq. 2 to represent the spa-
tial and temporal effect with attraction.

The three sets of parameters indicated by ai , bt and cit in Eq. 4 are all considered as 
random effects, each having its own unique probability distribution.

cit ∼ N
(
0, k2I

)
, i = 1, . . . , n, t = 1, . . . ,T ,

Here Z is the T × T matrix that represents temporal adjacency, where each element zij 
takes a value of 1 if the absolute difference between i and j is equal to 1, and 0 otherwise. 
It is assumed that the interaction effect (cit) is independent for all values of i and t.The 
parameters ρs and ρT are assigned uniform priors with a range of values between 0 and 

(2)log(µit)= ηit+vit

(3)log(µit) = ηit + ω1 + ai + (ω2 + bi)
t − t

T

(4)vit = ai + bt + cit , i = 1, . . . , n, t = 1, . . . ,T

a|ρs, k
2
s,W ∼ CAR

(
a|ρs, k

2
s,W

)
,

b|ρT , k
2
T ,Z ∼ CAR

(
b|ρT , k

2
T ,Z

)
,
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1, similar to before(Sect.  "DATA "), while the variance parameters k2s,k2T , and k2I are 
assigned inverse gamma priors.

Spatio‑temporal poisson separable model(STSM)

The separable model, which includes an overall time trend with temporal-specific spa-
tial effects, is an alternative model to the one presented in Sect. "Spatio-temporal pois-
son anova model ( SPAM).". In this case, independent conditional autoregressive (CAR) 
models are assigned to the spatial effects a = (a1t , . . . , ant) for each t = 1, . . . ,T  and to 
b = (b1,…, bT ), as shown in the following equation.

Z refers to the same definition as previously provided in Sect. "Spatio-temporal pois-
son anova model (SPAM).". The variance parameters k2t , where t ranges from 1 to T, and 
k2 , are assigned inverse gamma prior distributions, similar to the previous model. The 
parameters ρs and ρT are assigned independent uniform prior distributions with a range 
of values between 0 and 1.

Poisson temporal model for spatio‑temporal effect (TMS)

The postulation is made that a particular scenario within the framework of the separable 
model, as discussed in Sect. "Spatio-temporal poisson separable model(STSM)", corre-
sponds to a temporal autoregressive model with a lag of one. In this special case, the 
parameter bt is equal to zero for all values of t, resulting in the simplification as  vit = ait , 
here bt = 0 aimed at the entire  t   and

The precision matrix Q(W, ρ S) with spatial dependence is defined in Eq. (1), where 
the temporal autocorrelation is caused by the mean ρT ,at−1 . The prior distributions are 
assumed to remain unchanged.

(5)qit = ait + bt , i = 1, . . . , n, t = 1, . . . ,T

at |ρs, k
2
t ,W ∼ CAR

(
a|ρs, k

2
t ,W

)
,

b|ρT , k
2,Z ∼ CAR

(
b|ρT , k

2,Z
)
,

at |at−1 ,W ∼ N
(
ρT ,at−1, k

2Q(W , ρs)−1
)
, t = 2, . . . .,T

a1

∣∣∣W ∼ N
(
0, k2Q(W , ρs)−1

)
,
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The chain models

After decomposing the spatio-temporal random effect vit and adding it to the linear 
predictor ηit as shown in Eqs. 2, four different models were obtained: STLTM, SPAM, 
STSM, and TMS, represented by Eqs. 6–9, respectively:

Markov chain monte carlo: hamiltonian monte carlo

To construct a Markov chain that converges to the target distribution, Markov Chain 
Monte Carlo (MCMC) techniques are employed. A Markov chain is constructed by 
iteratively sampling q(h+1) from the conditional distribution p

(
q|qh

)
 at each time 

pointh > 0 . The process begins with an initial valueq(0).Importantly, the value q(h+1) at 
each step depends solely on the current valueq(k) , and is independent of its more distant 
past valuesq(h−1),q(h−2),…, …, q(0) . This specific property, where each step in the chain 
only depends on the current state and not on previous states beyond the immediate pre-
decessor, is a fundamental requirement for the chain q(h) to be considered a first-order 
Markov Chain.

The primary challenge in Bayesian modeling convergence lies in constructing a 
Markov chain that possesses essential properties such as stationarity, irreducibility, ape-
riodicity, and ergodicity, while also having a stationary distribution equal to the target 
posterior distribution π(q|y). Although there are alternative methods like the Metropo-
lis–Hastings algorithm and the Gibbs sampler, the Hamiltonian Monte Carlo (HMC) is 
widely regarded as the superior choice. This is because HMC excels in exploring regions 
of high posterior probability and concurrently employs a Metropolis–Hastings step 
to address the issue of oversampling peaks while neglecting low probability areas, For 
a comprehensive understanding of HMC, numerous excellent resources are available, 
including Lambert [23]. So, executing Hamiltonian Monte Carlo (HMC) for a param-
eter vector θ requires following the procedures delineated in Lambert’s 2018 publication, 
which are presented in a sequel.

1. Choose an initial location, q(0) , randomly from an initial proposal distribution.
2. During iteration h, generate an initial momentum (m) randomly from a proposal dis-

tribution, such as m ∼ N (µ,�).
3. Progress the current pointq , m to q∗ , m∗ by executing L steps of the leapfrog algo-

rithm, as implemented by the No-U-Turn Sampler (NUTS) [24]. The pair q∗ , m∗ rep-
resents the updated position of the parameter and its momentum after completing 
the L leapfrog steps.

(6)log(µit) = ηit + ω1 + ai + (ω2 + bi)
t − t

T

(7)log(µit) = ηit + ai + bt + cit

(8)log(µit) = ηit + ait + bt

(9)log(µit) = ηit + ait
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4. Compute the Metropolis acceptance probability, denoted as α(q, g), for the proposal 
g = (q∗,m∗) and current point q = (q,m) based on the target density π(q,m|y) 
where

5.  Generate a random number u from a uniform distribution U(0,1), and set 
q(k+1) = q∗ if u < α(q, g) orthewise, set q(h+1) = q

We employed the MCMC algorithm that generates 10,000 samples from the posterior 
distribution with N = 120,000, burn.in = 20,000, and thin = 10.

Simulation study
The main aim of our study was to explore how the spatial and temporal correlation struc-
tures impact the spatio-temporal dynamics of food security and nutrition in Africa. To 
achieve this, we conducted a Monte Carlo simulation involving 1,000 random samples 
(replications) with varying spatial and temporal correlations (0.05, 0.15, 0.25, 0.35, 0.45, 
0.55, 0.65, 0.75, 0.85, 0.95) for longitudinal twenty repeated measures in each country. 
Every aspect of the analysis, which encompassed tasks such as data generation, simula-
tion, and the estimation of model parameters, was executed utilizing the R programming 
language (R 4.3.1). For each scenario or combination of parameter values, we executed a 
total of 1000 simulation runs.

The combination of PCA and VIF allows for a more holistic evaluation of multicol-
linearity, validating the efficacy of the PCA dimensionality reduction while ensuring 
the dependability of regression model outcomes. This integrated approach fortifies the 
robustness of statistical analyses, contributing to a more comprehensive understanding 
of the interrelationships among variables, as evidenced in prior studies [25, 26]. From 
Fig. 1, we observed that all ten components had a VIF value of 1. The numerical value 

logπ(q,m|y) ∝ log(π(q|y))+
1

2
m′�−1m.

Fig. 1 Variable Inflation Factor (VIF) for the 10 explanatory factors of FSN in Africa: a nutrient intake; b 
average food supply; c consumption status; d childcare; e caloric losses; f environment; g undernourishment; 
h food or nutritional stability; i adequate dietary supply; j newborn feeding practices
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of 1 for VIF observed for these 10 components confirms that there is no inflation in the 
percentage of variance (i.e., the standard error squared) for each coefficient. Therefore, 
the application of PCA is justified.

Data‑generating process

During the data generation process (response variable), we specified four versions of 
spatio-temporal models to investigate the effects of spatio-temporal correlation using 
randomly generated (artificial) dependent variables and the 10 explanatory variables 
(covariates) of food security in Africa identified when the 40 indicators from FAO 
was subjected to PCA. The spatial units were the 54 countries of Africa. These ten 
components (covariates) were obtained from the 40 variables provided by the FAO 
dataset after subjecting them to Principal Component Analysis (PCA) as described in 
Sect. "Methodology and simulation".

We devised the following iterative algorithm, which was utilized to induce the 
desired spatio-temporal correlation when generating the values of the dependent 
variables.

The first version.

a. Define the spatial correlation (0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95) 
and temporal correlation value (0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95) 
combinations, one hundred pairs.

b. Use information in (a) to generate two correlation matrices: the ’spatial correlation 
matrix’ and ’temporal correlation matrix’. These matrices have the specified corre-
lation values and dimensions based on ’num_countries’ and ’num_observations’, 
respectively.

c. Use the information in (b) to generate the noise using multivariate normal distribu-
tions with means of 0 and covariance matrices ’spatial_correlation_matrix’ and ’tem-
poral_correlation_matrix’, in(b). Here the spatial and temporal data is generated by 
adding the spatial noise to the coordinates and replicating the temporal noise.

d. Use information (c) to calculate a latent variable lamda = exp(spatial datax + tempo-
ral data). Where ’spatial datax’ represents the x-coordinate of the spatial data for each 
country. ’temporal data’: This represents the temporal noise generated using multi-
variate normal distributions.

e. Generate the observed response variable y where each count is expected to be 
around the corresponding ’lambda’ value. Where y > 0

f. Fit spatio-temporal interaction model for the four (SPLTM, SPAM, STSM, TMS) 
models specified in Sect. "The Chain Models"

g. Estimate the parameters, and compute the bias and goodness-of-fit measures for 
evaluation

h. Perform steps (a) to (g) iteratively for a total of 1,000 repetitions, each time varying 
the spatial correlation and temporal correlation values. After each iteration, calculate 
the relevant parameters accordingly.
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For model validation:

 I. All other procedures from (a) to (e) remained unchanged, as outlined in the first 
version.

 II. To enable the computation of validation statistics, designate 70 percent of the data 
for training and 30 percent for testing.

 III. Fit spatio-temporal interaction model for the SPAM model
 IV. Estimate the parameters, and compute the coverage percentage for validation
 V. Perform steps (I) to (IV) iteratively for a total of 1,000 repetitions, each time vary-

ing the spatial correlation and temporal correlation values. After each iteration, 
calculate the relevant parameters accordingly.

Statistical analyses in simulated datasets

To determine the best predictive model from the four available options, we employed 
a range of statistical metrics to evaluate and compare their performance. Specifically, 
we computed the WAIC, RMSE, and MAE for each of these models. The model with 
the lowest statistical metric values indicates superior predictive ability, striking a bal-
ance between model fit and complexity.

Goodness of fit test: WAIC

The optimal fit among the four competing models was evaluated using WAIC [27, 28], 
To calculate WAIC, the log-likelihood of each data point is computed based on the 
model’s parameters. The total log-likelihood is then adjusted for the variance of these 
log-likelihoods, with a correction term for effective parameters.

Here, "lpd" represents the log pointwise predictive density, which is calculated as 
the summation from i equals 1 to n of the natural logarithm of the density function 
p(
(
yi|θ

)
.In this context, p(

(
yi|θ

)
 represents the density of observing the data point 

yi given the model parameters θ . The effective number of parameters, denoted as 
"pWAIC," is computed as the summation from i equals 1 to n of the variance of the 
log predictive densities, Var[log

{
p
((
yi|θ

)}]
. We assessed the goodness of fit by calcu-

lating the average model-based WAIC across the 1000 replications.

BIAS: RMSE and MAE

Let ŷi denote the estimated severe food security value for the i-th observation using a 
specific method, while yi  represents the observed value for the same i-th observation. 
The variable n represents the number of data points in each replication. The RMSE is 
calculated by taking the square root of the average of the squared differences between 
the actual values and the estimated parameters generated by the model in each itera-
tion. The RMSE can be expressed as follows:

(10)WAIC = −2(lpd − pWAIC)
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The MAE is determined by taking the mean of the absolute differences between the 
actual values and the estimated parameters obtained from the model in each itera-
tion, as described by Eq. 12.

Both RMSE and MAE for each replication are arithmetically averaged throughout 
the 1000 replication.

Validation

This involved the validation of the best model among the four competing models. We 
computed the coverage percentage (CP) for the 95% predictive intervals using the for-
mula CP = 1001

k

∑k
i=1I

(
Li ≤ yi ≤ Ui

)
 , where yi represents the observed value for 

i = 1,…,k and (Li, Ui)  represents the 100(1 − α)% predictive interval for predicting yi . In 
this calculation, we employed the indicator function I(·). It’s important to note that we 
used 70% of the data as the training set and the remaining 30% as the test set [29, 30].

Results
We present the simulation results based on the types of estimated statistical metrics 
explained in the earlier section. Our primary focus is on evaluating the performance of 
spatio-temporal models for food security concerning Africa. These metrics are visually 
represented in a matrix plot and Table.

For the goodness of fit test, it is represented in Table  1. In Table  1 “SP” represents 
spatial correlation, “TM” denotes temporal correlation, or the correlation over time. 
The cells in the table are colored-coded to easily identify the best and worst results. Red 
cells indicate higher or worse values, meaning WAIC. Yellow cells point to lower or bet-
ter values, signifying less WAIC. The color scheme facilitates interpretation by signal-
ing which areas or spatio-temporal correlation pairs exhibited the strongest or weakest 
WAIC metric.

Matrix plots are a crucial tool for presenting the relationships and patterns discov-
ered in our analysis of the four competing spatio-temporal models. They provided a 
visual narrative that illustrates how different spatial and temporal correlation structures 
impact food security and nutrition modeling for Africa. In these matrix plots, the cells 
are color-coded to represent the values of the parameters, including RMSE, and MAE, 
for each of the four models under consideration. lower RMSE and MAE values (deeper 
colors) indicate better model performance. This visualization method helps us to grasp 
and compare the biases of these models across various spatial and temporal correlation 
scenarios.

(11)RMSE =

√√√√
n∑

i−1

(
y1 − ŷi

)

n

2

(12)MAE =

[∑n
i=1

∣∣y1 − ŷi
∣∣

n

]
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Goodness of fit assessment

The WAIC analysis provided insights into how sensitive the different models were to 
the specific combinations of spatial and temporal correlation included in the model-
ling. Regarding WAIC, Table 1 illustrates that the spatio-temporal Poisson Linear Trend 

Table 1 Comparative Goodness of Fit (WAIC) for Spatio-Temporal Models with Varying Spatio-
Temporal Correlation

8421.1 8042.9 8933.5 9930.7 9664.2 9750.7 11247.4 10386.4 11972.8 12510.8

4374.1 4346.7 4380.7 4400.0 4357.0 4412.1 4445.3 4416.0 4491.3

4413.8 4392.8 4377.5 4381.2 4349.4 4278.5 4367.8 4396.0 4468.0 4617.0

4498.6 4434.1 4474.2 4437.9 4435.5 4542.6 4510.8 4732.2 4775.2

7243.60 7832.10 8262.65 10202.4
7

9990.16 9267.27 9202.97 11002.0
8

10897.80 11214.45

4157.77 4363.61 4295.02 4452.19 4408.55 4425.34 4400.93 4441.21 4335.97 4569.85

4314.57 4427.51 4285.93 4265.87  4335.69 4360.17 4481.59 4427.94 4267.99 4478.47

4489.16 4509.86 4412.58 4455.49 4444.14 4602.33 4632.50 4569.18

8777.74 10689.88 8815.36 10758.8
3

11990.25 11812.89 11247.37 12828.2
5

13491.60 12312.77

4186.57 4220.29 4248.95 4465.01 4310.24 4450.18 4478.50 4441.21 4310.95 4756.98

4264.72 4280.76 4355.28 4224.31 4150.11 4356.44 4391.43 4519.84 4200.67

4443.21 4350.40 4891.65 4821.59 4471.86 4541.11 4415.35 4652.75

10073.0
6

8537.59 9435.91 9167.94 12400.11 11375.84 11072.64 12907.5
1

16415.87 18450.05

4392.47 4459.96 4517.23 4379.13 4150.44 4343.17 4549.24 4397.75 4480.98 4287.58

4426.53 4274.34 4423.52 4376.97 4442.05 4327.61 4320.22 4296.98  4391.98 4476.88

4587.96 4519.33 4615.51 4441.90 4488.42 4532.92 4999.79 4392.90 4531.59 4615.29

7734.92 8926.03 10219.4 7715.65 8605.79 10814.70 10248.8 10970.3
9

12345.98 13478.8

4325.55 4426.42 4353.32 4447.68 4399.17 4689.33 4291.85 4456.83 4355.95 4632.58

4429.01 4365.11 4300.36 4458.29 4494.85 4402.02 4565.15 4503.96 4712.06 4420.43

4461.92 4487.97 4494.72 4516.38 4512.59 4512.09 4590.13 4800.69 4530.47 4677.98
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Model (SPLTM) exhibits values ranging from 6000 to 20,000, with the model exhibit-
ing the highest cluster of WAIC values when compared to the four competing models. 
The highest WAIC value observed was 18,450.05, while the lowest value recorded was 
6529.104. Notably, lower WAIC values were observed when both spatial and temporal 
correlations were weak to moderate, falling within the range of 0.05 to 0.5. This suggests 
that the model performs better or exhibits more favorable characteristics under these 
conditions. Conversely, higher WAIC values were observed in scenarios characterized 
by strong temporal and spatial correlations. This implies that the model’s performance 
does not improve with higher values of the parameters, specifically in cases of elevated 
spatial and temporal correlation. This behavior indicates that the model is particularly 

Table 1 (continued)
10572.1
5

10194.71 11884.6
8

12402.6
8

12183.83 14597.93 11663.72 11468.8
7

15179.53 10404.57

4497.50 4357.75 4268.05 4347.83 4353.34 4326.43 4410.11 4359.09 4374.86

4203.14  4260.74  4646.11 4481.25 4525.17 4409.73 4418.61 4244.16 4479.40 4339.27

4657.03 4563.45 4593.52 4694.66 4816.72 4463.89 4702.84 4849.61 4914.86

9486.1 8421.3 12149.2 12269.4 12713.0 16823.6 11646.7 13204.9 15455.3 17685.0

4475.35 4335.66 4442.67 4505.57 4409.91 4277.66 4473.67 4569.30 4690.93 4615.30

4422.23 4376.55 4174.75 4295.12 4383.27 4297.17 4389.86 4417.35 4467.96 4410.75

4609.64 4429.22 4539.38 4552.63 4813.25 4799.23 4437.24 4536.05 4674.10 4838.36

12174.4 10129.5 8315.4 12475.9 1529.1 13067.6 13273.4 12595.5 16834.5 14705.1

4285.76 4460.81 4430.19 4437.87 4244.78 4365.72 4257.56 4672.68 4461.23

4451.70 4289.98 4400.27 4378.13 4533.67 4311.52 4594.10 4252.16 4276.54 4255.69

4460.54 4808.25 4703.10 4709.35 4622.54 4607.99 4574.17 4519.13

9591.1 8590.2 10832.5 9896.1 7158.5 12564.8 11052.4 10916.6 11440.9 11652.9

4345.51 4563.08 4467.29 4502.78 4497.35 4338.49 4479.49 4404.09 4659.02 4495.42

4505.85 4343.92 4197.17 4383.23 4711.44 4418.01 4550.60

4443.47 4646.95 4713.39 4601.12 4918.00 4624.68 4557.76 4511.20

11449.4 10088.7 13495.1 17701.4 14291.9 14274.3 16134.1 11912.1 18028.3 14910.5

4281.91 4450.83 4298.99 4342.94 4060.26 4435.40 4238.69 4371.53 4479.40 4548.91
4458.82 4359.0 4459.8 4096.4 4420.3 4481.1 4190.5 3893.4 4469.2 4503.28

4596.4 4377.44 4407.07 4212.43 4527.54 4544.56 4419.91 4636.35 4521.10

In the table, "SP" represents spatial correlation, and "TM" represents temporal correlation. Cells highlighted in red indicate 
worse performance, while yellow cells indicate better performance
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sensitive to increased spatial and temporal correlation, particularly when there are high 
levels of spatio-temporal correlation.

For spatio-temporal Poisson Anova Model (SPAM), the WAIC values are distrib-
uted within the range of 3800 to 5000. The lowest WAIC value observed was 3893.43, 
while the highest recorded WAIC value was 4917.99 (Table  1). Among the four 
models compared, SPAM consistently obtained the lowest WAIC scores in the vast 
majority of simulated scenarios concerning diverse spatial and temporal depend-
ency combinations. This indicates that SPAM excelled in capturing and modeling the 
underlying spatial and temporal correlations within the data, as determined by the 
WAIC metric for model selection and performance. In the case of the Poisson Tem-
poral Model (TMS) for the Spatio-temporal correlation effect, as shown in Table  1, 
the WAIC values also fall within the range of 4000 to 5000 for all 100 pairs of spatio-
temporal correlation. The lowest WAIC value was 4060.257, and the highest WAIC 
value was 4756.981.

It is worth noting an interesting pattern observed in the results: lower WAIC values, 
indicating better model fit, were seen when the spatial and temporal correlation values 
included in the simulations ranged from low to moderately strong, specifically when 
both types of correlations took on values between 0.05 and 0.75. This pattern held for 
both the SPAM and TMS models. In other words, these two models performed best at 
capturing the relationships in the data when the spatial and temporal dependencies were 
in the moderate rather than extremely low or high ranges. This provides useful insight 
into the conditions under which these types of spatiotemporal models are better able to 
model correlation structures. WAIC values deteriorated when the data exhibited strong 
spatio-temporal correlations, as opposed to when these correlations were at lower or 
moderate levels. This implies that although the SPAM and TMS models exhibited good 
performance when dealing with modest spatial and temporal dependencies, their capa-
bility to effectively capture patterns in the data decreased as the strength of the depend-
encies across geographical areas and over time increased substantially.

Concerning the performance of the spatio-temporal Poisson Separable Model (STSM), 
a notable observation is that the performance of the STSM is particularly responsive to 
variations in both spatial and temporal correlation. The STSM demonstrates relatively 
strong performance in scenarios characterized by low to moderate levels of spatial and 
temporal correlation, ranging from 0.05 to 0.55. However, it exhibits higher WAIC val-
ues when there is a combination of high spatial correlation with lower temporal correla-
tion. The WAIC values in this case fall within the range of 4100 to 5000, with the highest 
WAIC value recorded at 4999.791 and the lowest at 4150.11.

Bias evaluation

Figure 2 depicts the distribution of bias levels, as indicated by RMSE, for all four models. 
Notably, for both the SPAM and TMS models, the values fall within the range of 0.7 to 
1.2, and interestingly, both models exhibited similar distribution patterns. The parame-
ter values vary according to different levels of spatio-temporal correlation, which ranged 
from 0.7 to 1.00. Notably, there was only one observation exceeding 1.00, occurring 
when the temporal correlation was 0.25 and the spatial correlation was 0.05. According 
to Fig. 2, the SPLTM exhibits the highest range of RMSE values, spanning from 1.2 to 
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16.94. In contrast, the STSM shows a narrower range, with RMSE values ranging from 
1.8 to 0.89.

Regarding the MAE results presented in Fig. 3, the SPLTM model exhibited the wid-
est range of values, spanning from 8.9 to 0.7. In contrast, the SPAM model displayed 
narrower intervals, with values ranging from 0.8 to 0.5. For the TMS model, the MAE 
intervals were 0.99 to 0.5 (Fig. 3). Interestingly, the majority of MAE metrics for SPAM 
fell within the range of 0.6 to 0.75, except in situations when spatial correlation was 0.65 
and temporal correlation was 0.05 (Fig. 3). Similar patterns were observed for cases of 

Fig. 2 Bias (RMSE) of spatiotemporal models (SPAM, SPLTM, STSM, and TMS) with varying spatio-temporal 
correlation
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Fig. 2 continued
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low spatial (0.05) and temporal (0.25) correlation, as well as spatial (0.45) and temporal 
(0.85) correlation. These distributions suggest that the SPAM model may not perform 
well under such conditions, but it excels when there is a strong correlation in both spa-
tial (0.85) and temporal (0.95) (Fig.  3). For the TMS model, lower MAE metrics were 
clustered when spatial correlation ranged from 0.45 to 0.95 for nearly all temporal corre-
lations (Fig. 3). Regarding the STSM model, the MAE metrics ranged from 0.65 to 0.85, 
with the highest values observed in scenarios where both spatial and temporal correla-
tions were very weak (0.05) or when temporal correlation was strong (0.95) with weak 
spatial correlation (0.05) (Fig. 3).

Coverage percentage‑based validation of the selected model: SPAM

Based on the principles of statistical learning, the SPAM model is considered the best 
among the four competing models. Therefore, it is crucial to validate its performance 
using the 70% train and 30% test split from a machine learning perspective. This vali-
dation will help assess the model’s capability for handling unseen data across vari-
ous spatio-temporal correlation scenarios especially concerning Africa’s food security 
modelling. We noticed a homogeneous distribution of the coverage percentage across 
almost all variations in spatio-temporal correlation concerning the SPAM. The cover-
age percentages were noted to vary between 96.8% and 80.6%. Notably, the SPAM 
model consistently achieved higher coverage percentages (> 90%) for nearly all lev-
els of spatio-temporal correlation, with one exception: when the temporal correlation 
was high (0.85) and the spatial correlation was weak (0.05) Fig. 4. It achieved its low-
est coverage percentage at 80 (Fig. 4), although there were instances (17 observations) 
where the coverage percentage ranged from 85 to 90.

Fig. 2 continued
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Discussion
As we concentrate on evaluating the performance of spatio-temporal models under 
different spatio-temporal correlation scenarios, we summarize our findings in a table 
and matrix plots. When necessary, we contextualize our results within the existing 
literature.

In the table and matrix plot displaying WAIC, RMSE, and MAE values for our four 
models (SPLTM, SPAM, STSM, and TMS), we have identified intriguing and consist-
ent monotonic patterns that offer valuable insights into their performance and bias 
characteristics. In essence, these observations underline the sensitivity of all four 
models to variations in spatio-temporal correlation. On average, each of these models 

Fig. 3 Bias (MAE) of spatiotemporal models(SPAM, SPLTM, STSM, and TMS) with varying spatio-temporal 
correlation
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gradually converges towards the true values as spatio-temporal correlation increases, 
which is reflected by the corresponding increase in WAIC values. These findings 
strongly support the notion that an augmentation in spatio-temporal correlation lev-
els can indeed impact the performance of these models [31]. Our results reinforced 
the significance of selecting models that align with the specific patterns evident in the 
data.

Fig. 3 continued

Fig. 4 Distribution of coverage percentage for the SPAM model
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Our study highlights that the SPLTM consistently exhibited WAIC values in these 
comparisons. This recurrent pattern of SPLTM holding the highest WAIC values 
raises significant concerns about its suitability for modeling food security and nutri-
tion in the African context. In stark contrast, our findings emphasize the remarkable 
consistency of the SPAM model. SPAM consistently outperformed the other mod-
els, as evidenced by its persistently lower WAIC values when compared to SPLTM, 
STSM, and TMS for almost all scenarios under study. This robust and unwavering 
performance strongly suggests that SPAM stands out as exceptionally well-suited for 
the complex task of modeling the dynamic interplay of food security and nutrition in 
the African context. The reliability demonstrated by SPAM makes it a top choice for 
researchers seeking to comprehend and predict the intricate spatio-temporal patterns 
within this critical domain. These findings align with existing research [13] on the 
behavior of spatio-temporal interaction models and reinforce the superiority of the 
SPAM model in this context.

Our analysis of bias using RMSE and MAE unearthed interesting patterns that shed 
light on the behavior of the four spatio-temporal models. The SPLTM model consist-
ently exhibited relatively larger bias values across a wide spectrum of spatio-temporal 
correlation values. This consistent pattern of overestimation in food security across 
diverse spatio-temporal scenarios underscores the model’s limitations and its tendency 
to inflate predictions when necessary. In contrast, the Poisson Temporal Model (TMS) 
demonstrated relatively more variable bias patterns. In scenarios with low spatial and 
temporal correlation, it consistently recorded substantial bias values, indicating a poten-
tial tendency to overestimate food security. However, in high correlation settings, TMS 
exhibited a notable shift towards underestimation, showcasing the influence of varying 
spatio-temporal correlation on its predictive behavior.

The SPAM emerged as the model with minimal bias across most scenarios. This 
consistent performance highlighted SPAM’s reliability in accurately modeling food 
security dynamics, irrespective of the degree of spatio-temporal correlation. Con-
versely, the STSM exhibited a notably high bias, consistently underestimating food 
security. This bias pattern was particularly prominent in areas characterized by low 
to moderate spatial and temporal correlation, emphasizing the model’s limitations in 
accurately capturing the dynamics of food security in such settings. Our bias evalu-
ation not only highlights the relative performance of these models but also provides 
researchers with critical insights for model selection based on their specific research 
questions and the characteristics of their spatio-temporal data. Understanding 
these bias patterns is paramount to making informed decisions when choosing the 
most appropriate model for accurate and reliable predictions in the domain of food 
security.

In light of these findings, we recommend that model selection should be a balanced 
consideration of both biasness and goodness of fit metrics. A model that exhibits 
superior goodness of fit but introduces significant bias may not provide accurate pre-
dictions, and conversely, a model with low bias but poor goodness of fit may fail to 
capture underlying spatio-temporal dynamics. Researchers should aim to strike a har-
monious equilibrium between these two aspects to select models that align with the 
specific characteristics of their data and research objectives.
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The statistical insights gained from our research have the potential to extend their 
impact beyond the realm of spatio-temporal modeling. Other disciplines grappling 
with complex and correlated data, such as epidemiology, environmental science, and 
economics, can draw upon the methodology and lessons learned in this study. our 
research fosters interdisciplinary collaboration and opens new avenues for the analy-
sis of intricate spatio-temporal patterns in diverse fields. This cross-disciplinary appli-
cability enhances the relevance and broader impact of our findings.

While the integration of PCA and Bayesian modeling contributes to the efficiency 
of our methodology, it is crucial to recognize potential computational complexities, 
particularly with larger datasets. Given that our study focused on 20 temporal obser-
vations for each subject (country), future research endeavors could delve into compu-
tational optimization techniques. These techniques would be beneficial for handling 
datasets of varying sizes, ranging from smaller (e.g., 5, 10, 15) to larger (e.g., 25, 30,35) 
temporal observations. Implementing such strategies would help maintain computa-
tional efficiency without compromising model accuracy, addressing scalability con-
cerns associated with different data sizes. The Bayesian modeling approach relies 
on specific assumptions, and deviations from these assumptions can influence the 
robustness of the findings. For example, the assumed prior distributions may intro-
duce subjectivity. Future studies could incorporate sensitivity analyses to evaluate the 
impact of different priors on model outcomes. This would contribute to enhancing 
the credibility and reliability of our Bayesian approach.

To the best of our understanding, there hasn’t been prior research assessing the 
performance of the four spatio-temporal models (SPLTM, SPAM, STSM, and TMS) 
in terms of their sensitivity to spatio-temporal correlations using Monte Carlo sim-
ulations. It’s important to note that, as with any simulation study, our findings are 
bound by the specific scenarios and data employed in our simulations. Hence, while 
our analysis of bias and goodness of fit provides valuable insights into the capabilities 
and constraints of spatio-temporal modeling approaches, it’s important to note that 
these findings might not be directly transferrable to scenarios or contexts that were 
not explicitly investigated in our study.

Conclusion
The primary objective of our study was to investigate the influence of spatial and 
temporal correlation structures on the spatio-temporal patterns of food security and 
nutrition (FSN) in Africa. We conducted this exploration within the spatio-temporal 
framework, considering four Bayesian Poisson models: SPLTM, SPAM, STSM, and 
TSM. Monotonic patterns became evident when we subjected the four competing 
models to varying spatio-temporal correlations. the SPAM model consistently exhib-
ited the lowest RMSE, MAE, and WAIC values across all spatio-temporal correla-
tions. This notable consistency implies a high level of robustness in the SPAM model’s 
performance. These results strongly suggest that SPAM is a reliable and solid choice 
for capturing the dynamics of food security. The results of our study provide practi-
cal guidance for researchers and practitioners engaged in spatio-temporal modeling. 
By identifying the strengths and weaknesses of each model under varying degrees of 
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spatio-temporal correlation, we offer a valuable framework for informed model selec-
tion. Researchers should strive to find a balanced equilibrium between these two fac-
tors (goodness of fit and bias metrics) when choosing models that are in line with 
their data’s unique features and research goals. This knowledge empowers researchers 
to select models that offer reliability and consistency, enhancing the applicability of 
their findings.
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